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Abstract: It is crucial to speed up the training process of multivariate deep learning models for
forecasting time series data in a real-time adaptive computing service with automated feature
engineering. Multivariate time series decomposition and recombining (MTS-DR) is proposed for
this purpose with better accuracy. A proposed MTS-DR model was built to prove that not only the
training time is shortened but also the error loss is slightly reduced. A case study is for demonstrating
air quality forecasting in sub-tropical urban cities. Since MTS decomposition reduces complexity and
makes the features to be explored easier, the speed of deep learning models as well as their accuracy
are improved. The experiments show it is easier to train the trend component, and there is no need
to train the seasonal component with zero MSE. All forecast results are visualized to show that
the total training time has been shortened greatly and that the forecast is ideal for changing trends.
The proposed method is also suitable for other time series MTS with seasonal oscillations since it
was applied to the datasets of six different kinds of air pollutants individually. Thus, this proposed
method has some commonality and could be applied to other datasets with obvious seasonality.

Keywords: MTS decomposition; deep learning; model training; air quality prediction

1. Introduction

In daily life, especially in the study of natural science, some phenomena are often
monitored and evaluated in order to formulate plans and programs. The data collected
from these activities are often presented in the form of a time series. In analyzing and
predicting time series data, in addition to traditional mathematical or physical models, the
most common approach is to use artificial intelligence modeling, such as deep learning,
for analysis and prediction. The technique of deep learning has been well developed in
the past decade, and the technology has gradually matured; e.g., artificial neural network
(ANN), recurrent neural network (RNN), long short-term memory artificial neural network
(LSTM), convolutional neural network (CNN), etc. have been popularized and used in
many new fields and applications. The requirements of today’s information systems are
very time sensitive and adaptive, such as tracking and analyzing real-time data. If the
processes and time required for the analysis of time series data can be effectively shortened,
the usability and timeliness of these data products will be greatly improved, making them
much easier and more willing to be used and accepted by the users.

This study will propose a new approach called the MTS decomposition and recom-
bining model (which will be referred to as the MTS-DR model in the remaining sections
of this article). Even if there are some enhanced algorithms and hardware methods for
parallel computing, a certain number of epochs are usually required to obtain the ideal
training results and make the loss curve flat and stable. This is because there are many
details hidden in the MTS dataset. However, as is known, any MTS must contain a portion
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of the seasonal or cyclic oscillation [1]. Especially for those daily events in nature, many
periodic and cyclical features can be collected from time to time. Therefore, if those cyclical
time series data are decomposed into small portions of waves, the seasonal portions must
form a very stable phase oscillation over a certain period of time in an MTS. Then, this
will be a redundant procedure for these seasonal waves to be trained. After this kind of
seasonal portion of the MTS model is trained, the test set is obtained, and the actual curve
will inevitably overlap with the predictive curve.

The purpose of this study aims to point out that when predicting MTS, e.g., the air
quality of small urban cities, as MTS has its own very different characteristics, the MTS
analysis in advance is helpful for the construction of the model and the improvement
in efficiency. For this reason, using some statistical techniques and tools to analyze and
decompose MTS and then model it, significant improvements in performance and efficiency
can be achieved. This research attempts to use the decomposed wave components of the
original time series to model and train them one by one independently to predict the
future situation and then recombine them. By comparing the predictions with the original
model, it is found that both the running time and the prediction accuracy have improved
significantly. On the other hand, by using some statistical and mathematical methods, an
obvious 24 h oscillation is found in the time series of concentrations of each type of air
pollutant element. The study also showed that, through visualization of the final forecast
results, the MTS-DR model was mostly reliable and ideal for predicting each trend shifting
point. The research results show that the running time and accuracy of ANN-type model
forecasting time series can be improved without adding additional operating resources and
data sources, i.e., at zero cost. These results can be applied to real-time artificial intelligence
systems for monitoring and predicting changes in any time series that contains oscillation
and seasonality.

In order to make the novelty not limited to a certain kind of data, in this study, the
method is applied to the datasets of six air pollutants with different characteristics, such
as: PM, ozone, sulfur dioxide, nitrogen dioxide, and carbon monoxide, all in the physical,
chemical, interaction with elements of the natural environment, and periodicity, which
behave very differently. Therefore, this method has a certain degree of commonality and
can be applied to other types of datasets, especially those with obvious seasonality that are
easily affected by other external factors.

2. Materials and Methods

The goal of this study is to find a way to increase the accuracy and lower the training
time of a deep learning model so that it can be re-trained from time to time and adopted as
a core part of a real-time prediction system. Therefore, the experiments for proving this
concept are to build a multivariate LSTM model to predict the air quality in Macau by
using a certain number of weather elements and the concentrations of the air pollutants
themselves. The issue of air pollution and improvement policies are the main concerns
of many advanced cities in the world today, including Macao. Concentrations of air
pollutants can have adverse effects on public health and the environment. Therefore,
accurate forecasting of air quality is important to help policymakers take the necessary
precautions and reduce exposure to harmful pollutants. The tools used for experiments in
research include Anaconda, Python, PyTorch, NetCDF, MatLAB, and those related software
libraries and packages.

