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Abstract: The PurpleAir PA-II sensor provides low-cost in situ measurements of meteorological
variables including temperature and relative humidity (RH), as well as fine particulate matter (PM2.5)
in real time. The sensors have been used in several studies investigating intracity differences in
temperature and PM2.5. While the adoption and use of low-cost sensors has many benefits, care must
be taken to ensure proper calibration and testing. This is true not only for PM2.5 measurements but
also for temperature and RH given the synergistic health impacts from extreme heat and air pollution
exposure. Here, we compare continuous temperature and RH measurements from a PA-II sensor to
measurements from a Campbell Scientific 107 temperature probe and Vaisala HMP45C RH probe. All
three instruments were co-located from December 2021 to June 2023 in Asheville, North Carolina.
We found that the PA-II has an overall high temperature bias of 2.6 ◦C and root mean square error
(RMSE) of 2.8 ◦C. Applying a linear regression correction reduces RMSE to 1.0 ◦C, while applying
the constant 4.4 ◦C correction suggested by PurpleAir reduces RMSE to only 2.2 ◦C. Our PA-II RH
measurements have a low bias of −17.4% and uncorrected RMSE of 18.5%. A linear regression
correction improves the RH RMSE to 4.5%. Applying the constant 4% RH correction suggested by
PurpleAir reduces RMSE to only 14.8%. We present new correction factors that differ from those
suggested by PurpleAir, which overcorrect the high temperature bias and undercorrect the low RH
bias. We also show that our correction factors improve estimates of dewpoint temperature (RMSE of
0.6 ◦C and 0.9 ◦C) compared to the corrections suggested by PurpleAir.

Keywords: PurpleAir; low-cost sensor; air pollution; temperature; relative humidity

1. Introduction

Air pollution monitoring has enjoyed a notable surge in the popularity of low-cost
sensors, marking a shift in data availability and spatial coverage. The proliferation of
these sensors has been driven by advancements in technology and a growing need for
neighborhood-scale measurement data [1]. Characterized by affordability and ease of use,
low-cost sensors are democratizing air quality data collection and empowering commu-
nities to actively participate in monitoring efforts [2,3]. Several studies have investigated
possible uses from citizen science efforts to personal exposure monitoring [4–7], and sensor
data can supplement existing monitoring networks [8]. This is of particular importance
for pollutants—such as fine particulate matter (PM2.5)—with high spatiotemporal variabil-
ity [9–12].

Many low-cost sensors used for air pollution monitoring employ optical particle
counters that estimate mass concentration based on how particulates in the sample scatter
light. Several studies have described this technology in detail along with some of the
drawbacks and potential sources of error when compared to federal reference method
(FRM) or federal equivalent method (FEM) instruments [13–16]. The South Coast Air
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Quality Management District’s AQ-SPEC program has tested dozens of commercially
available low-cost PM2.5 sensors in laboratory and field settings [17]. Their results show a
wide range of sensor quality with some sensors, including the PurpleAir PA-II sensor used
in our study, exhibiting good precision and accuracy when compared to FRM and FEM
monitors. The US EPA, through conversations with multiple stakeholders [18], developed
guidance for testing PM2.5 sensors in ambient, non-regulatory settings [19], and the agency
also created an Air Sensor Toolbox [20] and Guidebook [21], which provides best practices
for using low-cost sensors. Additionally, the US EPA incorporates adjusted data from over
10,000 PurpleAir sensors on the AirNow Fire and Smoke map in recognition of that sensor’s
usefulness and popularity [22].

While it is well known that exposure to air pollutants and extreme heat are individually
hazardous, it is becoming clear that the negative health effects of poor air quality are
magnified by high temperatures. A study of 17 cities in France found that the risk of
mortality associated with a 10 µg/m3 increase in PM10 was 14.2% greater during a heat
wave [23]. Other studies of European cities reported similar findings [24,25]. Rahman
et al. [26], investigating the link between extreme heat and PM2.5 in California, found that
co-exposure had a greater effect on all-cause mortality (21.0% increase in risk) than the
sum of the individual effects (6.1% increase in risk for high temperature days and 5.0%
increase in risk for high PM2.5 days). The effect was magnified when looking specifically
at increased risk of cardiovascular mortality and respiratory mortality. Further, recent
reviews of the literature on human population health studies found compelling evidence
for synergistic effects of extreme heat and PM2.5 [27–29].

