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Abstract: This study aims to develop a second order self-organizing fuzzy neural network (SOFNN)
to predict the hourly concentrations of fine particulate matter (PM2.5) for the next 24 h at a regional
background station called Shangdianzi (SDZ) in China from 14 to 23 January 2010. The structure of
the SOFNN was automatically adjusted according to the sensitivity analysis (SA) of model output
and the parameter-learning phase was performed applying a second order gradient (SOG) algorithm.
Principal component analysis (PCA) was employed to select the dominating factors for PM2.5

concentrations as the input variables for the SOFNN. It was found that the dominating variables
(relative humidity (RH), pressure (Pre), aerosol optical depth (AOD), wind speed (WS) and wind
direction (WD)) extracted by PCA agreed well with the characteristics of PM2.5 at SDZ where the
PM2.5 concentrations were heavily affected by meteorological parameters and were closely related
to AOD. The forecasting results showed that the proposed SOG-SASOFNN performed better than
other models with higher coefficient of determination (R2) during both training phase and test phase
(0.89 and 0.84, respectively) in predicting PM2.5 concentrations at SDZ. In conclusion, the developed
SOG-SASOFNN provided satisfying results for modeling the hourly distribution of PM2.5 at SDZ
during the studied period.
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1. Introduction

China has suffered from conspicuously rising air pollution due to the rapid urbanization since
1980s. Gaseous and particulate emissions from various anthropogenic sources such as coal combustion,
motor vehicles and industrial processes lead to poor air quality (AQ) [1]. One of the most harmful
pollutants is known as fine particulate matter (PM2.5), a complex mixture of particles with aerodynamic
diameters of 2.5 µm or less [2]. Chronic exposure to ambient PM2.5 causes the public to be faced with
increased morbidity and mortality as it can lodge deeply into the lungs [3,4]. In Atlanta, a 10 µg/m3

increase of PM2.5 is associated with 3.3% increases in emergency department visits for cardiovascular
disease [5] and 1.6% increases for respiratory disease [6]. In addition, aerosols affect climate change in a
way that a dramatic emission reduction (35%–80%) in anthropogenic aerosols results in approximately
1 ◦C of extra warming and approximately 0.1 mm·day−1 of extra precipitation globally averaged
by the end of the 21st century [7]. Moreover, visibility and PM2.5 are negatively correlated with
Pearson correlations of −0.663 for a regional background station in the boundary of North China Plain
(NCP) [8]. In order to take preventive and regulatory measures to manage AQ as well as to provide

Atmosphere 2017, 8, 10; doi:10.3390/atmos8010010 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
http://www.mdpi.com/journal/atmosphere


Atmosphere 2017, 8, 10 2 of 17

specific information about concentrations of PM2.5 with the public, it is necessary to develop methods
that can predict PM2.5 concentrations precisely.

Modeling of the real world processes such as forecasting of AQ has proven to be tough due to their
highly chaotic and nonlinear phenomenon [9,10]. Generally, models used to estimate air pollutants
comprise process-based methods and data-driven statistical methods [11]. The first class of methods is
based on chemical transport models (CTMs) which model the atmospheric and chemical processes
involved in the production of an air pollutant [12]. Yu et al. [13] evaluated the performance of the
Eta-Community Multiscale Air Quality (CMAQ) model in predicting PM2.5 and its chemical species
over the eastern United States, where the model captured a majority (73%) of PM2.5 observations
within a factor of 2. However, CTMs are complex to implement as they require detailed information on
meteorology, emissions inventories and advanced understanding of chemical process. On the contrary,
the latter class of methods is driven by satellite readings or ground monitoring measurements [14],
thus there is no need for strong assumptions of the underlying air pollution processes during the
modeling process. Among the statistical AQ forecasting models, we can mention those based on
linear regressions (LR) and neural networks (NNs). Regression models show optimal results when
relationship between the predictors (such as meteorological and AQ variables) and the predictand
(pollutant concentrations of interest) are almost linear [15]. Regression models are also likely to under
predict high concentrations and over predict low concentrations. To overcome some of these limitations,
the artificial neural network (ANN), which can be used to derive non-linear functions relating to the
predictand and the predictors, has been adopted and proven to be a reliable air pollution modeling
tool in many studies [16–18]. Chaloulakou et al. [19] analyzed the performance of multiple linear
regressions (MLR) and NNs on the forecasting of PM10 in Athens. Ordieres et al. [20] implemented
three types of NNs as well as a LR model and a persistence model to forecast daily averages of PM2.5

in El Paso and Ciudad Juaŕez. The results of both studies clearly demonstrated that NNs were more
accurate than LR models for forecasting of concentrations of air pollutants.