There are many methods to predict the time series data, e.g., regression, auto-regression
integrated moving average ARIMA, wavelet analysis, mathematical and physical models,
and machine learning. To predict the time series of air quality, the concentrations of the air
pollutants need to be monitored, and then the air quality can be determined. As the disper-
sion of the concentrations of air pollutants is affected and conveyed by the atmospheric
events, e.g., the weather, rain, strong wind, etc. Therefore, when monitoring and forecasting
air quality, it is necessary to process and analyze weather conditions and air pollutant
concentrations at the same time. In the frontier work of researching and predicting air
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quality, introducing a variety of meteorological features into the model, such as air temper-
ature, dew point, wind speed, wind direction, cloud cover, water vapor pressure, visibility,
etc., has been widely used to predict the concentration levels of PM2.5, PM10, SO2, NO2,
ozone, and CO. This is because multivariate models that include multiple weather elements
perform better with higher accuracy [2]. The synergistic effect of various air pollutants
and weather affecting human health, i.e., the relationship between weather conditions,
air pollution, and human health. That study found that for certain types of air pollution,
the impact on human health varies under specific weather conditions, and that pollutant
interactions significantly affect this relationship [3]. Multivariate deep learning is a good
alternative and appropriate to solve this kind of problem. In addition to analyzing local air
pollutants, meteorological and long-range circulation patterns also affect the distribution of
seasonal and daily concentrations, e.g., clean air masses from the Atlantic Ocean and mild
temperatures throughout the year lead to relatively low concentrations with very large
daily and seasonal variations [4].

2.1. MTS Analysis

As mentioned in the previous section, when forecasting some time series, the model
needs multivariate time series (MTS) to improve its accuracy. There are some common char-
acteristics of multivariate time series (MTS). It is called multivariate; that is, MTS involves
multiple interdependent and mutually influencing variables. It should be non-stationary,
which means the statistical properties of MTS change over time, making it difficult to
predict future values, but there is still a developing trend. It is highly dimensional, and
MTS can have a large number of variables, making analysis and modeling challenging.
Dependencies between variables in MTS can be complicated and non-linear. In addition
to an overall development trend, MTS also has a rather obvious seasonality. Therefore,
seasonal patterns should be considered and taken into an account when modeling fore-
cast. Some techniques, such as wavelet analysis, Fourier analysis, frequency domain,
auto-correlation, and partial auto-correlation, can be used to identify the different levels of
oscillation and seasonality.

The decomposition of a time series into its component parts is a set of a mathematical
processes. Studies have shown that the introduction of wavelet analysis in modeling
components will effectively improve the quality of predictions under different weather
characteristics, for example, wavelet functions. Generally speaking, a typical time series of
geophysical elements consists of two or more components: Trend components and details;
they must have a definite periodic oscillation and contain chaotic details without any
regularity [5]. Data decomposition can better identify the characteristics of time series data
in the training phase; e.g., splitting the daily time series into different parts can improve
the ability to express information and make the characteristics of the sequence clear. The
description makes the model have better nonlinear fitting ability [6]. The simplest and most
common method is often used to identify trends, seasonal patterns, and other potential
factors that may affect the data. The most common method for time series decomposition
is the additive model, which uses the following Equation (1):

Y(t) = T(t) + S(t) + C(t) + I(t) (1)

where Y(t) is the observations, T(t) is the trend component, S(t) is the seasonal component,
C(t) is the periodic component, and I(t) is the irregular or random component.

Each of these components can be further broken down into their own components. For
example, T(t) can be decomposed into linear and nonlinear components. The decomposition
process can also be done using multiplicative models or other methods such as Fourier
analysis or wavelet analysis. In addition, there are some other advanced methods used in
different fields and applications to analyze and decompose a time series, such as wavelet
analysis and Fourier analysis. The Fourier analysis formula is Equation (2), as follows:

X(t) = A0 + [Ai · cos (2π ∗ fi ∗ t) + Bi · sin(2π · fi · t)] (2)
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where A0 is the average value of the time series, Ai and Bi are the Fourier coefficients, and
fi is the frequency of the signal. The common formula to express both Fourier analysis and
wavelet analysis is Equation (3), as follows:

F(x) = f (t) · W(x − t) (3)

From the above, the seasonal part of a Fourier analysis formula is the sine and cosine
terms that are used to model periodic patterns in a time series. These terms are used to
capture the cyclical nature of the data, such as seasonal effects, and can be used to forecast
future values. In multivariate modeling, a collection of multiple time series is treated as a
unified entity. Decomposing the univariate time series into a series of distinct frequency
components via discrete Fourier transform (DFT) improves deep neural architectures within
LSTM models and deep stacks of fully connected layers [7]. Some studies decompose the
high variability time series into several sub-sequences with lower variability in wavelet
analysis and apply forecasting strategies to each sub-sequence at different scales. In this
way, the prediction problem can be decomposed into several simpler tasks, thus improving
the prediction accuracy [8]. Since the seasonal part of a wavelet analysis formula is the part
that captures the periodic fluctuations in the data, it is usually represented by a single or a
simple combination of sinusoidal functions with a period equal to the length of the season.