Populations living in urban areas are particularly vulnerable to extreme heat and
elevated PM2.5 concentrations. Individual risk is communicated via the well-known heat
index (HI), which integrates ambient temperature with relative humidity (RH), and air
quality index (AQI), which relies on ambient concentrations of pollutants such as PM2.5 and
ozone. Yet, there is no consistent method to communicate the combined risk. Fever et al. [30]
unified the HI and AQI for PM2.5 and ozone in a combined index using several different
models. They found that improved mortality predictions were possible with their combined
indices in Monterrey, Mexico, but cautioned that their results might not be generalizable to
regions with different air pollutant and weather patterns. Steeneveld et al. [31] developed
an urban climate index that combined PM10, ozone, and nitrogen dioxide concentrations
with urban heat island effects. Of relevance to low-cost sensor networks, they highlight the
importance of fine-scale measurement data when assessing the health risks of extreme heat
and air pollution. A third study took a different approach to investigating the combined
impact of extreme heat and PM2.5 exposure on urban communities. Sabrin et al. [32]
used neighborhood-scale data to assess the importance of underlying environmental and
social parameters and to communicate the risk to vulnerable populations. Each of these
investigations sought to integrate information about heat and air pollution exposure, which
indicates the need for high-quality measurements of both.

Several studies have examined the performance of PurpleAir sensors with respect
to PM2.5 [33–37]. To date, these efforts have occurred in several countries and under
a variety of ambient and laboratory conditions. Most often, PM2.5 measurements from
PurpleAir sensors are compared to nearby FRM or FEM instruments. While nearly all
attempts to correct the PM2.5 concentrations have recognized the importance of factoring in
temperature and/or RH values, very few studies have investigated bias and error in these
meteorological measurements from the PurpleAir sensors themselves. Holder et al. [38]
found strong correlations to reference measurements (r2 of 0.91 and 0.84 for temperature
and RH) over a range of ambient conditions in North Carolina. They reported a mean
temperature bias of 5.2 ◦C and a mean RH bias of −24.3%. Another study in Greece
found excellent inter-sensor agreement between eight different PurpleAir sensors and
strong correlations with reference temperature and RH [39]. Though specific values were
not provided, this study also noted persistent high and low biases for temperature and
RH, respectively. These biases are known by PurpleAir, and specific correction factors
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(−4.4 ◦C and +4%) are provided on the company’s community forum [40], though without
information about how those correction factors were determined. PurpleAir attributes
the measurement discrepancy to heat generated from the internal WiFi module and adds
a disclaimer that the on-board temperature and RH readings are not meant to reflect
actual ambient conditions. A third study reports yet another set of biases but blames the
near-infrared laser counters for the elevated temperature and lower RH values [41]. They
found a temperature difference of 4.4 ◦C and an RH difference of −15% without providing
any explanation other than to mention a long period of comparison to an indoor monitor.
Finally, Malings et al. [15] states that PurpleAir temperature and RH were 2.7 ◦C above
and 9.7% below average, though again, without a description of how the reference values
were obtained.

The current study provides the first long-term, systematic investigation of PurpleAir’s
on-board temperature and RH measurements. We compared data from the low-cost sensor
to co-located research-grade meteorological instruments and provide correction factors to
estimate ambient temperature and RH from values reported by PurpleAir. While it has
been noted elsewhere that reasonably accurate PurpleAir PM2.5 corrections are possible
even without knowing actual ambient conditions [42], our results enhance the capability of
the sensor by allowing the public health community to combine air quality information
with temperature and RH data.

2. Materials and Methods
2.1. PurpleAir PA-II Sensor

The PurpleAir PA-II sensor is a commercially available low-cost particulate matter
and temperature/RH/pressure measurement platform. It is most often used to obtain
ambient PM2.5 levels using a pair of Plantower PMS-5003 optical particle counters. Mass
concentrations are calculated using a proprietary algorithm. Descriptions of the PA-II’s
operating principles have been detailed elsewhere (for example, Ardon-Dryer et al. [33]).
Meteorological measurements are provided by a Bosch BME280 sensor.