Unfortunately, the mapping rules in NNs are not visible and are difficult to understand. That is,
one can only ascertain relationships among meteorology and pollutants concentrations data but never
be sure about underlying causal mechanism included in the emission and dispersion pattern of air
pollutants through NNs. In contrast, fuzzy system (FS) technologies often deal with issues such
as reasoning on a high-level than NNs and can handle imprecise information through linguistic
expressions [21,22]. Nevertheless, it is difficult to tune the fuzzy rules from the training data for a
human operator since FS has limited learning capability. However, the combination of neural network
(NN) and FS which leads to fuzzy neural network (FNN) can strength the prediction capabilities
compared to using a single methodology [23]. Mishra et al. [24] developed an artificial intelligence
based neuro-fuzzy (NF) model to forecast PM2.5 concentrations during haze hours in Delhi along
with MLR and ANN, where NF model performed better in prediction capabilities compared to MLR
and ANN.

For fuzzy neural networks (FNNs), the main training process consists of parameter-learning phase
and structure-learning phase [25]. However, in most FNNs, only the learning phase of the parameters
is determined using supervised or unsupervised learning algorithm and the structure identification
is still difficult [26,27]. It is hard for designers to choose the appropriate number of fuzzy rules to
forecast air pollutants, especially PM2.5, applying FNNs with empirically fixed structure. Several early
research works have already dealt with self-organizing FNNs (SOFNNs), of which the structure can
be adjusted automatically during training process [28]. Habbi et al. [29] used artificial bee colony
optimization strategy to find the structure and the parameters of TS fuzzy systems simultaneously.
Han et al. [30] developed a sensitivity analysis (SA) of model output based growing-and-pruning
approach to generate fuzzy neural model with highly accurate and compact structure. However,
as far as we know, few SOFNNs have been applied to estimate the distributions of air pollutants or to
forecast the concentrations of PM2.5.
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Therefore, in this paper, the SA based SOFNN (SASOFNN) was used for forecasting the hourly
PM2.5 concentrations of the next 24 h at Shangdianzi (SDZ) station, which is a regional background
station located in the boundary of the NCP, from 14 to 23 January 2010. The parameters of the
SASOFNN were optimized by a second order gradient (SOG) algorithm with improved training speed
and higher approximation accuracy [31,32], as the first order gradient (FOG) algorithm having limited
search ability and the genetic algorithm (GA) being very time and computation expensive. Besides,
in order to eliminate the irrelevant input parameters, the principal component analysis (PCA) was
used to select dominating variables most correlated to PM2.5 from temperature (T), relative humidity
(RH), wind speed (WS), wind direction (WD), pressure (Pre), visibility (Vis), aerosol optical depth
(AOD), CO, NO2, O3 and SO2 as the input parameters for the SOG-SASOFNN [33]. It could be found
that the dominating variables (RH, Pre, AOD, WS and WD) extracted by PCA coincided with the
characteristics of PM2.5 at SDZ where there were no significant pollution sources within 30 km of the
site and the PM2.5 concentrations were severely influenced by the meteorological parameters and were
tightly associated with the AOD. In addition, the prediction performance of the SOG-SASOFNN was
analyzed and compared to that of the SASOFNN with FOG algorithm (FOG-SASOFNN) and the echo
state network (ESN) in the study of Xu et al. [11] as well as to the Eta-CMAQ modeling results for the
hourly PM2.5 concentrations at the rural sites over the eastern United States from 15 July to 19 August
2004 [13]. The statistical parameters indexes calculated for the models above demonstrated that the
SOG-SASOFNN performed better than the FOG-SASOFNN, the ESN and the Eta-CMAQ in predicting
the hourly concentrations of PM2.5. It can be concluded that the SOG-SASOFNN presented here is
valid for estimating the hourly distribution of PM2.5 24 h ahead at SDZ during the studied period.

2. Study Site and Data

2.1. Study Site

As shown in Figure 1, the SDZ (40◦39’ N, 117◦07’ E, 293.9 m a.s.l.) site selected for applying
the proposed methodology is located in the northern part of NCP and is 100 km northeast of
the urban area of Beijing. It is one of the regional Global Atmosphere Watch (GAW) stations in
China. There are no densely populated and industrial areas within a distance of 30 km around the
station, so the atmospheric pollution level at SDZ station represents the background concentration of
atmospheric pollutants in the economically developed regions of north China. The prevailing winds
at SDZ are influenced by the valley topography and are from east-northeast and west-southwest.
When southwesterly winds arise, the polluted air masses from urban areas and satellite towns of
Beijing can be transported to SDZ while relatively clean air masses arrive from other wind directions.
There has been detailed information regarding SDZ site presented in previous studies [34,35].
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2.2. Data Preparation