There are some research methods that decompose time series of meteorological and air
pollutant data into long-term and short-term components; e.g., there is a chance that there
is a low correlation between the ozone’s short-term component and solar radiation. This is
used to filter time series by analyzing different components and different correlation struc-
tures and correlations in terms of time duration [9]. Some studies on how to use frequency
information to improve the efficiency of time series forecasting are using frequency-domain
analysis of seasonal anomalies and contrast spectral information to explore time-frequency
consistency. Since the basic functions of the Fourier transform are fixed (such as trigono-
metric functions), the extracted frequency features are domain invariant. These features
are insensitive to unexpected noise changes, and due to this limitation, there have been
few models that combine Fourier analysis with the learning ability of neural networks [10].
Some research results show that if the instability of the original data can be successfully
reduced and the inherent complexity of the AQI data can be simplified, such as using the
(complete ensemble empirical mode decomposition with adaptive noise-variational mode
decomposition-general regression neural network) CEEMDAN-VMD-GRNN model, it can
be used as an effective method for predicting highly unstable and complex data. Time
series decomposition is also applied in that study [11].

2.2. Auto-correlation of the TS

Auto-correlation, as the name suggests, is a mathematical representation of the degree
of similarity between a given time series and its lagged version of itself in continuous time
intervals. It is conceptually similar to the correlation between two different time series, but
it uses the different versions of time slices of the same time series for both, i.e., one in the
original form and the other in the version lagged by one or more units of time periods. In
other words, it measures the relationship between the current value of a variable and its
past values. An auto-correlation of “+1” indicates a perfect positive correlation, while “−1”
indicates a perfect negative correlation. In real-world applications, e.g., auto-correlation
can be used to measure how much the past price of a product affects its future price, etc. In
Figure 1, for this research, the auto-correlation of each time series is used to visualize and
explore its 24 h oscillation and seasonality. It can be seen that there are sine waves repeating
at 24 h, 48 h positions, etc., in the small graphs of PM2.5, PM10, SO2, NO2, ozone, CO, air
temperature, and water vapor pressure deficit (VPD), respectively, with the auto-correlation
visualization. In particular situations, it is important to note that these obvious patterns
may not exist throughout the whole time series because there may be some anomalies or
outliers caused by severe weather, special atmospheric phenomena, or human activities
that affect the diffusion or dispersion of the air pollutants.
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2.3. Design and Building of the Multivariate Model

The focus of this study is to explore the feasibility of the proposed MTS-DR and find
that it is feasible. Initially, we wanted to use the most common LSTM, which is the most
commonly used ANN type for time series prediction. This is to shorten the research time of
this phase, as it is planned to integrate these results into a larger project and publish more
in-depth applied research articles.

In this study, a typical type of deep learning model is first chosen. Because of the
balanced performance and efficiency, a multivariate LSTM model will be constructed to
predict the air quality in Macao, which is a city located in the sub-tropical region, as LSTM
is a kind of typical and balanced ANN-type model. Multivariate models have been widely
used due to higher accuracy, i.e., with the same ANN-type model, as the number of input
variables increases, the predicted mean absolute error MAE and mean squared error MSE
gradually decrease, which means that adding multivariate models can help to improve
the prediction accuracy of the concentration of air pollutants [12]. The method used also
includes the use of historical data from different sources, such as Macao Meteorological
Stations and Air Quality Monitoring Stations. Before being used to train the model, the data
will be pre-processed and cleaned, such as by removing NAN and outliers, etc. We will
use a multivariate LSTM model that takes in various weather factors such as temperature,
humidity, wind speed, and the concentration of air pollutants such as PM2.5, PM10, NO2,
SO2, etc.

When considering ANN-type neural network model modeling, in general, LSTM
models are more stable than RNN and GRU models, and they are much easier to build.
Sometimes CNNLSTM gives the smallest error [13], but not often. In a study, the MLP,
RNN, and LSTM models have been compared for predicting air pollutants such as PM10
and SO2, and LSTM performs better, and LSTM estimates PM10 and SO2 air pollutants are
closer to the true value [14]. Thus, by synthesizing the above, it will be much easier and
more convenient to use a less resource-based ANN-type model, LSTM. The architecture
of a multivariate LSTM model will consist of multiple layers of LSTM cells, followed by
fully connected layers for prediction. The input layer will contain various features such as
temperature, humidity, wind speed, and the concentration of the air pollutant itself. The
output layer will predict the concentration of each pollutant for the next time step.
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2.4. MTS Data Preparation and Acquisition

