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Abstract: The bioclimatic well-being of individuals is associated with the environmental
characteristics of where they live. Knowing the relationships between local and regional climatic
variables as well as the physical characteristics of a given region and their implications on thermal
comfort is important for identifying aspects of thermal sensation in the population. The aim of this
study is to develop an empirical model of human thermal comfort based on subjective and individual
environmental patterns observed in the city of Santa Maria, located in the state of Rio Grande do
Sul, Brazil (Subtropical climate). Meteorological data were collected by means of an automatic
meteorological station installed in the city center, which contained sensors measuring global solar
radiation, air temperature, globe temperature (via a grey globe thermometer), relative humidity
and wind speed and direction. A total of 1720 people were also interviewed using a questionnaire
adapted from the model recommended by ISO 10551. Linear regressions were performed to obtain
the predictive model. The observed results proposed a new empirical model for subtropical climate,
the Brazilian Subtropical Index (BSI), which was verified to be more than 79% accurate, with a
coefficient of determination of 0.926 and an adjusted R2 value of 0.924.

Keywords: thermal comfort index; linear regression; predictive model

1. Introduction

Human thermal comfort ranges have been established or adapted in the last few years from a
thermal sensitivity scale of seven or nine points for the evaluation of the average perception of people
regarding weather conditions in open spaces [1–6]. New ways to predict the thermal sensations of
people in their typical environments, based on personal, environmental and physiological variables,
have been explored for decades [7]. Accordingly, mathematical models that predict the thermal
responses of individuals in their natural environments have been developed [7–10].

These studies have been developed for the determination of thermal comfort in open spaces
under uncontrolled thermal conditions [2–4,11,12] and use modelling and evaluation methods from a
thermophysiological perspective. Examples include the studies of Gulyás et al. [13] and Höppe [1],
while others are based on the perspective of the relationships between the climatic parameters that
determine the level of thermal comfort of humans in open spaces [14,15].
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To assess the thermal comfort and sensation patterns of the population during the different seasons
of the year, for temperate climates [5,6,16–19], or hot and humid climates [20–23], many studies have
attempted to predict comfort conditions by calibrating the interpretive ranges of different indices to
the climatic and thermal perception conditions of certain places.

Studies show differences in outdoor thermal comfort between distinct climatic zones [24,25] and
suggest a need for additional field surveys on subjective human perception in those environments [22].

However, the calibration of the thermal comfort ranges of a given index does not always answer
all of the questions raised about the thermal comfort of a given location. Thus, the determination of a
predictive model based on the environmental, physiological, and subjective aspects of the reference
environment offers a solution for better interpretations of the biometeorological aspects of the place of
study [24].

Several indices used to evaluate outdoor thermal comfort were originally developed for indoor
spaces [26,27]. Some examples are the Standard Effective Temperature (SET) index [28], which was
adapted as OUT_SET [29] for outdoor environments, and the Predicted Mean Vote (PMV) [30], the use
of which is suggested by [31] and by [32], adapted for outdoor environments and taking into account
the influence of shortwave radiation.

Thus, according to Salata et al. [33], one of the main solutions found for considering the influence
of personal adaptions and expectations of the population of a certain place on thermal sensation is
the proposal of an empirical index based on multiple regression analyses [8–10,33]. The correlation of
multiple variables is commonly performed by means of linear regression similar to many previous
studies [6,8–10,34–36], and the resulting groups of indices define human comfort as a function of the
thermal environment. These indices are suitable for long term studies such as historical bioclimatic
analyses [37].

Empirical indices accurately describe the thermal sensations of pedestrians and the environmental
factors that most affect their thermal behavior [38]. These indices are adequate for the cities in which
they were analyzed, whereas the simplified models are suitable for large-scale studies in which urban
microclimates can be neglected [37,38].

A wide variety of studies have been conducted in temperate and subtropical
countries [5,6,16–18,24,39–42], each of which are characterized by specific climatic and cultural
conditions, using a cross-sectional approach. However, there is a lack of research on thermal comfort in
subtropical climates, which are characteristic of the geographic areas South of the Tropic of Capricorn
and North of the Tropic of Cancer [43,44], especially in the Brazilian subtropical climate zone.