The PA-II’s components are housed in a white plastic shell (85 mm × 85 mm × 125 mm)
to protect the electronics from the elements. The plastic housing is open on the bottom to
allow the sensors to measure ambient air. In addition to the two PMS-5003 particle counters
and the BME280 sensor, the PA-II platform contains a wireless data transmitter, microSD
card data logger, and programmable circuit board with a battery-powered real time clock.
Figure 1 shows the PA-II sensor and its internal components.
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A more recent version of the PurpleAir sensor, the PurpleAir Flex, is also available.
The operating principles are identical, though the optical particle counters have been
updated to the Plantower PMS-6003 model and the meteorological sensor was updated to
the Bosch BME688.

2.2. Measurement Site

All measurements were taken in Asheville, North Carolina, at a weather station
maintained by the Department of Atmospheric Sciences at the University of North Carolina
Asheville (UNCA). The station, which is part of the North Carolina Environment and
Climate Observing Network (ECONet) [43], is 2367 m above sea level and located at
35.62◦ N, 82.57◦ W. Temperature data were recorded using a Campbell Scientific 107 probe
2 m above the ground, and RH data were recorded using a Vaisala HMP45C probe also 2 m
above the ground. All data are publicly available at https://atms.unca.edu/datarequest/
(accessed on 1 February 2024). North Carolina ECONet stations undergo rigorous quality
control and maintenance procedures [44].

Continuous weather station measurements were taken at 1-min intervals for 553 days
from 15 December 2021 to 30 June 2023. Both temperature and RH records were more
than 99.9% complete. Upon inspection, some temperature data on 12 August 2022 had
anomalously low readings and were removed from this analysis. The affected times were
11:12 through 13:14 (local time); RH data were also removed during this interval. After
removing the anomalous data points, the 1-min data were aggregated to 5-min averages.

One PA-II sensor was installed on the UNCA weather tower at 3 m and measured
temperature and RH. No adjustments were made to the data to account for the 1-m height
difference between the PA-II sensor and the UNCA instruments. Continuous measurements
were taken at 2-min intervals from 15 December 2021 through 26 July 2022. Measurements
beginning on 27 July 2022 were taken at 5-min intervals. All data were aggregated to
5-min averages. Data completeness for the PA-II was 91.4%. Data were unavailable from
14:30 10 January 2023 through 08:35 23 January 2023 (local time), and several data points
were removed on 29 October 2022 because the PM2.5 measurements were greater than
500 µg/m3, indicating a possible data logging malfunction.

2.3. Dewpoint

We used the Python package MetPy version 1.5.1 [45] to calculate dewpoint tem-
peratures (DP) from temperature and RH measurements. While the Campbell scientific
107 probe was used to obtain reference temperatures for comparison to the PA-II’s tempera-
ture measurements, we relied on temperature from the Vaisala HMP45C probe to calculate
DP. It is recommended to use temperature and RH values from the same sensor when
calculating DP. Values were calculated for both the UNCA and PA-II data sets using the
metpy.calc.dewpoint_from_relative_humidity function.

2.4. Performance Metrics

To evaluate the reliability of the PA-II’s meteorological measurements, we calculated
mean bias (bias) and root mean square error (RMSE) to compare the UNCA and PA-II
data sets. All comparisons were made on time-paired data, so we excluded records where
only one data set had a valid measurement. Bias and RMSE were calculated using the
following equations:

Mean Bias =
1
n∑n

1 (x(i)− y(i)) (1)

RMSE =

√
1
n∑n

1 (x(i)− y(i))2 (2)

where x(i) and y(i) are time-paired measurements from PA-II and UNCA.

https://atms.unca.edu/datarequest/
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3. Results and Discussion

This study compared temperature and RH measurements from one PurpleAir PA-II
low-cost sensor to UNCA’s research-grade instruments during a 553-day period extending
from 15 December 2021 through 30 June 2023. We performed a simple linear regression
correction on the PA-II’s values using the UNCA data as the reference. Our corrected
measurements were then compared to corrections suggested by PurpleAir [40]. Results are
presented separately for temperature, RH, and DP.

