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Abstract: Tropical cyclone rapid intensification (RI) prediction still remains a big international
challenge in numerical weather prediction. Hurricane Matthew (2016) underwent extreme and
non-classic RI, intensifying from a Category 1 storm to a Category 5 hurricane within 24 h under
a strong vertical shear environment. However, most models failed to capture this RI, and limited
or no inner core, and outflow observations were assimilated in the NWS operational HWRF Model
before the onset of RI for Matthew (2016). The goals of the study are to (1) explore the best way to
assimilate the High-Density Observations (HDOB, including FL and SFMR) and AMV data; (2) study
the impact of assimilating these observations on the analysis of both the inner-core and outflow
structures; and (3) examine the impact of assimilating these data on the prediction of RI for Matthew.
The main results are as follows: (1) With proper pre-processing of the HDOB observations and by
using a 4DEnVar method, the inner-core structure analysis was improved. And the RI prediction is
more consistent with the best track without spin-down for the first 24 h. Assimilating CIMMS AMV
observations on top of the HDOB observations further improves both the track and intensity forecasts.
Specifically, both the magnitude and timing of the peak intensity are further improved. (2) Diagnostics
are conducted to understand how the assimilation of these different types of observations impacts
RI prediction. Without assimilating HODB and AMV data, baseline experimentover-predict the
intensification rate during the first 18 h, but under-predict RI after 18 h. However, the assimilation
of FL and SFMR and CIMMS AMV correctly weakens the upper-level outflow and improves the
shear-relative structure of the inner-core vortex, such as reducing the low-level moisture in the
downshear left quadrant. The deep convection on the downshear side is weaker than baseline for
the first 18 h but keeps enhancing, later moving cyclonically to the USL quadrant, and then causes
more subsidence warming, maximizing in the USL quadrant and the maximum wind increases
faster. Moreover, the rapid intensification rate is much more consistent with the best track and the
forecast skill of RI is improved. Therefore, 4DEnVar assimilation with proper pre-processing of the
high-density observations can indeed correct the shear-relative moisture and structural distributions
of both the inner core and environment for TCs imbedded in the stronger shear, which is important
for shear-TC RI prediction.

Keywords: assimilation; tropical cyclone; hurricane; strong vertical shear; rapid intensification

1. Introduction

Numerical weather prediction models have been constantly improving in terms of
tropical cyclone (TC) track predictions over the last decades. However, the progress
of TC intensity prediction cannot keep pace with track prediction. Especially TC rapid
intensification (RI), typically defined as a maximum wind increase of 30 kt over 24 h [1],
still remains a big challenge in numerical weather prediction models [2,3], and large TC
intensity forecast errors usually occur during episodes of RI [4]. NHC (National Hurricane
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Center) takes improving of the RI prediction as one of its top priorities for the tropical
meteorology research community [5]. In particular, the annual number of RI events in
global offshore areas has experienced a significant increase from 1980 to 2020 [6]. The RI
perdition skill however is still limited for models.

The environmental vertical wind shear (VWS) is one of the most critical factors af-
fecting tropical cyclone intensification and it is widely accepted that strong VWS usually
inhibits TC intensification [7–11]. The “ventilation effect” is one of the direct reasons that
VWS limits TC intensification by breaking the warm core or venting moisture and energy
out of the TC core and transporting low-entropy air into the TC core [12–16]. However,
there is still a large number of TCs that intensify rapidly under moderate or strong vertical
wind shear [17–20]. VWS can also influence TC intensity predictability [21,22]. The uncer-
tainty of TC intensity forecast arises with an increase of vertical wind shear [22,23], and the
intensity forecast error of TCs under moderate vertical wind shear is usually significant [24].
In another word, the prediction of RI under moderate or strong shear is much more difficult.