The present study proposes a definition for a new simplified empirical index based on
cross-sectional interviews and on meteorological data, including air temperature, relative air humidity,
and wind speed, observed simultaneously to the interviews through multiple linear regressions in the
city of Santa Maria, state of Rio Grande do Sul, Brazil. This is a subtropical climate region, classified
as Cfa according to Alvares et al. [44] and Koppen [45]. However, the objective of this study is not to
propose a global index with a wide application, but to pave the way for future studies that promote
the improvement and adjustment of this model in order to meet a wider application demand in
subtropical regions.

2. Experiments

The meteorological and thermal sensation data were collected during 2015 and 2016 in the city of
Santa Maria, Rio Grande do Sul, Brazil, which is located in the geographic center of the state and has
an estimated population of 278,445 inhabitants [46]. According to Köppen [45], in terms of general
climatic classification, the city is classified as type Cfa, with a hot and rainy temperate climate, no dry
season, and a hot summer. The hottest month has a mean temperature higher than 22 ◦C and a mean
air temperature in the hottest four months above 10 ◦C, and the coldest month has a mean temperature
above 3 ◦C.
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For this purpose, a Campbell CR100 Automatic Weather Station (AWS) was used, at a maximum
height of 2.0 m, with a mobile aluminum tripod containing the following sensors (Table 1):

Table 1. Sensor model and resolution.

Sensor Model Resolution

Rain gage model TE525 Tipping Bucket Rain Gage 0.10 mm
Global radiation sensor model LI200X Pyranometer 0.2 kW·m−2

Temperature and humidity sensor model HMP35C Temperature and Relative Humidity Probe 0.1 ◦C and 0.6%
Speed and wind direction sensor models 03001 R.M. Young Wind Setry Set 03101 R.M. Young

Wind Sentry Anemometer 03301 R. M. Young Wind Sentry Vane 0.5 m·s−1 and 5◦

TMCx-HD gray globe thermometer 0.03 ◦C

Primary data on air temperature, gray globe temperature—because the station was set up in an
open space exposed to direct solar radiation [47]—relative humidity, wind speed, wind gusts, global
solar radiation, and rain were collected. The station was positioned in a paved area in the center of
Santa Maria (Figure 1).

Field data collection was performed during the following periods: 5–7 August 2015, 17–19 January
2016, and 6–8 July 2016. These periods were selected as representative of summer (January 2016) and
winter (July 2016). The period of August 2015 was used for the validation of the data.

The choice of the representative periods of summer and winter was aimed at demonstrating the
seasonality of the data and evaluating its influence on the final results. The objective is to incorporate
the region’s climatic amplitudes into the proposed models, because methodological and operational
evaluations are not necessarily possible over the course of the entire year. The seasonal aspect is
incorporated into the model to make observations in representative periods of summer and winter.
Collection of meteorological data and interviews with the local population were performed from
9:00 a.m. to 5:00 p.m. local time during the field experiments described above. The model can also
be applied to the night period, simply by including the input variables of this period. However, it is
understood that the flow of people in this environmental profile is greater in the daytime and in the
early hours of dusk.
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Figure 1. Location of the study area (a) and of the automatic weather station (b).

On the days of field research, the 5–7 August 2015, period was characterized by a persistent
high-pressure system anomaly (anticyclone positioned at approximately 30 degrees of latitude),
with relatively slow displacement of high pressures, which persisted for several days. During the
January 2016 field research days, it was possible to identify a pattern compatible with Santa Maria’s
normal climatological averages for that month, which presented high temperatures with maxima
above 32 ◦C. In the analysis of the next winter, during July 2016, above-average temperatures for
Santa Maria were observed mainly in the first day of analysis, but after that day, temperatures were
within the range expected for that season.

The mean temperature and relative humidity patterns observed in all periods of data collection
are shown in Figure 2. The patterns of average velocity and maximum wind speed are observed in
Figure 3 and the predominant direction of wind for the period of analysis is shown in Figure 4.Atmosphere 2018, 9, x FOR PEER REVIEW  5 of 16 
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Figure 4. Predominant direction of wind for the period of analysis.

The mean patterns of the main climatic attributes observed in the field are shown in Table 2.