The MTS models (including the old, MTS-DR, ARIMA) will include the year 2019
hourly data of these meteorological elements: Air temperature, humidity, dew point tem-
perature, water vapor deficit, precipitation, u-vector and v-vector of wind, wind direction,
wind speed, wind gust, and boundary layer height of 5 locations in Macao. The design of
a multivariate LSTM model will include the following steps. The first is data collection.
To consider the availability and feasibility, Macao, as a small urban city, is chosen because
there is a good monitoring network for the six common air pollutants. The reanalysis data
from ECMWF is very reliable and open to use for academic and research purposes. Thus,
the data from the above two sources, i.e., the local auto-weather stations and air quality
monitoring stations, as well as some reanalysis data, were obtained from the local weather
forecast institution and ECMWF data, respectively, through the Internet. This information
is regularly released to the public [15–17]. Next, the data will be pre-processed and cleaned
before being used to train the model, stored in big data chunks, and partitioned by year
with the NetCDF library.

A multivariate LSTM model will then be designed with multiple layers of LSTM
cells, followed by fully connected layers for prediction. As mentioned in the previous
section, in order to conduct experiments to demonstrate the concepts introduced in this
study, a multivariate ANN-type model was considered and designed. Some studies have
proved that decomposed time series models are more accurate, which means that various
algorithms are more efficient in analyzing nonlinear and non-stationary time series by de-
composing time series [18]. After balancing factors such as feasibility, availability, efficiency,
and effectiveness, LSTM was adopted for the proposed MTS-DR model. On the other
hand, many studies have shown that the LSTM network with long short-term memory
function in hidden neurons can effectively and conveniently predict air quality, make model
training more perfect, and better avoid errors. Therefore, an LSTM framework ANN with
2 hidden layers, totaling 4 layers of neurons and 50 multivariate inputs, was designed
and constructed. All experiments are run on this model. When defining the number of
nodes in the hidden layer, after comparing different test results, from the initial 16 nodes
to the final version of 256 nodes. Each experiment will use the learning rate and number
of epochs to run as determined above. The activation function is ReLU(). The pollutant
concentration should be positive, regardless of observation or prediction. However, it is
strongly recommended that the usual sigmoid and tanh for LSTM be adopted when used
in other kinds of data. In general, it has had very little impact on this study. Since the
pollutant concentration is always positive, it is hoped that the network can flexibly consider
nonlinearity while approximating a linear function. The StandardScaler and MinMaxScaler
functions of Python version 3.7 with SciKitLearn version 1.4 which is a free and open-source
machine learning library. Preprocessing is used to standardize and preprocess the pollutant
concentration time series data to a value between 0 and 1. However, after the prediction is
completed, the result value is denormalized back to its original range. As shown in Figure 2,
the original time series is decomposed into three components, namely the trend, seasonal,
and residual. Then, the subsets of the dataset are used as input for the sub-models for trend
and residual components, while there is only a direct pipe for the seasonal components
because it is not needed to predict a TS with an MSE equal to zero. The predicted trend and
residual data are recombined by addition calculation with the seasonal components. In the
following section, it will show the model training processes of the original dataset, trend,
seasonal, and residual datasets, and the performance of the model in predicting different
air pollutant concentrations.
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2.5. MTS Dataset, Decomposing Module and Recombining Module

Modeling based on the decomposition of time series data and feature optimization can
effectively improve the accuracy of medium- and long-range time series forecasts related
to flux-behaved elements [19]. For the decomposing module, the original multivariate
time series (MTS) dataset used to predict the concentration of the six air pollutants is
decomposed by the additive method into 3 components: trend (T), seasonal (S), and
residual (R), respectively, with the additive method of the Python TSA stats model package
in Equation (4), as follows:

MTSi = Ti + (S(1)
i+ S(2)

i+ . . . + S(N)
i) + Ri (or) Ri = MTSi − (Ti + Si) (4)

For the recombining module, after each sub-dataset was input into the corresponding
sub-model for training, the prediction results were obtained. With the same principle of
Equation (4), i.e., the summation of the 3 components of trend (T), seasonal (S), and residual
(R), then derived into the original time series prediction values that are desired.

In which, the trend component is the overall level of the gradual development direction
in the time series, the seasonal component is the repeated shape, and finally, the rest is the
residual (see Figure 3).
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Figure 3. Decomposing into 3 components: trend, seasonal, residual.

These 3 components are used to build different sub-models. Those results from the
sub-models are then recombined by mathematical addition to form the final result. This
main portion of the experiment is the comparison of the predicted results of the original
dataset with those of the proposed MTS-DR model.