3.1. Temperature

Measurements from the PA-II are strongly correlated with the UNCA temperature
data. The Pearson correlation coefficient (r) between the two data sets is 0.99. Comparisons
between the PA-II and UNCA temperatures reveal a consistent and systematic high bias,
as shown in Figure 2. The uncorrected PA-II measurements, shown in blue, have a mean
bias of 2.6 ◦C and RMSE of 2.8 ◦C. A total of 148,230 pairs of 5-min data were analyzed.
The differences between the time-paired PA-II and UNCA values ranged from −2.7 ◦C to
9.1 ◦C, with 91.1% of the data points exhibiting a high bias. The maximum and minimum
temperatures recorded during the study period were 33.8 ◦C and −19.3 ◦C for UNCA and
39.2 ◦C and −17.8 ◦C for PA-II.
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Figure 2. Comparisons of the time-paired 5-min PA-II and UNCA temperature measurements. In
both plots, the blue markers show the uncorrected data. Orange markers in the left-hand plot show
the PA-II data after applying a simple linear regression correction, and the green markers in the
right-hand plot show the PA-II data after applying PurpleAir’s suggested correction. The dotted line
drawn across each plot is the 1:1 line.

We performed a simple linear regression on the uncorrected PA-II data to remove
the high temperature bias. The left-hand side of Figure 2 compares the corrected data
(orange) to the uncorrected data (blue). The linear regression correction (slope = 1.07,
intercept = 1.60) reduces RMSE to 1.0 ◦C, and the range in differences between the data
sets is now −5.4 ◦C to 5.3 ◦C. PurpleAir is aware of the high temperature bias in the PA-II,
and they recommend a constant 4.4 ◦C correction to account for the heat generated by the
sensor’s WiFi module. We applied this suggestion to the uncorrected PA-II measurements,
and the result is shown on the right-hand side of Figure 2 in green. The suggested cor-
rection introduces a readily apparent low bias especially for temperatures below 20 ◦C.
Overall mean bias is −1.9 ◦C and RMSE is 2.2 ◦C, and the range in differences when
comparing PurpleAir’s suggested correction to the UNCA data set is −7.2 ◦C to 4.6 ◦C,
with 84.1% of all data pairs exhibiting a low bias. Thus, while the suggested correction
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does reduce the magnitude of the bias and RMSE, it performs worse than a simple linear
regression correction.

As a next step, we separated the measurement data into bins to determine whether
the PA-II’s bias is temperature-dependent. We chose five separate temperature bins using
UNCA temperature as the reference, as shown in Table 1. Both the bias and RMSE increase
monotonically with increasing temperature. Minimum bias (RMSE) is 1.8 ◦C (2.0 ◦C)
when temperatures are −5 ◦C or below; maximum bias (RMSE) is 4.2 ◦C (4.4 ◦C) when
temperatures are greater than 25 ◦C. Both conditions are rarely met occurring only about
8% of the time. The temperature dependence is reversed when considering the corrections
suggested by PurpleAir, which are also provided in Table 1. Here, the bias and RMSE
decreases from colder to warmer temperatures.

Table 1. Comparison of PA-II and UNCA temperature measurements.

Correction Type Temperature Bin
(◦C)

Mean Bias
(◦C)

RMSE
(◦C) r Slope Intercept n

uncorrected

All 2.6 2.8 0.99 1.07 1.60 148,230
(−∞, −5] 1.8 2.0 0.98 1.01 1.89 2239

(−5, 5] 1.9 2.1 0.96 1.03 1.86 26,589
(5, 15] 2.2 2.3 0.96 1.04 1.71 52,162

(15, 25] 3.0 3.2 0.94 1.17 −0.31 57,574
(25, ∞] 4.2 4.4 0.80 1.07 2.36 9666

simple linear
regression
correction

All 0.0 1.0 0.99 1.00 0.00 148,230
(−∞, −5] 0.8 1.1 0.98 0.94 0.27 2239

(−5, 5] 0.2 0.8 0.96 0.96 0.24 26,589
(5, 15] −0.2 0.8 0.96 0.97 0.11 52,162

(15, 25] 0.0 1.0 0.94 1.09 −1.78 57,574
(25, ∞] 0.6 1.3 0.80 0.99 0.71 9666

PurpleAir
suggested
correction

All −1.9 2.2 0.99 1.07 −2.85 148,230
(−∞, −5] −2.6 2.8 0.98 1.01 −2.55 2239

(−5, 5] −2.6 2.7 0.96 1.03 −2.59 26,589
(5, 15] −2.3 2.4 0.96 1.04 −2.73 52,162

(15, 25] −1.4 1.9 0.94 1.17 −4.76 57,574
(25, ∞] −0.2 1.3 0.80 1.07 −2.08 9666

The high temperature bias presented here is less than previously reported (Table 2).
Holder et al. [38] found a bias of 5.2 ◦C. Their sensors were deployed for nine months in
North Carolina. A lower bias of 2.7 ◦C was found during a March–June field measurement
in Pennsylvania [15]. The third reported bias −4.4 ◦C, which is identical to the correction
suggested by PurpleAir—is from an indoor sensor [41].