Table 2. Average values of climatic attributes collected during the periods of analysis.

Days
Average

Temperature
(◦C)

Minimum
Temperature

(◦C)

Maximum
Temperature

(◦C)

Average
Relative

Humidity (%)

Minimum
Relative

Humidity (%)

Maximum
Relative

Humidity (%)

Average
Wind Speed

(m/s)

Maximum
Wind Speed

(m/s)

5 August 2015 22.9 18.0 25.7 73.1 65.0 88.2 0.0 1.1
6 August 2015 28.4 24.4 30.7 37.6 32.0 47.2 1.4 8.8
7 August 2015 29.3 26.4 31.4 34.4 30.9 38.2 1.3 8.3

17 January 2016 30.0 21.1 35.2 52.7 23.9 86.7 0.1 2.5
18 January 2016 31.5 23.6 36.6 36.3 11.4 59.8 0.1 2.3
19 January 2016 30.5 23.5 36.7 46.9 23.6 70.8 0.1 2.2

6 July 2016 10.5 8.1 12.9 79.7 70.3 89.8 0.5 3.1
7 July 2016 16.0 11.4 18.4 51.2 38.5 74.3 0.2 2.3
8 July 2016 17.2 11.3 19.7 52.9 44.1 71.9 0.0 0.7

In the present study, only those individuals who had resided in the town for more than one year
were interviewed to derive a function of the individual thermal history and environmental memory,
as observed by Nikolopoulou et al. [48], in a total of 1720 interviews (Table 3). Interviewees also had
to exhibit 0.3 to 1.5 clo of clothing insulation, which corresponds to wearing jeans and T-shirt or a
suit [49], and 300 W of physical activity, because only people in motion (walking) were included [50].
The questionnaire used was an adaptation of the one included in the standard ISO 10551 (1995)
(Figure 5).
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Table 3. Description of the analyzed population.

Days of Analysis Gender N Average Age (Years) Average Weight (Kg) Average Height (m)

5 August 2015 F 159 33 62.90 1.630
M 128 35 78.00 1.745

Total 287 34 69.63 1.681

6 August 2015 F 146 31 62.97 1.639
M 136 34 76.75 1.742

Total 282 32 69.61 1.688

7 August 2015 F 149 31 63.30 1.641
M 139 32 77.23 1.755

Total 288 32 70.02 1.696

17 January 2016 F 63 30 65.00 1.640
M 81 37 75.20 1.722

Total 144 34 70.74 1.686

18 January 2016 F 81 34 64.64 1.642
M 63 33 81.30 1.766

Total 144 33 71.93 1.696

19 January 2016 F 85 30 64.00 1.644
M 59 33 79.20 1.743

Total 144 31 70.23 1.685

6 July 2016 F 72 35 65.54 1.618
M 72 32 77.10 1.745

Total 144 34 71.32 1.681

7 July 2016 F 89 33 69.70 1.641
M 54 33 79.61 1.751

Total 143 33 73.44 1.683

8 July 2016 F 92 33 68.12 1.648
M 52 36 78.52 1.747

Total 144 35 71.88 1.684

Grand Total 1720 33 70.68 1.687
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From the correlation between the environmental variables (air temperature, relative air humidity
and wind speed) observed in the field and the subjective answers, a new empirical index was proposed.
Only the data referring to the collection days in January and July 2016 were used because the August
2015 data were later used to validate the results of the index by means of an uncertainty test for the
samples and a Student’s t-test.

All statistical procedures were performed using the statistical software R, and the multiple linear
regression method is described by the following mathematical expression:

Y = α1·x1 + α2·x2 + α3·x3 + · · · αn·xn + c (1)

where n is the number of terms in the equation, αn are the parameters (constants) obtained by the
regression, c is the constant that corresponds to the point where the adjusted line intersects the y-axis,
Y is the dependent variable, and xn are the independent variables.

In the present study, what we call the mean index is, in fact, the mean of the responses observed
in the field for a given climatic variable value. Since Y is a random discrete variable whose possible
values are finite, the best way to estimate the expected mean index value in a given time interval is to
use the formula of the expected value for discrete random variables, or a finite case, since the responses
are limited to the [32] 7-point class interval:

E[y] =
n

∑
k=1

yk pk (2)

where yk is the possible value, and pk is its respective probability in some independent tests.
In the case of the present study,

Imean =
n

∑
n=1

Ik pk (3)

where Ik is the mean index, and pk is the probability estimated by dividing the number of responses to
the index by the total number of interviews performed in a given interval.