The dataset is divided into a training set and a test set according to the conventional
ratio of 8:2. The model will be trained on the training set data using the backpropagation
through time algorithm. The trained model will be validated on the same set of separate
test set validation data to check its accuracy and error loss with mean squared error (MSE).
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In the hyperparameter tuning, some hyperparameters, such as learning rate, number of
epochs and layers, and neurons in each layer, are being tuned to optimize the performance
of the model.

2.6. Defining the Hyperparameter Domain for Tuning

In order to analyze, synthesize, and compare scientifically, some mathematical analysis,
as shown in the figures, can help to obtain a standardized and normalized environment,
which is necessary for all the experiments to take place. To define the hyperparameter
domain for tuning and standardizing the experiment environment, it includes defining the
fixed learning rate from 0.01 to 0.0001 and selecting the number of epochs from 200 to 2000.
Then, some tests were carried out under this domain, and we selected those with a small
MSE. In Figure 4a, all the trend, residual, and original TS will be best trained with a learning
rate of 0.01. Thus, for all the experiments that would take place, the learning rate would be
fixed at 0.01. After standardizing the learning rate, it is time for the number of epochs in
each iteration to be considered. In Figure 4b, the big yellow box shows the domain of the
hyperparameter, and, with the fixed learning rate of 0.01, it is considered to be good when
the mean squared error (MSE) reaches a certain level, and in this case, the MSE value of
0.000549 is calculated as the 30% C.I. reference base to the worst-case MSE result of 0.00183.
With this minimum number of epochs, the result can be yielded below this yellow dotted
line, so that they are defined and selected, i.e. the hyperparameters pointed by the yellow
arrows in the Figure 4b. The values of hyperparameters can be selected inside the orange,
green and blue shaded portions for Trend, Residual and Original components respectively.
Eventually, the number of epochs equaling 200 is selected for the trend component, 500 is
selected for the residual component, and 1000 and 2000 are selected for the original TS.
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2.7. Model Training

As mentioned before, the models are being trained, i.e., the old original model with
the whole MTS and the model of the three components of the decomposed MTS, namely
trend, seasonal, and residual, by using the Python time series analysis TSA statsmodels (see
Figure 3). The TSA statsmodels module was originally written by Jonathan Taylor and had
been part of the SciPy package but was removed. During the period of Google Summer of
Code 2009, this statsmodels module was amended for improvement and released as a new
package. The statsmodels development team has continued to add new models, plotting
tools, and statistical methods [20]. The training time for each iteration was recorded. For
the new proposed MTS-DR model, the total training time is Equation (5):

t = Σ[tsubmodel(k)] (5)
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where t is the running time and k is the index of the sub-model for different wavelet
components. In this case, there are only 3 components decomposed, i.e., trend (T), seasonal
(S), and residual (R). Therefore, as in Equations (6) and (7):

t = tsubmodel(T) + tsubmodel(S) + tsubmodel(R) (6)

t = tsubmodel(T) + 0 + tsubmodel(R) (∵ MSE(tsubmodel(S)) = 0) (7)

Figure 5 shows the training processes, while Figure 5a–c shows the training processes
of the proposed MTS-DR model that is expected to be able to speed up the training process,
with the 3 components trained, respectively, i.e., trend, residual, and seasonal. As shown in
Figure 5c, the seasonal TS component is not necessary to be trained in the following works
because the seasonal component is a very regularly repeating wave that consists of very
stable cyclic phases. Thus, the predicted wave will totally overlap with the actual wave.
Figure 5d shows the training processes of the old model with the original TS.
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2.8. ARIMA as Baseline Method for Evaluation

For a more objective assessment, an evaluation baseline is required. Therefore, the
most popular forecasting method, auto-regression integrated moving average ARIMA,
was selected and implemented on the same sets of MTS. There is a comparison of baseline
methods (in this case, ARIMA) to make the evaluation clearer. To train the ARIMA model,
the auto-arima function from the standard Python package called “pmdarima” is used. The
whole dataset is divided into a training set and a test set with the same ratio of 8 to 2 as the
MTS-DR model. After feeding the ARIMA model with all the same MTS as the input LSTM
model, it is trained without fixing any parameters of the auto-arima function so that it can
search for the most suitable settings by itself. Finally, use the trained ARIMA to predict the
test set data. All predictions are plotted (see Figure 6). As shown in Figure 6, the forecast
curve hovers around a certain value with only slight variations. ARIMA forecasts do not
appear to be able to alert to critical changes with peak values in air pollutant concentrations.
The mean absolute error MAE, median percentage absolute error MdPAE, and area under
curve of accuracy probability AUC are then calculated. Since the curve predicted by ARIMA
is very flat, the resulting error level is very close to that of the LSTM models. However,
it is evident from Figure 6 that the LSTM model is better at predicting key changes in air
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pollutant concentrations many times. This is very important for adaptive public alerting
services. On the other hand, ARIMA takes a very long time to train compared to LSTM
models. Longer training times are definitely a disadvantage for real-time LSTM models
that rely on adaptive feature engineering (see Table 1).
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Table 1. Training time and prediction accuracy—ARIMA (2019).