Table 2. Comparison of temperature and RH bias to previous studies.

Study T (◦C) RH (%) Location Dates

This study 2.6 −17.4 Asheville, NC (USA) 15 Dec 2021–30 June 2023

Malings et al. [15] 1 2.7 −9.7 Pittsburgh, PA (USA) 30 Mar 2018–4 June 2018

Holder et al. [38] 1 5.2 −24.3 Research Triangle Park, NC (USA) 10 Aug 2018–30 Apr 2019

Wallace et al. [41] 1,2 4.4 −15 Santa Rosa, CA (USA) unknown

PurpleAir [40] 1 4.4 −4 Unknown unknown
1 These studies do not provide a clear methodology for determining the temperature and RH bias. 2 Temperature
and RH were measured indoors.

3.2. Relative Humidity

PA-II RH, like temperature, has a consistent and systematic bias. Unlike temperature,
however, the RH bias is low as shown in Figure 3. This bias is the result of the excess heat



Atmosphere 2024, 15, 415 7 of 12

produced by the sensor’s electronics. The excess heat increases the local temperature inside
the sensor’s enclosure thereby lowering RH. Despite the bias, the RH measurements from
the PA-II are strongly correlated to the UNCA measurements illustrated by an r-value of
0.98. The overall RH bias and RMSE is −17.4% and 18.5%. The differences between the
time-paired PA-II and UNCA measurements ranged from −45.4% to 2.7%, with nearly all
measurements exhibiting a low bias (91.4% of all data points). The ranges of measured RH
during the study period are 9.6% to 99.6% for UNCA and 8.0% to 90.0% for PA-II.
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Figure 3. Comparisons of the time-paired 5-min PA-II and UNCA RH measurements. In both plots,
the blue markers show the uncorrected data. Orange markers in the left-hand plot show the PA-II
data after applying a simple linear regression correction, and the green markers in the right-hand
plot show the PA-II data after applying PurpleAir’s suggested correction. The dotted line drawn
across each plot is the 1:1 line.

Applying a simple linear regression correction (slope = 0.75, intercept = 0.12) on
the PA-II removes the high temperature bias. The left-hand side of Figure 3 compares
the corrected data in orange to the uncorrected data in blue. RMSE decreases to 4.5%
and the range in differences between the sets of measurements is now −28.7% to 20.5%.
PurpleAir suggests a 4% correction to RH measurements from the sensor, and we applied
this to the uncorrected PA-II data set. The right-hand side of Figure 3 illustrates that the
suggested correction is not enough to overcome the persistent low RH bias; 89.0% of all
PA-II measurements after the 4% correction are still less than the UNCA values. Overall bias
and RMSE for the suggested correction are −13.4% and 14.8%, which is an improvement
over the uncorrected data. But, as with temperature, PurpleAir’s suggested RH correction
has worse performance than the simple linear regression correction.

We partitioned the RH data into separate bins to investigate how the PA-II’s bias
depends on RH. Table 3 summarizes these results using UNCA RH values as the reference
for determining each bin. Bias and RMSE are greater at higher RH. The largest bias (−22.0%)
and RMSE (22.3%) was calculated for RH values between 80% and 100. Since nearly half of
the data points come from this bin, the overall bias and RMSE are dominated by these values.
The uncorrected data in Figure 3 shows a marked increase in data points with a lower bias
starting around UNCA RH values of 40%. The picture is similar when considering the data
after applying PurpleAir’s suggested corrections. Worse RH performance occurs at higher
RH values. Below 40% RH, however, the suggested correction has similar performance to
the simple linear regression correction.
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Table 3. Comparison of PA-II and UNCA RH measurements.