The shear-relative quadrant distributions of the impacting factors (e.g., inflow, mois-
ture) are crucial for TC intensity changes under stronger or moderate shear. Gu et al.
studied the evolution of the low-level tangential wind near the eyewall of an idealized
simulated mature TC in a unidirectional shear flow, and showed that the boundary layer
inflow on downshear side is crucial for the evolution of the left-of-shear tangential wind
and TC intensity. A TC still intensifies under stronger VWS as long as the boundary inflow
on the downshear side (especially in the DSL quadrant) is stronger [25,26]. Hazelton et al.
studied the early intensification of Hurricane Dorian using the high-resolution ensemble of
the hurricane analysis and forecast system (HAFS) and demonstrated that the low-level
moisture and upper-level divergence are much higher in the northeastern part of the TC
for intensification members [27]. Zawislak et al. and Leighton et al. (2018) showed that
the increase of moisture on the downshear side in the lower troposphere was favorable for
the rapid intensification of hurricane Edourd (2014) [28,29]. Satellite-based observations
showed that the shear-relative distribution of moisture determines its impact on TC inten-
sity change [30–32]. Rios-Berrios et al. investigated the intensification of hurricanes Katia
(2011) and Ophelia (2011) under moderate VWS using the ensemble approach and found
that the shear-relative distribution of moisture in the lower and mid-troposphere can have a
significant impact on hurricane intensification. They suggested that moisture observations
may help reduce the uncertainty in the forecast of weak and sheared TCs [18,19]. Addition-
ally, some studies further show that asymmetric convection burst (CB) can trigger RI of a
TC in moderate VWS, especially under a favorable shear-relative distribution of impacting
factors. The CB on the downshear side is favorable for RI of TCs embedded in moderate
VWS, especially CB in the DSL quadrant [33,34]. Observational studies’ results showed
that 92% of downshear inner-core lightning bursts occurred in TCs that remained steady or
intensified under a moderate shear environment [35]. Molinari and Vollaro showed that a
convective cell enhanced in the DSL quadrant and moved cyclonically and inward to the
RMW during the period of rapid intensification of Gabrielle (2011) under stronger VWS
(12–13 m/s) [36]. But some studies find that the CB on left side can trigger RI much easier
than on right side [18,37]. Wadler et al. further found significant differences in convection
on the upshear side between intensification and steady TCs under a moderate shear by
using NOAA P-3 tail Doppler radar, especially the convection in the USL quadrant is much
stronger in intensified cases than steady cases [38]. Chen and Gopalakerishnan show that
subsidence warming is maximum on the upshear side when CBs are concentrated in the
DSL and USL quadrants and then is advected toward the low-level TC center, leading to
RI [17]. Zhang and Tao showed that the vortex tilt is determined by the location of deep
convection, and the vortex tilt begins to reduce and TC intensification occurs after the tilt
angle reaches 90◦ to the left of the environmental shear [22]. Fischer et al. showed that
anomalously cold infrared and 85 GHz brightness temperatures in the upshear quadrants
of the TC are associated with increased rates of TC intensification [39]. Leighton et al.
showed that the shear-relative distribution of the upper-level flow and low-level moisture
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is important for the distribution of a TC’s deep convection, and vortex tilt and asymmetry
reduce rapidly as the deep convection wraps around from the downshear side to the USL
quadrant, and that under these conditions hurricane Edouard (2014) began RI [28]. Chen
et al. explored the simultaneous effect of vertical wind shear (VWS) and low-level mean
flow (LMF) on tropical cyclone (TC) structure evolution and showed that a LMF directed to-
ward the left-of-shear orientation favors TC intensification by promoting convection in the
upshear inner core. Then enhancement of the symmetric inner-core convection favors TC
intensification [37,40]. Although the above results are somehow different, the shear-relative
distributions of impact factors (the moisture and inflow) are very important for the convec-
tion burst (CB) that triggers TC intensification. In order to better understand the impact of
the shear-relative distribution on tropical cyclone intensity change, this study will further
discuss how the differences in shear-relative quadrant distributions between assimilation
and baseline experiments impact inner-core convection and subsequent intensity change.