Element
Models

PM2.5
ARIMA MTS-DR PM10

ARIMA MTS-DR SO2
ARIMA MTS-DR

MAE
MdPAE

AUC

12.60
39%
914.9

13.60
43%
908.3

21.03
29%

1136.0

21.04
30%

1149.1 1

0.9444
76%
629.3

0.8604 1

48% 1

808.6 1

Training
time 602.27 26.82 1 304.88 26.94 1 564.29 26.94 1

Element
Models

NO2
ARIMA MTS-DR

O3
ARIMA MTS-DR

CO
ARIMA MTS-DR

MAE
MdPAE

AUC

7.856
30%

1088.0

8.543
35%

1026.7

41.43
92%
523.4

18.88 1

40% 1

967.3 1

0.2114
38%

1012.7

0.1638 1

25% 1

1199.1 1

Training
time 444.70 26.82 1 406.92 26.94 1 588.58 26.94 1

1 Indicates better (i.e., higher accuracy or shorter time).
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3. Results

An ideal training process for an ANN-type model is that the curve of the predicted
data fits well with the curve of the actual data in the training set. If these two curves do
not fit well in some cases, one of the solutions is to increase the number of epochs to allow
the model to learn better. However, those experiments performed in this study were well
trained, i.e., the two sets of curves overlapped well. For example, in Figure 5, where the
model stopped training, it is marked with a red dotted line. In each small graph, the left
side of the red dotted line marked by the green arrow is the training set, and in this part,
the yellow curve and the blue curve almost coincide, which means that the model has been
trained well enough. In addition, the test set is shown on the right with the red arrow
annotation, which means that the model will start making predictions here, and the yellow
curve is the future value of the data predicted. Of course, the yellow and blue curves
will not always overlap well here on this right-hand side portion because the prediction
accuracy of any model will not be 100%.

Results of the Proposed MTS-DR Model

Figure 7 shows all the test results of prediction for the concentration of those six air
pollutants by the proposed MTS-DR model after training and predicting MTS, which is
decomposed by the additive method. Thus, as Equation (8)

MTSi = Ti + Si + Ri (8)
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Figure 7. Recombine 3 predict components into final predicted TS (2019): (a) PM2.5; (b) PM10; (c) SO2;
(d) NO2; (e) ozone; (f) CO.

In the above Equation (8), where trend (T), seasonal (S), and residual (R).
Then, the orange color curves show the final predicted curves of the time series; here

are those 6 air pollutant elements. Figure 7 shows the recombined trained TS of PM2.5,
PM10, SO2, NO2, O3, and CO, respectively. The orange color curves are the recombined TS,
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while the bold black curves are the regularly repeating seasonal, the lower black curves are
the residual, and the upper black curves are the trend.

During the training of each set of models, the mean squared error MSE(Training) is
calculated. From evaluating these MSE(Training)’s, it is possible to explore how well a model
is trained and to what level the different hyperparameters improve the models with the
same designed architecture. This research aims to understand how the newly proposed
MTS-DR model can speed up and improve the training process and efficiency. As shown
in Figure 8, the MTS-DR model trains as well as the old model at epoch numbers of 1000
and 2000. It seems that the old model outperforms the MTS-DR model for 2000 epochs
with these MSE(Training)’s. However, these are the MSE(Training)’s for training processes. In
the following sections, it can be found that the MTS-DR model still performs better in
predictions. It should be noted that, in Figure 8, this MSE(Training) is only for the training
process and does not fully represent the prediction performance of the model because
each model is trained quite accurately. This is just a reference indicator to help select
hyperparameters so that the experiment can be stopped in a certain situation.
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4. Discussion

As mentioned above, after inspecting each group of models, which are trained under
the given test settings and conditions, the next step is to use the test set data to test their
ability to predict future values. Figure 7 shows the comparison of the actual data, the
predicted data of the original old model, and the predicted data of the newly proposed
MTS-DR model, where the blue curve is the actual data, the green curve is the predicted
data of the original old models, and the orange curve is the predicted data of the proposed
MTS-DR model (i.e., the MTS-DR model trained in three independent iterations for three
sets of decomposed time series and used to predict the original MTS, namely the trend,
seasonality, and residual components of the MTS). In addition, as mentioned earlier, because
MSE(Training) is 0, there is no need to train the seasonal components. Therefore, the seasonal
components used here are the same set of time series data as the original decomposed
seasonal component.