Correction
Type

RH Bin
(%)

Mean Bias
(%)

RMSE
(%) r Slope Intercept n

uncorrected

All −17.4 18.5 0.98 0.75 0.12 148,230
[0, 20] −2.1 2.5 0.84 0.74 2.21 1323

(20, 40] −6.0 6.4 0.92 0.74 2.01 16,506
(40, 60] −13.0 13.4 0.79 0.63 6.10 29,269
(60, 80] −18.6 19.0 0.79 0.78 −2.95 39,682
(80, 100] −22.0 22.3 0.82 0.92 −14.56 61,450

simple linear
regression
correction

All 0.00 4.5 0.98 1.00 0.00 148,230
[0, 20] 2.6 3.0 0.84 0.99 2.77 1323

(20, 40] 2.2 3.1 0.92 0.99 2.51 16,506
(40, 60] −0.6 3.8 0.79 0.83 7.96 29,269
(60, 80] −1.7 4.9 0.79 1.03 −4.09 39,682
(80, 100] 0.7 4.8 0.82 1.22 −19.5 61,450

PurpleAir
suggested
correction

All −13.4 14.8 0.98 0.75 4.12 148,230
[0, 20] 1.9 2.3 0.84 0.74 6.21 1323

(20, 40] −2.0 3.0 0.92 0.74 6.01 16,506
(40, 60] −9.0 9.6 0.79 0.63 10.10 29,269
(60, 80] −14.6 15.1 0.79 0.78 1.05 39,682
(80, 100] −18.0 18.4 0.82 0.92 −10.56 61,450

The low RH bias in our study is within the bounds of previous investigations (Table 2).
Holder et al. [38] reported a bias of −24.3%, which is substantially lower than our overall
bias of −17.4%. They also found a larger high temperature bias, which is consistent with a
lower RH bias. Our RH bias is lower than the −9.7% bias reported by Malings et al. [15].
However, their temperature bias was slightly higher than ours, which would suggest a
lower bias as found by [38]. Given the differences in data collection location, longevity, and
time of year, however, some inconsistencies should be expected especially considering the
nonlinear relationship between RH and temperature and the importance of local conditions
in determining RH. Interestingly, our RH bias was close to the −15% reported by [41],
which collected temperature and RH measurements indoors.

3.3. Dewpoint Temperature

DP is a derived variable that is calculated from temperature and RH. It is arguably
more relevant to predicting physical discomfort and dangerous heat conditions than the
measurements reported by the PA-II. Because DP is determined from temperature and RH,
it is subject to the same biases found in the previous sections, though it is not immediately
obvious how the high temperature bias and low RH bias will affect bias in DP.

Figure 4 shows the uncorrected DP in blue. Correlation between the PA-II and UNCA
values is strong with an r-value of 0.99. The overall DP bias is −1.6 ◦C and the RMSE is
1.7 ◦C. Differences between the time-paired PA-II and UNCA measurements ranged from
−7.3 ◦C to 7.7 ◦C. Nearly all data points (88.9%) exhibited a low bias. The maximum and
minimum DP were 24.5 ◦C and −23.1 ◦C for UNCA and 22.4 ◦C and −25.1 ◦C for PA-II.

Corrected DP values were calculated by using the corrected temperature and RH
values obtained from the simple linear regression. The left-hand side of Figure 4 shows
that the low bias is largely eliminated. The correction reduces the RMSE to 0.6 ◦C. The
range in differences between the corrected PA-II and UNCA is −6.3 ◦C to 8.7 ◦C. We also
calculated DP using the suggested PurpleAir corrections to temperature and RH, as shown
on the right-hand side of Figure 4. The combination of these suggested corrections leads
to a small high bias in DP. Overall bias is 0.6 ◦C and RMSE is 0.9 ◦C, and the range in
differences when comparing PurpleAir’s suggested correction to the UNCA data set is
−5.1 ◦C to 9.9 ◦C. As with temperature and RH, the suggested PurpleAir corrections reduce
the magnitude of DP bias and RMSE but not to the extent seen by applying the simple
linear regression correction.
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Figure 4. Comparisons of the time-paired 5-min PA-II and UNCA DP values. In both plots, the blue
markers show the uncorrected data. Orange markers in the left-hand plot show the PA-II data after
applying a simple linear regression correction, and the green markers in the right-hand plot show the
PA-II data after applying PurpleAir’s suggested correction. The dotted line drawn across each plot is
the 1:1 line.