Subsequently, more than 100 regressions were performed with multiple variables to obtain
the appropriate parameters for the various situations examined. Regressions were also tested using
absolute humidity rather than relative humidity. This is because collinearity was observed in the results,
and the variance inflation factor (VIF) test was used, which, according to Marquardt and Marquardt
and Snee [51,52], is used to determine the variables with VIF values exceeding 10, which should be
excluded to prevent compromising the model.

Finally, the index was validated with the data obtained in the first field survey conducted in
August 2015, and through the uncertainty test for the samples,

σI =
n

∑
n=1

(yk − I)2 pk (4)

where σi is the uncertainty of the mean of the votes obtained through interviews, yk is the k index
(k = −3 to 3), and pk is the estimated probability of obtaining the yk index.

After the uncertainty calculation, the t-test or Student’s test was performed as given by the
following equation:

T =
Imean − Imodel

σ√
n

(5)

where Imean is the comfort index obtained by the mean of the votes obtained in the interviews, Imodel
is the index calculated by the model, σ is the uncertainty of the mean of the votes obtained through
interviews, and n is the number of samples (number of interviews to obtain the calculated mean).
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The multiple linear regression method is simple and robust, since the linearity assumptions of the
data, such as normality (obtained by the measure of obliquity and kurtosis of the distribution) were
verified, which were, finally, executed in the process method validation [53].

In order to obtain an even more efficient validation for the developed model, 33% of the data
were used for the comparison between this and the already traditional models in the literature,
including Physiologically Equivalent Temperature (PET) [54], Standard Effective Temperature (SET)
*, and Predicted Mean Vote (PMV) [30], which had their classes adjusted by Gobo, Galvani and
Wollmann [55] for the same climatic situation in Santa Maria.

3. Results

We chose to develop a simplified thermal comfort index for winter and summer conditions
based on the independent variables including air temperature, relative air humidity, and wind speed.
These variables are easily measurable and available in databases from meteorological institutes.

The assumptions of the linear models, as if the predictors are normally distributed and have equal
variances, are verified by Asymmetry, Curtosis, and Heteroscedasticity measurements obtained by the
GVLMA (Global Validation of Linear Model Assumption) package of the R programming language
(Table 4).

Table 4. Validation test of the method.

Test Value p-Value

Asymmetry 0.09089 0.76305
Curtosis 0.59938 0.43881

Heteroscedasticity 1.46280 0.22648

The correlation between logistic and linear regression models was±98%, proving unnecessary the
use of two different methods, and therefore, the multiple linear regression model was used. The values
of Table 3 show acceptable results, which increase the confidence in the model.

The results revealed a strong positive correlation between the means of the thermal sensation
votes and air temperature, with an R2 value equal to 0.96 (Figure 6).

Atmosphere 2018, 9, x FOR PEER REVIEW  9 of 16 

 

The correlation between logistic and linear regression models was ±98%, proving unnecessary 
the use of two different methods, and therefore, the multiple linear regression model was used. The 
values of Table 3 show acceptable results, which increase the confidence in the model. 

The results revealed a strong positive correlation between the means of the thermal sensation 
votes and air temperature, with an R2 value equal to 0.96 (Figure 6). 

 
Figure 6. Correlation between thermal sensation vote and air temperature. 

The correlation analysis of air temperature with the other variables indicated a strong negative 
correlation with relative air humidity for both July and January. However, the strong correlation 
between the variables air temperature and relative air humidity may impair the model results due to 
internal collinearity. 

According to Monteiro et al. [56], when the relative air humidity has a significant negative 
correlation with air temperature, direct consideration of this information may lead to the false 
interpretation that higher relative humidity leads to more intense cold sensations. However, relative 
humidity has a strong negative correlation with air temperature, approaching 1 in the most 
restricted data set observed by the author. Taking into account the fact that the absolute humidity is 
more or less constant during a given period, higher air temperature results in lower relative 
humidity. Thus, the correlation obtained for air humidity is largely due to the variation in air 
temperature [56]. 