Compare the actual data, the predicted data by the original old model, and the
predicted data by the proposed MTS-DR model. The blue curve is the actual data, while
the green curve is the predicted data by the original old model, and the orange color curve
is the predicted data by the proposed MTS-DR model, i.e., train and predict the MTS in
three iterations for the trend, seasonal, and residual components of the MTS, respectively.
Tables 2–4 are the final metrics of all experimental results for the concentration of those
six air pollutants. After calculating and comparing all the prediction values, i.e., the part
of the test set beyond the right side, in terms of the prediction of the concentration of
six air pollutants, the newly proposed MTS-DR model approach has improved both in
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terms of prediction accuracy and training time; e.g., for PM2.5, the time needed to train
the old model at 1000 epochs is 38.94 s, while that for the MTS-DR model is 27.01 s (i.e.,
the summation of the training time of the sub-models of trend, seasonal, and residual
components). Forecasting results using decomposed time series models are significantly
better, often due to the fact that the algorithm can analyze those decomposed data with
better symmetry and compact support for multi-sub-layer data, which have little signal
aliasing [21].

Table 2. Training time and prediction accuracy—PM25, PM10 (2019).

Element (Fixed LR)
Model/No. of Epoch Old/1k PM25

Old/2k MTS-DR Old/1k PM10
Old/2k MTS-DR

MSE 544.28 514.92 322.31 1 1306.98 1266.31 855.52 1

(run time: trend) – – 7.62 – – 7.63
(run time: seasonal) – – 0.00 – – 0.00
(run time: residual) – – 19.39 – – 19.39

total run time 38.94 80.64 27.01 1 38.98 80.44 27.02 1

Accuracy improved 37% 41% – 32% 35% –
Training time less 31% 67% – 31% 66% –

1 Indicates better (i.e., higher accuracy or shorter time).

Table 3. Training time and prediction accuracy—SO2, NO2 (2019).

Element (Fixed LR)
Model/No. of Epoch Old/1k PM25

Old/2k MTS-DR Old/1k PM10
Old/2k MTS-DR

MSE 1.91 1.75 1.21 1 218.54 194.81 141.01 1

(run time: trend) – – 7.75 – – 7.68
(run time: seasonal) – – 0.00 – – 0.00
(run time: residual) – – 19.33 – – 19.27

total run time 39.36 80.35 27.08 1 40.21 80.32 26.95 1

Accuracy Improved 31% 37% – 28% 35% –
Training time less 31% 66% – 33% 66% –

1 Indicate better (i.e., higher accuracy or shorter time).

Table 4. Training time and prediction accuracy—O3, CO (2019).

Element (Fixed LR)
Model/No. of Epoch Old/1k PM25

Old/2k MTS-DR Old/1k PM10
Old/2k MTS-DR

MSE 687.39 733.25 572.34 1 0.0529 0.0487 0.0453 1

(run time: trend) – – 7.64 – – 7.65
(run time: seasonal) – – 0.00 – – 0.00
(run time: residual) – – 19.18 – – 19.29

total run time 38.92 79.31 26.82 1 39.30 79.69 26.94 1

Accuracy improved 22% 17% – 7% 14% –
Training time less 31% 66% – 31% 66% –

1 Indicates better (i.e., higher accuracy or shorter time).

The percentage increase in efficiency and performance in this area is significant. The
accuracy has improved from 37% to 41%, 32% to 35%, 31% to 37%, 28% to 35%, 17% to
22%, and 7% to 14% for PM2.5, PM10, SO2, NO2, ozone, and CO, respectively. The training
time is reduced from 31% to 66% for all six air pollutant elements (see Figure 9). How to
shorten the running time is helpful sometimes when the system is designed for real-time
monitoring. The big O is a common method to measure and estimate the running time.
For the training time of an ANN-type model, if the algorithm adopted is simple, the big
O will be O(n) so that if the multivariate input size increases, the running time will be
multiple, e.g., the time needed will increase from t to 10t when the input size increases
from 1 to 10. However, if the model is complicated and has an algorithm that leads to a
large O O(n2), then the running time will be exponentially increased to 102 × t, i.e., from t
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to 100t. Thus, the reduction in the number of epochs could be a significant contribution to
the performance of the ANN-type models.
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As mentioned before, in Figure 7, the model trained in the experiment is used to make
predictions. The prediction ability of the new model is satisfactory. Even though ARIMA
seems to be close to it in terms of error calculation, under visualization, it can be easily
seen that its predictions are generally small, do not change much, and cannot reflect well.
The realistic 24 h oscillation period changes. The new model also predicts trend changes in
many places. Figure 10 illustrates this point better, which shows the difference between
the predicted values of each model and the actual observed values within 48 h. In terms of
predicting air quality, if it can be predicted for 48 h, it is sufficient to assist decision-making.
Just like its commonality, this time step is sufficient even if it is applied in other fields.
Today’s real-time adaptive systems require that the model be continuously retrained and
updated with hyperparameters.