The data used in this paper have the time frame of 14 to 23 January 2010 during which a regional
haze episode occurred in the Beijing, Tianjin and Hebei Provinces (BTH) area in the NCP from 16
to 19 January 2010. At SDZ station, concentrations of CO, NO2, O3, SO2 and PM2.5 were observed
by a TE48C CO analyzer, TE 42CTL NOX analyzer, TE49C O3 analyzer, TE43C SO2 analyzer and a
tapered element oscillating microbalance (TEOM 1400a), respectively. An automatic weather station
installed at the SDZ meteorological station measured the hourly meteorological data including T, RH,
WS, WD, Pre and Vis. The AOD retrieved with the lidar observation was also presented in the study of
Zhao et al. [36]. The meteorological variables and air pollutants except PM2.5 as well as AOD constitute
the predictors and the PM2.5 is the predictand. The entire data table of the predictors and predictand
consists of 240 h of measurements and was uploaded as non-published material during the submission
process. Considering that the values of AOD were mostly missed on 19 January due to the presence of
cumulus clouds at the top of the planetary boundary layer (PBL), the rows from 13:00 18 January to
23:00 19 January were eliminated. The hourly measurements from 1:00 23 January to 23:00 23 January
2010 were also deleted owing to the missing corresponding predictand values. Finally, only 182 h
of measurements were chosen for the present study. The units of most variables are summarized in
Table 1 and the AOD is a non unit variable.

Table 1. Units of variables measured at SDZ.

Variables T RH WS WD Pre Vis CO NO2 O3 SO2 PM2.5

Units ◦C % m/s ◦ hPa km ppm ppb ppb ppb µg/m3

3. Theory and Methodology

PM2.5 concentrations are affected by emission sources, meteorological conditions and topographical
characteristics of the area under study, which makes estimating the PM2.5 distribution difficult. In order
to model the hourly concentrations of PM2.5 at SDZ precisely, the SOG-SASOFNN was developed to
forecast the PM2.5 concentrations of the next 24 h employing the current hour values of the dominating
parameters extracted by PCA.

3.1. Principal Component Analysis

PCA is a classical statistical technique that analyzes the covariance structure of multivariate
variables and has been successfully applied for several tasks in AQ domain [37,38]. In this paper,
PCA was used to provide the interdependencies of the data measured at SDZ station. PCA selected
the dominating variables having the greatest impact on PM2.5 in the following steps:

1. Let 182 × 11 data matrix X = [x1, x2, ..., x11] denotes the 182 h of measurements of predictors and
x1, x2, ..., x11 are 182 × 1 data vectors of T, RH, WS, WD, Pre, Vis, AOD, CO, NO2, O3 and SO2,
respectively. The data matrix should be transformed into a standardized form:

Z = (zij)182×11 =

(
xij − xj

δj

)
182×11

, i = 1, 2, ..., 182; j = 1, 2, ..., 11 (1)

where Z is the standardized data matrix generated from X; xij and zij are the values of predictor j
in sample i before and after the standardization; and xj and δj are the arithmetic mean value and
the standard deviation for predictor j, respectively.

2. Calculate the correlation coefficient matrix using Equation (2):

R =
1

182
ZTZ (2)
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3. Compute the eigenvalues λ1, λ2, ..., λ11 and the corresponding eigenvectors γ1, γ2, ..., γ11 of 11× 11
correlation matrix R.

4. Reorder the eigenvalues in descending order to bring λ
′
1 > λ

′
2 > ... > λ

′
11 and readjust the

eigenvectors as γ
′
1, γ

′
2, ..., γ

′
11 accordingly.

5. Obtain the unit orthogonal eigenvectors $1, $2, ..., $11 using the Schmidt orthogonal method on
γ
′
1, γ

′
2, ..., γ

′
11.

6. Calculate the cumulative contribution rate θ1, θ2, ..., θ11 of the eigenvalues λ
′
1, λ

′
2, ..., λ

′
11 and α

variables will be extracted if θα ≥ θ where θ is the preset extraction efficiency.
7. The data of the dominating variables is acquired by computing the projection of Z on the extracted

unit orthogonal eigenvectors using Equation (3):

Y = Z$ (3)

where $ = [$1, $2, ..., $α].

3.2. Sensitivity Analysis Based Self-Organizing Fuzzy Neural Network with Second Order Gradient Algorithm

3.2.1. Architecture of the Proposed Model

The SOG-SASOFNN used to search a suitable nonlinear mapping between the dominating
variables and the hourly concentrations of PM2.5 in the present study is based on radial basis function
(RBF) neurons. As shown in Figure 2, the initial architecture of the SOG-SASOFNN has four layers,
the input layer, the RBF layer, the normalized layer and the output layer.
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second order gradient algorithm (SOG-SASOFNN).