High-density airborne observations (HDOB), including Stepped Frequency Microwave
Radiometer (SFMR) and flight-level (FL) observations are collected through the NOAA WP-
3D aircraft [41]. The SFMR observations are sampled at the surface, and the FL observations
are usually centered between 2000 km and 3000 km in altitude (700–800 hPa). The SFMR
wind observations are widely used to validate or estimate the maximum surface wind
speed for hurricanes [39,42]. Assimilating SFMR observations improves both the surface
inner-core TC structures (including the radial wind pattern in the mid- to low levels) and
the intensity forecast [43–45]. FL observations have been used in TC center estimation and
TC inner-core structure assimilation and validation [46–48]. Assimilating FL observations
can produce corrections to the wind field (including radial inflow and outflow of TC) and
also provide more realistic low-level inner-core TC structures, which can help improve
intensity predictability [45].

The Atmospheric Motion Vector (AMV) observations are wind observations derived
by tracking clouds or areas of water vapor in consecutive geostationary satellite images
(mainly from the VIS, IR window, and WV absorption band). In recent years, as the
algorithms of AMV and satellite observation have been much improved, higher quality
and higher resolution (spatially and temporally) AMV data can be provided. Especially the
“enhanced” AMV observations used in this study have been produced by the Cooperative
Institute for Meteorological Satellite Studies (CIMSS) [31,32,49]. The CIMSS AMVs are
designed to have higher density, larger coverage, and better quality as compared to the
operationally produced AMVs provided by the National Environmental Satellite, Data, and
Information Service (NESDIS) [49]. AMVs are widely used to analyze the mid–upper level
environment of TCs [50,51], especially the outflow structure and strength. Early studies
found that assimilating the CIMSS AMVs can have positive impacts on the TC track and
intensity predictions [31,32,52], by improving the analysis of the upper-level environment
(including the outflow structure of TC) [53,54], and providing some information about
the near inner-core environment [45,49]. Therefore, assimilating HDOB and AMVs may
correct the shear-relative distributions of the impact factors (e.g., low-level inflow of the
upper-level outflow structures) and further improve RI prediction under strong shear.

Although both HDOB and AMV observations have high-density and can provide
useful information for hurricane intensity forecasting, the optimal way to assimilate these
data is not clear. The first goal of the study is to explore the three-dimensional ensemble-
variational data assimilation method (3DEnVar) [55–58] and four-dimensional ensemble-
variational data assimilation method (4DEnVar,) [59,60] for the assimilation of the high
density airborne and AMV observations. Earlier studies demonstrate that 4DEnVar gen-
erally has better performance than 3DEnVar due to the ability of 4DEnVar to estimate
flow-dependent background error covariances [61,62]. The high data density may violate
the assumption of independent measurement errors. The work of Liu and Rabier showed
that the analysis quality decreases if the density of the observational data set is too large
and spatial error correlations are neglected [58]. Therefore, pre-processing is performed
for the high-density observations, which can reduce computational costs and also improve
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assimilation performance. Data thinning and superobbing are two pre-processing methods
usually used for high-density observation. Data thinning can reduce the spatial or spectral
resolution by selecting a reduced set of locations or channels, while data superobbing
reduces the spatial or spectral resolution by combining or averaging over locations or
channels. The second goal of the study therefore is to explore the optimal pre-processing
method for high-density HDOB and AMV. The third goal of the study is to examine the
hypothesis that the limited skill of numerical prediction of RI is partly because the anal-
ysis cannot describe the asymmetric distribution of the aforementioned impact factors.
Hurricane Matthew (2016) is a typical case that intensified extremely rapidly under a
moderate shear. Given the observations of the HDOB and AMV are available during the
onset period of RI, and they directly or indirectly sample the shear-relative environmental
factors (inflow, moisture, outflow) near the inner core, this study will focus on addressing
the aforementioned hypothesis through examining the impacts of assimilating the HDOB
(near the TC core in low-level) and AMV (mainly outside of the TC in upper-level) data on
Hurricane Matthew’s RI prediction.