Monteiro et al. [56] add that when considering a larger data set that includes hotter and colder 
thermal conditions, a longer series of days will have different absolute humidities, leading to 
different correlations between air temperature and relative humidity. Nevertheless, relative 
humidity is dependent on air temperature, and therefore, as is observed in the subsequent analyses, 
it is necessary to consider the absolute humidity for effective testing of the effects of humidity on the 
subjective thermal sensation responses. 

Thus, a new regression was performed for the same parameters, but with the variable absolute 
humidity (g of water vapor per m3 of air) replacing relative humidity. However, the results obtained 
for the absolute humidity variable did not show a considerable statistical improvement, as shown in 
Table 5, where the significance value of the variable absolute humidity decreased relative to relative 
humidity, becoming 0.395 (Table 5) compared to the significance level of 0.711 for relative humidity 
(Table 6).  

Table 5. Results of the regression performed with the variable absolute air humidity. 

 Coefficient Standard Error t p-Value 
Constant −2.78739 0.12286 −22.688 <2 × 10−16 
Air temperature 0.15143 0.00484 31.290 <2 × 10−16 
Absolute humidity 0.01018 0.01192 0.854 0.395 
Wind speed −0.41469 0.16482 −2.516 0.013 
Residual standard error 0.3889 
Multiple R2 0.9264 
Adjusted R2 0.9248 

Figure 6. Correlation between thermal sensation vote and air temperature.

The correlation analysis of air temperature with the other variables indicated a strong negative
correlation with relative air humidity for both July and January. However, the strong correlation
between the variables air temperature and relative air humidity may impair the model results due to
internal collinearity.

According to Monteiro et al. [56], when the relative air humidity has a significant negative
correlation with air temperature, direct consideration of this information may lead to the false
interpretation that higher relative humidity leads to more intense cold sensations. However, relative
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humidity has a strong negative correlation with air temperature, approaching 1 in the most restricted
data set observed by the author. Taking into account the fact that the absolute humidity is more or
less constant during a given period, higher air temperature results in lower relative humidity. Thus,
the correlation obtained for air humidity is largely due to the variation in air temperature [56].

Monteiro et al. [56] add that when considering a larger data set that includes hotter and colder
thermal conditions, a longer series of days will have different absolute humidities, leading to different
correlations between air temperature and relative humidity. Nevertheless, relative humidity is
dependent on air temperature, and therefore, as is observed in the subsequent analyses, it is necessary
to consider the absolute humidity for effective testing of the effects of humidity on the subjective
thermal sensation responses.

Thus, a new regression was performed for the same parameters, but with the variable absolute
humidity (g of water vapor per m3 of air) replacing relative humidity. However, the results obtained
for the absolute humidity variable did not show a considerable statistical improvement, as shown in
Table 5, where the significance value of the variable absolute humidity decreased relative to relative
humidity, becoming 0.395 (Table 5) compared to the significance level of 0.711 for relative humidity
(Table 6).

Table 5. Results of the regression performed with the variable absolute air humidity.

Coefficient Standard Error t p-Value

Constant −2.78739 0.12286 −22.688 <2 × 10−16

Air temperature 0.15143 0.00484 31.290 <2 × 10−16

Absolute humidity 0.01018 0.01192 0.854 0.395
Wind speed −0.41469 0.16482 −2.516 0.013
Residual standard error 0.3889
Multiple R2 0.9264
Adjusted R2 0.9248
F-Statistic 587.5
Level of significance—p <2.2 × 10−16

Thus, the VIF was calculated for the previously selected variables. As stated by Marquardt [52],
variables with VIF values greater than 10 should be excluded; however, the collinear variables do
not add any relevant value to the model (Table 5), and values above the threshold established by
Marquardt [52] were not observed, so it was decided to keep relative humidity in the construction of
the index.