Mathematically, each layer in the initial SOG-SASOFNN is described as follows:

1. Input layer: There are N neurons in this layer and the output value of the ith neuron can be
expressed as follows:

ui = ri, i = 1, 2, ..., N (4)

where r = [r1, r2, ..., rN] represents the dominating variables extracted from the predictors through
PCA method.

2. RBF layer: The Gaussian membership functions (MFs) of every of RBF neurons in this layer is
selected to deal with the input variables. Each RBF neuron represents an if-part of a fuzzy rule,
and the outputs of RBF neurons are calculated in the following manner:
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ψj = exp(−
N

∑
i=1

((ui − cij)
2/2σ2

ij)), i = 1, 2, ..., N; j = 1, 2, ..., M (5)

where ψj is the output of the jth RBF neuron; cij and σij are the center and width of the ith
membership function (MF) in the jth neuron, respectively; and M is the total number of neurons
in this layer.

3. Normalized layer: The number of the neurons in the normalized layer is the same as that in the
RBF layer. The output values of nodes in this layer are given as follows:

vl =
exp(−∑N

i=1 ((ui − cil)
2/2σ2

il))

∑M
j=1 exp(−∑N

i=1 ((ui − cij)
2/2σ2

ij))
, i = 1, 2, ..., N; j = 1, 2, ..., M; l = 1, 2, ..., M (6)

where vl is the lth output value in the normalized layer.
4. Output layer: There is only one neuron in this layer, in which of the output represents the PM2.5

concentration that can be clarified through the gravity method given as follows:

p =
∑M

l=1 wl exp(−∑N
i=1 ((ui − cil)

2/2σ2
il))

∑M
j=1 exp(−∑N

i=1 ((ui − cij)
2/2σ2

ij))
, i = 1, 2, ..., N; j = 1, 2, ..., M; l = 1, 2, ..., M (7)

where wl is the weight connecting the lth neuron in the normalized layer and the neuron in the
output layer.

Moreover, 130 h of measurements of dominating variables and PM2.5 from the total 182 rows
of data were randomly selected as training set of the SOG-SASOFNN, and the remaining data were
regarded as test set. Thus, both the training set and the test set cover measurements from haze
period (from 16 to 19 January 2010) and non-haze days (all other days from 14 to 23 January 2010).
All data sets were normalized to the range of [0, 1] by linear scaling. Once the structure and the
parameters of the SOG-SASOFNN were optimized through training, this optimized function was used
to make prediction on the test data. The statistical parameters index of agreement (IA), coefficient
of determination (R2), normalized mean bias (NMB), normalized mean gross error (NMGE), root
mean square error (RMSE) and mean bias (MB) were used to assess the models performances between
observed and predicted concentrations of PM2.5 [39,40]. The definitions of these statistical parameters
are shown in Table 2, where pi refers to the ith predicted value and oi to the ith observed one for a total
of n observations; and p and o are the averages of predicted values and observed values, respectively.
Note that the normalized mean error (NME) used in the study of Yu et al. [13] and the NMGE described
in our manuscript are equal in formula [39].

Table 2. Definitions of statistical parameters used for assessing the models performances.

Statistical Parameter Description Mathematical Function

IA Expresses the difference between
predicted and observed values IA = 1− ∑n

i=1|pi−oi |2

∑n
i=1(|pi−o|+|oi−o|)2

R2 A measure of linear relationship between
predicted and observed values R2 = (∑n

i=1 (pi−p)(oi−o))2

∑n
i=1(pi−p)2∑n

i=1(oi−o)2

NMB Indicates over or under
estimation of the model NMB = ∑n

i=1(pi−oi)
∑n

i=1 oi

NMGE Indicates mean error regardless of it is
over or under estimation NMGE = ∑n

i=1|pi−oi |
∑n

i=1 oi

RMSE Provides an overall measure of how close
predicted values and observed values are RMSE =

√
∑n

i=1(pi−oi)
2

n

MB Measure of model bias MB = ∑n
i=1(pi−oi)

n
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3.2.2. Sensitivity Analysis Method

In this present study, the SA was used to adjust the structure of the SOG-SASOFNN during
training phase to understand the dynamic process that produces PM2.5 from pollution sources. SA is a
method that evaluates the dependency of the system output on the input factors. The contribution of
the output of each neuron in the normalized layer to the output of the SOG-SASOFNN was measured
by global SA method in this paper. The measurement is based on the Fourier decomposition of
variance [41,42]. The input parameters used for performing SA are the outputs of the normalized
neurons expressed as v = [v1, v2, ..., vM]T . The SOG-SASOFNN output representing the PM2.5

concentration can be described as follows:

p = f (v1, v2, ..., vM) (8)

The first order sensitivity index of the output of the hth normalized neuron to the SOG-SASOFNN
output is given by:

Sh =
Varvh [E(p|vh = βh)]

Var(p)
, h = 1, 2, ..., M (9)

where E(p|vh = βh) denotes the expected value of p under the condition that the value of vh is equal
to βh and the variance Varvh takes over all the possible values of vh. Var(p) represents the variance
of p.