We then separated the DP data into bins (using UNCA DP as the reference) that
roughly correspond to physical comfort levels. The results, compiled in Table 4, provide
limited evidence for temperature dependence. As DP rises, the uncorrected bias becomes
more negative with the lowest bias (−2.6 ◦C) observed when the DP is above 24 ◦C. This
occurred rarely (n = 3), so care should be taken when considering this result. Temperature
dependence is also observed with both corrected sets of DP values. However, the signs of
the biases for the two corrected data sets are different. The low bias from the simple linear
regression correction means that the actual DP is greater than would be expected for the
higher DP bins, while the high bias from PurpleAir’s suggested corrections means that the
actual DP is lower than would be expected.

Table 4. Comparison of calculated PA-II and UNCA DP values.

Correction
Type

DP Bin
(◦C)

Mean Bias
(◦C)

RMSE
(◦C) r Slope Intercept n

uncorrected

All −1.6 1.7 0.99 1.00 −1.58 148,236
[−∞, 15] −1.6 1.8 0.99 1.00 −1.59 113,091
(15, 20] −1.5 1.6 0.94 1.01 −1.73 29,944
(20, 22] −1.6 1.7 0.67 0.91 0.33 4813
(22, 24] −1.9 2.0 0.43 0.68 5.26 385
(24, ∞] −2.6 2.6 0.67 1.59 −17.00 3

simple linear
regression
correction

All 0.1 0.6 0.99 0.98 0.27 148,236
[−∞, 15] 0.2 0.7 0.99 0.97 0.27 113,091
(15, 20] −0.1 0.6 0.93 0.98 0.23 29,944
(20, 22] −0.3 0.7 0.60 0.83 3.16 4813
(22, 24] −0.7 1.0 0.40 0.65 7.06 385
(24, ∞] −1.5 1.6 0.73 1.48 −13.22 3

PurpleAir
suggested
correction

All 0.6 0.9 0.99 1.00 0.64 148,236
[−∞, 15] 0.6 1.0 0.99 1.00 0.63 113,091
(15, 20] 0.7 0.8 0.94 1.01 0.49 29,944
(20, 22] 0.6 0.8 0.67 0.91 2.55 4813
(22, 24] 0.3 0.7 0.43 0.68 7.49 385
(24, ∞] −0.4 0.5 0.67 1.59 −14.78 3
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4. Conclusions

While the qualitative results of our research were known previously (high temperature
bias and low RH bias), this is the first systematic investigation of the sensor’s bias in the
scientific literature. Our study adds a missing piece to the literature in several ways.
First, we conducted a long-term systematic investigation of the PurpleAir PA-II sensor’s
meteorological measurements spanning over 550 days across a variety of environmental
conditions. Our results show that the PurpleAir PA-II has a persistent high temperature
bias and low RH bias when compared to research-grade meteorological instrumentation.
We quantified the correlation, bias, and RMSE between the low-cost sensor and reference
measurements for several temperature and RH ranges and found that the biases persist
across a wide range of values.

We used a simple linear regression model to calculate correction factors for temperature
and RH and compared these to the corrections suggested by PurpleAir. Importantly,
we found that PurpleAir’s suggested corrections perform substantially worse than our
corrections. Their suggested −4.4 ◦C adjustment over corrects temperature readings and
introduces a low bias. Meanwhile, their suggested +4% adjustment to RH is not nearly
enough to correct the negative bias. For all variables, we find that our linear regression
corrections reduce error compared to the suggested PurpleAir corrections.

Finally, we extended our analysis to dew point calculations. Including corrections for
this parameter enhances the usefulness of the PurpleAir PA-II sensor. Reliable correction
factors for the sensor’s meteorological measurements, provided here for the first time, cou-
pled with reliable correction factors for the sensor’s fine particulate matter measurements
(provided elsewhere in literature) will allow researchers to investigate the synergistic health
effects of exposure to extreme heat and particulate matter.

Other long-term studies of the meteorological capabilities of the PA-II in different
climates will strengthen the scientific community’s understanding of the sensor’s bias
and provide more confidence in its measurements. Future studies should also attempt to
evaluate multiple PA-II sensors to validate our results. The PA-II sensor’s well-documented
ability to provide reliable PM2.5 data has made it popular among the research, citizen-
science, and emergency planning communities. As these sensors become more common
for routine air quality monitoring applications, the temperature and RH measurements can
also provide valuable information to an increasingly warming and urbanized world.
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