The relative air humidity and the means of thermal sensation votes showed a strong negative
correlation, with an R2 value of 0.736 (Figure 7). However, the relative humidity had a weak positive
correlation with wind speed, with an R2 value of 0.209. Wind speed had a weak correlation with all the
other variables, with the correlation between wind and mean thermal sensation votes being negative,
which was also the case between wind speed and air temperature (Figure 8).
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The probability density function (PDF)—or density of a continuous random variable—was
calculated for the means of the thermal sensation votes of the individuals interviewed during the
entire study (winter and summer) as well as for mean air temperature, mean relative humidity and
mean wind speed for that period. The PDF is a function that describes the relative probability of these
random variables when taking a given value.

Table 5 shows the results of the linear regressions performed for the mean values reached for the
conditions surveyed during the study (summer and winter) to obtain the model.

Table 6. Statistical analysis of the constant, three independent variables and variance for the regression
performed with the complete series (January and July 2016).

Coefficient Standard Error T Level of Significance Variance Inflation
Factor (VIF)

Constant −2.642548 0.269316 −9.812 <2 × 10−16 -
Tair 0.152299 0.005831 26.118 <2 × 10−16 2.437
RH −0.001043 0.002811 −0.371 0.71119 2.379
S −0.430040 0.164042 −2.622 0.00972 1.071

Residual standard error 0.389
Multiple R2 0.926
Adjusted R2 0.924

F-Statistic 584.9
Level of significance—p <2.2

Thus, the model had high multiple R2 and adjusted R2 values of 0.926 and 0.924, respectively,
whereas the statistical test F showed a high value of 584.9, which confirms that together the variables
contribute to the prediction of the independent variable.

Next, an equation was defined that considers the three independent variables (Tair, RH and S)
correlated for the situation survey and the mean value of perceived thermal sensation in each (based
on the results of the questionnaires applied in January and July 2016):

BSI = 0.1523× Tair− 0.0010× RH − 0.4300× S− 2.6425 (6)

where BSI = Brazilian Subtropical Index, Tair = air temperature (◦C), RH = relative humidity (%), and
S = wind speed (m/s).

The Brazilian Subtropical Index (BSI) is the proposed model, which is defined as a thermal
sensation scale based on the mean vote of individuals interviewed during winter and summer using
the 7-point scale (Table 7).
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Table 7. Interpretive bands for the Brazilian Subtropical Index (BSI).

≤−3 Very cold
−2.9 to −2 Cold
−1.9 to −1 Slightly cold
−0.9 to 0.9 Neither cold nor hot

1 to 1.9 Slightly hot
2 to 2.9 Hot
≥3 Very hot

Validation of the Proposed Empirical Index

The model was validated using a Student’s t-test to evaluate the relationship between the comfort
index predicted by the BSI model (obtained with data from January and July) and the thermal sensation
votes of the interviewees. For this purpose, 857 interviews were obtained from the August 2015 survey
and compared to the BSI results for the same period.

The results of the validations are shown in Table 8 and Figure 9.

Table 8. Accuracy score by t-test (p-value = 0.05).

Days Tested BSI

5 August 2015 0.875
6 August 2015 0.812
7 August 2015 0.791Atmosphere 2018, 9, x FOR PEER REVIEW  12 of 16 
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Figure 9. Correlation between the empirical data from interviews collected in August and the model
made by the data obtained in January and July: 0.96.

The hit rate obtained via the validation of the index is 88% for the first test, 81% for the second
test and 79% for the third test. These values are higher than those observed by Gobo et al. [54] in a
study calibrating the interpretative ranges of PET, SET and PMV indices for Santa Maria, where the
authors identified hit rates after the calibration of 69.3% for the PET, 64.9% for the SET and 58.7% for
the PMV index.

As observed in the study of Salata et al. [36], the Mediterranean Outdoor Comfort Index (MOCI)
presented an adjusted R2 value of 0.395, an R2 value of 0.398, and a Pearson coefficient of 0.631,
whereas the BSI presented an R2 value of 0.926 and an adjusted R2 value of 0.924 and a higher Pearson
coefficient, 0.790.

Comparing the results obtained during the development and validation of the BSI with those
observed by Ruiz and Correa [8], the adjusted R2 value of the latter is closer (0.719), with a predictive
capacity of 73%, which is very close to that observed in the validation of the BSI.