If the range of the input factor vh is [ah, bh], it can be written as:

vh(s) =
bh + ah

2
+

bh − ah
π

arcsin(sin(ωhs)), h = 1, 2, ..., M (10)

where ωh is the fundamental frequency of vh. The equation allows each factor to oscillate in a given
range periodically as the scalar variable s varying in the range [−∞, ∞]. The M-factor model in
Equation (8) can be described in the frequency domain using the following relationship:

f (s) = f (v1(s), v2(s), ..., vM(s)) (11)

The expanded Fourier series of f (s) is given by:

f (s) =
∞

∑
ω=−∞

(Aω cos(ωs) + Bω sin(ωs)) (12)

where the Fourier coefficients at frequency ω are defined as:

Aω = 1
2π

∫ π
−π f (s) cos(ωs)ds

Bω = 1
2π

∫ π
−π f (s) sin(ωs)ds

(13)

where s is on the range of [−π, π]. The variance of p is calculated by the Fourier translation:

Var(p) = 2∑∞
ω=1 (A2

ω + B2
ω) (14)

The portion of the variance of p caused by vh alone is expressed as:

Varvh [E(p|vh = βh)] = 2∑∞
m=1 (A2

mωh
+ B2

mωh
), h = 1, 2, ..., M (15)

where Amωh and Bmωh denote the Fourier coefficients for the fundamental frequency of vh and its
higher harmonics mωh. Consequently, the expansion of the first order sensitivity index is given by:



Atmosphere 2017, 8, 10 8 of 17

Sh =
∑∞

m=1 (A2
mωh

+ B2
mωh

)

∑∞
ω=1 (A2

ω + B2
ω)

, h = 1, 2, ..., M (16)

Because the Fourier amplitude decreases as the frequency goes up, it is expected that the high
order Fourier coefficients have negligible influence on the variation of the model output. Thus, the first
order sensitivity index is approximated as:

Sh ≈
∑P

m=1 (A2
mωh

+ B2
mωh

)

∑Pωmax
ω=1 (A2

ω + B2
ω)

, h = 1, 2, ..., M (17)

where P is called the interference factor, which is usually set to 4 or 6 in the SA community, and ωmax

is the maximum value of the fundamental frequencies of all input factors.
In order to obtain the total sensitivity index, set ωh = 2Pmax(ω∼h) where max(ω∼h) is the

highest fundamental frequency of the remaining set of factors v∼h (all the factors except the hth factor)
to ensure that the frequencies generated by all interactions involving vh will not interfere with the
frequencies induced by the nonlinear effect involving v∼h alone. Then, the estimation of the total
sensitivity index SWh is as follows:

SWh =
∑Pωh

ω=Pmax(ω∼h)+1 (A2
ω + B2

ω)

∑Pωh
ω=1 (A2

ω + B2
ω)

, h = 1, 2, ..., M (18)

Because the outputs of neurons in the normalized layer are independent with each other, the
total sensitivity index SWh can be acquired by the calculation of Fourier amplitude at fundamental
frequency barely and is simplified as follows:

SWh =
A2

ωh
+ B2

ωh

∑M
j=1 (A2

ωj
+ B2

ωj
)

, h = 1, 2, ..., M (19)

Based on the analysis above, the standardized total sensitivity index STh of the output of the hth
neuron in the normalized layer over the SOG-SASOFNN output is computed as follows:

STh =
SWh

∑M
j=1 SWj

, h = 1, 2, ..., M (20)

3.2.3. Second Order Gradient Algorithm

To further improve the accuracy of prediction of hourly PM2.5 distribution, the parameter-learning
phase of the SOG-SASOFNN was performed through the SOG algorithm proposed in the study of
Xie et al. [32]. The SOG algorithm does not suffer from enormous Jacobian matrix and its side effects
when training data are huge. All parameters such as centers, widths and weights of the SOG-SASOFNN
adjusted by the SOG algorithm are expressed as follows:

Φ(t) = [c11(t), ..., cNM(t), σ11(t), ..., σNM(t), w1(t), ..., wM(t)] (21)

where t is the current time (or training step). Φ(t) is the parameter vector of the SOG-SASOFNN at
time t.