Although the prediction range is temporarily based on 8:2 of the length of the total
dataset to be the test set, the practical prediction time is generally the future 48 h. As this
research result will be incorporated into an adaptive feature engineering module for a
larger project, the model can be retrained with newly observed data to improve accuracy for
operational tasks. Therefore, in Figure 10, the error value of the proposed model is always
closest to the zero value of the central axis. If it is upward, there is an overestimation of the
actual situation, while downward is an underestimation. While the other models, i.e., the
three curves of red, green, and blue, all deviate further upwards and downwards, the error
value of the proposed model, i.e., the yellow curve, always hovers closest to the zero value
of the central axis. Therefore, the proposed model always maintains the highest accuracy
level. It can be seen that the newly proposed MTS-DR model can not only greatly reduce
training time and enable instantaneous adaptive feature engineering, but also achieve a
slight improvement in accuracy.



Atmosphere 2024, 15, 521 15 of 17

Atmosphere 2024, 15, x FOR PEER REVIEW 15 of 17 
 

 

only greatly reduce training time and enable instantaneous adaptive feature engineering, 

but also achieve a slight improvement in accuracy. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Differences in actual to predicted data (y-axis y = a − p; where a is actual data, p is pre-

dicted data): (a) PM2.5; (b) PM10; (c) SO2; (d) NO2; (e) ozone; (f) CO. 

5. Conclusions 

It is concluded that when forecasting time series data using deep learning models, 

since each type of MTS has very different characteristics, it is necessary to analyze the MTS 

in advance, which helps in model construction and efficiency. In this research, the case 

study focuses on air quality forecasting in small cities. Finally, all the final forecast results 

are visualized. Although the error level of ARIMA is very close to that of the MTS-DR 

model, the MTS-DR model is better at predicting key changes in air pollutant concentra-

tions at many critical points. For many locations where the trend changes, the forecast is 

ideal, but accurate forecasting of peaks remains a challenge. Experiments show that the 

proposed MTS-DR model can significantly speed up the training time as well as slightly 

reduce error loss, that is, improve the accuracy rate. It is easier to train the trend compo-

nent as it is simpler than the original, while there is no need to train the seasonal compo-

nent as the MSE for this is always zero. The training of the residual is still the most difficult 

part, with more uncertainty. Nevertheless, the new proposed MTS-DR model can still ben-

efit from the former two factors. Thus, the proposed MTS-DR is helpful for adaptive public 

alerting services with the advantage of the shortest training time, which is crucial for a 

real-time model that relies on adaptive feature engineering. 

Techniques such as wavelet analysis, Fourier analysis, auto-correlation, etc. are very 

useful for identifying different degrees of oscillation and seasonality. In this case, auto-

correlation is used to visualize and explore the MTS with its 24 h oscillations or seasonal-

ity. It can be seen that the weather elements and the concentration of atmospheric pollu-

tants affected by the weather have a 24 h seasonality. There may be some periods when 

Figure 10. Differences in actual to predicted data (y-axis y = a − p; where a is actual data, p is
predicted data): (a) PM2.5; (b) PM10; (c) SO2; (d) NO2; (e) ozone; (f) CO.

5. Conclusions

It is concluded that when forecasting time series data using deep learning models,
since each type of MTS has very different characteristics, it is necessary to analyze the
MTS in advance, which helps in model construction and efficiency. In this research, the
case study focuses on air quality forecasting in small cities. Finally, all the final forecast
results are visualized. Although the error level of ARIMA is very close to that of the
MTS-DR model, the MTS-DR model is better at predicting key changes in air pollutant
concentrations at many critical points. For many locations where the trend changes, the
forecast is ideal, but accurate forecasting of peaks remains a challenge. Experiments show
that the proposed MTS-DR model can significantly speed up the training time as well as
slightly reduce error loss, that is, improve the accuracy rate. It is easier to train the trend
component as it is simpler than the original, while there is no need to train the seasonal
component as the MSE for this is always zero. The training of the residual is still the most
difficult part, with more uncertainty. Nevertheless, the new proposed MTS-DR model
can still benefit from the former two factors. Thus, the proposed MTS-DR is helpful for
adaptive public alerting services with the advantage of the shortest training time, which is
crucial for a real-time model that relies on adaptive feature engineering.

Techniques such as wavelet analysis, Fourier analysis, auto-correlation, etc. are very
useful for identifying different degrees of oscillation and seasonality. In this case, auto-
correlation is used to visualize and explore the MTS with its 24 h oscillations or seasonality.
It can be seen that the weather elements and the concentration of atmospheric pollutants
affected by the weather have a 24 h seasonality. There may be some periods when this
seasonality is not apparent due to severe weather, unusual atmospheric phenomena, or
human activities that affect the normal diffusion or dispersion of air pollutants.



Atmosphere 2024, 15, 521 16 of 17

Future work will include the binding and handling of those abnormal and special
weather conditions, namely typhoons, rainy seasons, heavy rain, sandstorms, and mon-
soons. Now, when analyzing the acquired data source, if some extreme data are found at
this initial stage, just consider it an outlier for the whole time series. Combining artificial
intelligence-based models with numerical model simulations can improve forecasting capa-
bilities for complex weather [22]. Furthermore, this study is part of the adaptive feature
engineering in our final project, which is an adaptive public service.
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