When comparing the results of the Global Outdoor Comfort Index (GOCI) developed by
Golasi et al. [10], an adjusted R2 value of 0.379 and a Pearson coefficient of 0.616 were observed
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for the GOCI, whereas the BSI presented an adjusted R2 value of 0.924 and Pearson coefficient higher
than 0.790, further indicating the efficiency of the BSI.

The BSI hit rates are higher than 50%, and it should be noted that Nikolopoulou and Steemers [57],
when analyzing psychological aspects related to thermal sensation, found that climatic variables have
a strong influence on thermal sensation, but these explain approximately 50% of the variation between
objective and subjective assessments of comfort.

Of the approximately 165 thermal indices developed to date, only 4 (PET, PMV, Universal Thermal
Climate Index (UTCI) and SET *) are widely used in studies of outdoor thermal perception [58]. Thus,
a correlation test was performed between the respondents’ thermal preference responses in the period
used for the BSI validation (August 2015) and the PET, SET * and PMV models calibrated by Gobo,
Galvani and Wollmann [54] to Santa Maria. The results are described in Table 9.

Table 9. Correlation between the PET, SET * and PMV models calibrated by Gobo, Galvani and
Wollmann (2018) for Santa Maria and the thermal preference of the interviewees.

Indexes Correlation

Calibrated PET 0.23
Calibrated SET * 0.14
Calibrated PMV 0.38

It is important to note that the correlations made between the PET, SET *, PMV, and the thermal
preference responses of the interviewees (Table 9) were only for the BSI validation period of August
2015, differing from the period used by Gobo, Galvani and Wollman [55] in the calibration of the
mentioned models, where the whole series of August of 2015, January and July of 2016 was used.

The low efficiency of the PET, SET * and PMV indices for the analyzed period can be explained
in part by the large size of the comfort range of these indices as calibrated by Gobo, Galvani and
Wollman [54] for the study area, featuring 16 ◦C–24 ◦C for PET, 17 ◦C–23 ◦C for the SET and –1–0.8 for
the PMV. Potchter et al. [58], when analyzing a work done with PET in the Cfa climate [45], signals
for the acceptance of the comfort range of 87% of the case studies between 24 ◦C and 27 ◦C and up to
94% of the cases between 25 ◦C–26 ◦C, which considerably limits the comfort range for these indexes.
Therefore, the validation of the BSI presented greater efficiency when compared to the other indexes
commonly used in studies appearing in the literature.

4. Conclusions

The index obtained by means of multiple linear regressions presented high statistic values that
did not reveal any anomalous behaviors that indicated inadequacy of the chosen model. The multiple
linear regression model presented considerable results when compared to the other regression models,
which increased confidence in the use of this model. The VIF demonstrated that the collinear
variables do not add any relevant value to the model, with no values above the limit established
by Marquardt [52] being found.

The proposal of the Brazilian Subtropical Index (BSI) provides a simple and easy-to-apply
model with temperature, relative air humidity, and wind velocity as input variables. Therefore,
it accounts for meteorological attributes commonly measurable in conventional and automatic surface
meteorological stations.

The results expressed the perception of the interviewees regarding comfort and thermal discomfort
for the locality of Santa Maria, a subtropical climate region in southern Brazil. A high rate of model
accuracy, with a multiple R2 and adjusted R2 of 0.926 and 0.924 respectively, and a high statistical F
with value of 584.9, confirmed that, together, the modeled variables contributed to the prediction of
the independent variable.
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Thus, like any statistical model, the index proposed here has limitations, and its effectiveness in
situations different from those analyzed should be explored based on more detailed studies and with a
longer observation times.

Finally, BSI validation has proved to be effective. With hit rates higher than 80%, these values are
higher than those observed for the PET, SET and PMV indices for Santa Maria, which indicates the
efficiency and reliability of the model.
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Nomenclature

BSI Brazilian Subtropical Index PMV Predicted Mean Vote
SET Standard Effective Temperature Tair Air Temperature
AWS Automatic Weather Station RH Relative Humidity
VIF Variance Inflation Factor S Wind Speed
PDF Probability Density Function UTCI Universal Thermal Climate Index
GVLMA Global Validation of Linear Model Assumption GOCI Global Outdoor Comfort Index
PET Physiologically Equivalent Temperature MOCI Mediterranean Outdoor Comfort Index
Cfa Humid subtropical climate
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