Following the Levenberg–Marquardt (LM) algorithm [31], the update rule is given by:

Φ(t + 1) = Φ(t) + (Q(t) + µ(t)I)−1g(t) (22)

where Q(t) is the quasi Hessian matrix computed as the sum of the sub matrix qk(t) for the kth
training pattern:
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Q(t) = ∑K
k=1 qk(t), qk(t) = jT

k (t)jk(t) (23)

and the gradient vector g(t) is calculated as the sum of the sub vector ηk(t) for the kth training pattern:

g(t) = ∑K
k=1 ηk(t), ηk(t) = jT

k (t)ek(t) (24)

where K is the amount of rows of training pattern with value of 130. jk(t) is one of the rows of Jacobian
matrix for pattern k described as follows:

jk(t) =
[

∂ek(t)
∂c11(t)

, ...,
∂ek(t)

∂cNM(t)
,

∂ek(t)
∂σ11(t)

, ...,
∂ek(t)

∂σNM(t)
,

∂ek(t)
∂w1(t)

, ...,
∂ek(t)

∂wM(t)

]
(25)

where ek(t) is the error calculated by:

ek(t) = ok(t)− pk(t) (26)

where ok(t) and pk(t) are the observed output and predicted output when the kth training pattern is
presented at time t, respectively.

Be aware that the combination coefficient µ(t) = ‖g(t)‖ and I is the identity matrix.

3.2.4. Design of the Second Order Sensitivity Analysis Based Self-Organizing Fuzzy Neural Network

The SOG-SASOFNN applied to forecast the hourly concentrations of PM2.5 for the next 24 h
at SDZ from 14 to 23 January was trained with SA method and SOG algorithm. The computation
procedure of the SOG-SASOFNN is described as follows:

1. Initialization of the SOG-SASOFNN: The initial SOG-SASOFNN is with random number of
neurons in the normalized layer and the inputs of the SOG-SASOFNN are dominating variables
selected through PCA method. There is one neuron in the output layer in which of the output
represents the PM2.5 concentration. The parameters such as centers, widths, and weights of the
SOG-SASOFNN are initially distributed on the random range of [0, 1].

2. Parameter learning: Adjust the parameters of the SOG-SASOFNN using Equation (22) with all
training set for several training steps.

3. Growing phase: After some time (Θ) steps, calculate the standardized total sensitivity index of
output of each normalized neuron to the network output using Equation (20). The hth normalized
neuron is overactive and will be spilt into two new normalized neurons if STh is larger than
ε1. In order to guarantee the convergence, the outputs of the SOG-SASOFNN before and after
the structure has been adjusted must be identical and the initial parameters of the two new
normalized neurons are set as follows:

c•new1 = c•new2 = c•h(t)
σ•new1 = σ•new2 = σ•h(t)

wnew1 = τwh(t), wnew2 = (1− τ)wh(t)
(27)

where new1 and new2 denote the two new normalized neurons. c•new1, σ•new1 and wnew1 are the
center vector, width vector and weight of neuron new1, respectively. c•new2, σ•new2 and wnew2

are the center vector, width vector and weight of neuron new2, respectively. c•h(t), σ•h(t) and
wh(t) are the center vector, width vector and weight of the hth normalized neuron before the
structure has been adjusted at step t, respectively. τ is a random number which is distributed in
the range of [0, 1].

4. Pruning phase: The hth normalized neuron is useless and will be pruned if STh is less than ε2.
To reduce the fluctuation of the output of the network, the parameters of the nearest neuron are
compensated as:
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c•nea = c•nea(t)
σ•nea = σ•nea(t)

wnea = wnea(t) + wh(t)vh(t)/vnea(t)
(28)

where nea is the normalized neuron with the minimum Euclidean distance to the hth normalized
neuron and STnea ≥ ε2. c•nea, σ•nea and wnea are the center vector, width vector and weight
of neuron nea after pruning at step t, respectively. c•nea(t), σ•nea(t) and wnea(t) are the center
vector, width vector and weight of neuron nea before pruning at step t, respectively. wh(t) is the
weight of the hth normalized neuron before pruning when training to step t. vh(t) and vnea(t) are
the output of the hth normalized neuron and neuron nea before pruning when training to step
t, respectively.

5. Relearning of parameters: Turn the algorithm to procedure 2 to make the parameters under
relearning applying Equation (22). The training process terminates when the process achieves
the expected training RMSE Ed or reaches the pre-set running step Rmax.

6. Test stage: Once the SOG-SASOFNN is optimized by the training set, this optimized nonlinear
function is used to make prediction on the test data.

4. Results and Discussion

In this paper, the dominating variables most correlated to PM2.5 were firstly selected by the PCA
method using the data measured at SDZ from 14 to 23 January 2010. Then, the SOG-SASOFNN
was developed to forecast the PM2.5 concentrations of the next 24 h with the current hour values
of dominating variables at SDZ during the studied period. Finally, the prediction performance of
the SOG-SASOFNN was compared with that of the FOG-SASOFNN and the ESN as well as with
the performance of the Eta-CMAQ in modeling the hourly PM2.5 concentrations at the rural sites
over the eastern United States from 15 July to 19 August 2004 to verify the effectiveness of using
SOG-SASOFNN to estimate the hourly PM2.5 distribution at SDZ.

4.1. Variation of PM2.5 Concentrations with Meteorological Conditions and Aerosol Optical Depth at SDZ

A regional haze episode occurred in the BTH region in the NCP from 16 to 19 January 2010 and
was caused by a surface high-pressure system from 16 to 18 January 2010 and a low-pressure system
on 20 January, which was unfavorable for the dispersion of pollutants. Figure 3 shows the measured
temporal variation of PM2.5 and the modeled results for the SOG-SASOFNN, the FOG-SASOFNN and
the ESN. According to Figure 3, the PM2.5 concentrations at SDZ during the haze period are much
higher than that in non-haze days although there were no significant pollution sources within 30 km
of the site, mainly owing to the regional transportation from the southern urban area. The surface
wind at SDZ turning from east-northeast to southwest in the afternoon of 18 January, which carried
pollutants to this area, led to the highest aerosol loading on 19 January. During the haze period, the T
increased continuously day by day and the RH remained high at SDZ. PM2.5 concentrations in the
haze episode were also high enough to extinct the light and the low Vis recorded in daytime indicated
the haze phenomenon. Similar to the variation of PM2.5 concentration, the AOD began to increase on
16 January and increased significantly in the afternoon of 18 January to reach its maxima on 19 January.
Under the Mongolia anticyclone with strong northerly wind, the haze episode was finally terminated
on 20 January. Evidently, the variation of the PM2.5 concentrations at SDZ station relies seriously on
the meteorological variables and is closely related to the AOD. Besides, we could find that the modeled
result of the SOG-SASOFNN is more reasonable than that of the FOG-SASOFNN and the ESN.
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4.2. Dominating Variables Selected by Principal Component Analysis

PCA was performed to extract the dominating factors for PM2.5 among the predictors at SDZ
station. The percentages of process variance explained by principal components (PCs) defined as
PCs = [PCs1, PCs2, ..., PCs11] are shown in Figure 4 and Table 3.
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As shown in Table 3, over 90% of the variation within the data can be explained by the former
five PCs, and the most important variables (dominating variables) for the former five PCs are RH, Pre,
AOD, WS and WD according to the coefficients of the selected PCs given in Equation (29):

PCs1 = [−0.06 0.07 0.24 0.06− 0.04− 0.27− 0.42− 0.22− 0.31 0.20− 0.11]
PCs2 = [0.33− 0.10− 0.34− 0.05 0.49 0.04− 0.34− 0.38 0.25− 0.40 0.16]
PCs3 = [−0.28 0.39− 0.16 0.15 0.49 0.18 0.61− 0.25− 0.04 0.09− 0.04]
PCs4 = [0.12− 0.13 0.80− 0.36 0.42 0.07 0.08− 0.01− 0.06 0.03 0.01]
PCs5 = [−0.20− 0.38− 0.27 0.77 0.15− 0.25− 0.11− 0.22− 0.06− 0.03 0.01]

(29)

It could be noted that the dominating variables (RH, Pre, AOD, WS and WD) extracted through
PCA are consistent with the characteristics of PM2.5 at SDZ where the PM2.5 concentrations are severely
correlated to the meteorological parameters and the AOD.

4.3. Modeling: Training and Validation

The SOG-SASOFNN was developed to predict the hourly PM2.5 concentrations 24 h ahead at SDZ
along with the FOG-SASOFNN and the ESN in the present study. For SOG-SASOFNN, the first 130 h of
182 rows of randomized and normalized measurements of dominating variables and PM2.5 were used
as training set and the rest 52 observations were taken as test set. The input layer of the SOG-SASOFNN
consisted of five parameters containing RH, Pre, AOD, WS and WD selected by PCA. There were
three neurons in the normalized layer before the input data have been loaded. The parameters
(centers, widths and weights) of the SOG-SASOFNN were initialized on the random range of [0, 1].
The structure of the SOG-SASOFNN was adjusted based on the contribution of the output of each
normalized neuron to the output of network measured by global SA method. The parameter-learning
phase was performed using Equation (22). The network was trained for 100 steps with Θ = 10 unless
the training RMSE was less than 0.01. The input parameters of the FOG-SASOFNN and the ESN
were the same as that of the SOG-SASOFNN. The FOG-SASOFNN was optimized after it was trained
for 500 steps or the training RMSE was less than 0.01. The weight-learning process for the ESN was
implemented applying linear regression equation [11]. The description and the evaluation of the PM2.5

forecasts over the eastern United States using the Eta-CMAQ model was presented in detail in the
study of Yu et al. [13].

The change of the training RMSE of the SOG-SASOFNN and the FOG-SASOFNN during learning
phase is shown in Figure 5. The growing and pruning process of the neurons in the normalized layer
of the SOG-SASOFNN and the FOG-SASOFNN for the training period has been shown in Figure 6.
In Figures 5 and 6, we could find that the SOG-SASOFNN converges with lower training RMSE and
more compact structure under much less training steps compared to the FOG-SASOFNN.
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The models’ performances were evaluated by the calculation of several statistical parameters
indexes described in Table 2. The statistical performances for the SOG-SASOFNN, the FOG-SASOFNN,
the ESN and the Eta-CMAQ are given in Table 4. It can be found that the values of R2, NMB, NMGE
and MB for the SOG-SASOFNN in both training phase and test phase are closer to their corresponding
ideal values contrasted to that for the FOG-SASOFNN, the ESN as well as the Eta-CMAQ. The training
RMSE and test RMSE of the SOG-SASOFNN are larger than the Eta-CMAQ RMSE, which may be
due to the data used in our paper covers wider PM2.5 concentrations scope compared with the data
for the Eta-CMAQ. Through the analysis above, we can conclude that the SOG-SASOFNN performs
better than the FOG-SASOFNN, the ESN and the Eta-CMAQ in predicting the hourly concentrations
of PM2.5. Overall, the performance of the proposed SOG-SASOFNN model is satisfactory.

Table 4. Statistical performances of SOG-SASOFNN, FOG-SASOFNN, ESN and Eta-Community
Multiscale Air Quality (Eta-CMAQ) model.

Statistical
Parameter

Ideal
Value

SOG-SASOFNN FOG-SASOFNN ESN
Eta-CMAQ

Training Test Training Test Training Test

IA 1 0.97 0.95 0.91 0.86 0.80 0.70 ~
R2 1 0.89 0.84 0.72 0.70 0.51 0.30 0.22 *

NMB 0 −0.01 −0.05 −0.17 −0.23 −0.26 0.31 −0.32 *
NMGE 0 0.25 0.37 0.42 0.43 0.52 0.57 0.51*

RMSE (µg/m3) 0 13.56 17.90 26,84 29.31 35.35 39.79 11.6 *
MB (µg/m3) 0 −0.16 −1.86 −2.01 −3.6 −5.61 6.33 −5.2 *

~The value does not shown in original paper; * The results are the same as the original paper.

5. Conclusions

Estimating the distribution of PM2.5 has proven to be tough due to the highly chaotic and nonlinear
phenomena existing in the atmospheric and chemical processes that result in air pollution. In order to
understand the complex time series of PM2.5 precisely, it is necessary to use the SOFNN to analyze
the underlying dynamic process that produces PM2.5. However, as far as we know, few studies have
applied the SOFNN to forecast the PM2.5 concentrations. In this paper, the SOG-SASOFNN with
SA for structure-learning phase and SOG algorithm for parameter-learning phase was developed
to model the hourly concentrations of PM2.5 of the next 24 h from 14 to 23 January 2010 at SDZ.
The input parameters for the SOG-SASOFNN were selected through PCA method to eliminate the
irrelevant variables. It is worth mentioning that the dominating variables (RH, Pre, AOD, WS and
WD) extracted by PCA were consistent with the characteristics of PM2.5 at SDZ where there were no
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significant pollution sources within 30 km of the site and the PM2.5 concentrations showed strong
correlation with the meteorological parameters and the AOD. The prediction results showed that the
SOG-SASOFNN performed better than the FOG-SASOFNN, the ESN and the Eta-CMAQ in estimating
the hourly distribution of PM2.5. Obviously, the developed SOG-SASOFNN model gives satisfying
results for prediction of hourly concentrations of PM2.5 at SDZ during the studied period. Moreover,
the SOG-SASOFNN performance could be further improved by considering the effect of the local
anthropogenic emission activities on PM2.5 concentrations and utilizing more sufficient measurements
for simulation, which can be guidance for our further work.

Ultimately, it is expected that the SOG-SASOFNN proposed here can be applied to interpret the
complex time series of any pollutant affected by emission sources, meteorological conditions and
topographical characteristics of the area under study to help in forecasting of the air pollution over
other regions of the world.
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