2. Overview of Hurricane Matthew

Hurricane Matthew was the strongest storm of the 2016 Atlantic Hurricane Season.
Matthew became a tropical storm at 1200 UTC 28 September over the sea on the west–
northwest side of Barbados. It gradually strengthened within an environment of west–
southwesterly 850−200 mb vertical wind shear of about 20 kt while moving westward
and attained a hurricane status by 1800 UTC 29 September (Figure 1a). For the next 24 h,
Matthew rapidly intensified from a Category 1 to a Category 5 hurricane within 24 h under
a moderate vertical wind shear of about 20 kt (Figure 1b), which is usually believed to be
unfavorable for intensification. It reached its peak intensity of 145 kt (1 kt ≈ 0.5144 m s−1

at 0000 UTC on 1 October. Its intensity increased by 75 kt over 24 h. Therefore, Matthew
underwent an unexpected 24 h period of extreme rapid intensification (RI: an increase
of maximum sustained surface winds at least 30 kt (about 15 m s−1; in a 24 h period),
Kaplan et al., 2010) under moderate vertical wind shear with little change in direction
between 0000 UTC on 30 September and 0000 UTC on 1 October. Matthew became the
southernmost Category 5 hurricane in the Atlantic basin. After rapid intensification,
Matthew began to weaken slowly, but it still maintained Category 5 status for a long
time (4 days). However, most operational models failed to capture this RI, including both
the consensus model and the individual members. No model could predict Matthew’s
RI period either before or during the episode [63], and NHC official intensity forecasts
had errors much greater than the mean official errors for the previous 5-year period at
all forecast times and contained a pronounced low bias. Therefore, more work should be
performed to improve the RI predictability under a moderate vertical wind shear.
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Figure 1. (a) The best track maximum sustained surface wind (blue, unit: m/s) and minimum central
pressure curve (red, unit: hPa) for Hurricane Matthew; (b) the magnitude (blue line) and direction
(red line) of the environmental vertical wind shear between 200 and 850 mb (the data are from SHIPs).
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3. Model, Observational Data, and Experimental Design
3.1. HWRF Model Configurations and the Assimilation System

The HWRF Model was developed by the Environmental Modeling Center (EMC)
in collaboration with the Geophysical Fluid Dynamics Laboratory (GFDL) and the Uni-
versity of Rhode Island (URI) based on the Weather Research and Forecasting (WRF)
Model infrastructure and the NonHydrostatic Mesoscale Model (NMM) dynamic core.
A horizontal grid spacing of 0.135◦/0.045◦/0.015◦ (approximately 18/6/2 km) for the
outermost/intermediate/innermost domains is used for the well-developed hybrid DA
system in this study, which is similar to that used in the operational HWRF. The outer-
most, intermediate, and innermost domains are configured with 288 × 576, 304 × 604, and
265 × 472 horizontal grid points, respectively. There are 61 vertical levels, and the model
top is at 2 hPa following the operational HWRF. The physics parameterization schemes
used in this study follow those used in the 2016 operational HWRF (details can be found in
Table 1 of Lu’s study [43].

Table 1. Experimental design for Hurricane Matthew (2016).

Exp. Name General Information DA Method Pre-Pro
Additional

Obs
Assimilated

Baseline Background:
6-h control forecast initialized

from the GSI-based, continuously
cycled, dual-resolution hybrid

ensemble-variational (EnVar) DA
system for HWRF valid at 1800

UTC 29 September 2016.
Physics:

H216 Physics + Modified
turbulent mixing parameterization

Observations:
Operational HWRF observations

(conventional obs., satellite
radiances, et al.)

4DEnVar No No

3DEV 3DEnVar No

FL and SFMR
CIMSS AMV

4DEV 4DEnVar No

4DEV-thin 4DEnVar Thinning

4DEV-sob 4DEnVar Sob

The GSI-based, continuously cycled, dual-resolution hybrid ensemble–variational
(EnVar) DA system for HWRF, developed by Lu et al. [44], is used in this study. At the
initial cycle of a tropical storm, a 40-member 18/6 km doubly nested HWRF ensemble
and a single deterministic 18/6/2 km triply nested HWRF control are initialized from the
Global Forecast System (GFS) ensemble and control analyses, respectively. All analyses are
from the National Centers for Environmental Prediction (NCEP) operational GFS hybrid
DA system [58,59]. Then, vortex relocation is performed on both the ensemble and control
forecasts, and vortex modification is only performed on the control forecast when inner-core
observations are unavailable. More details about the DA system can be found in section 2
of Lu et al. [43].

3.2. The Observational Data

Limited or no inner-core and outflow observations were assimilated in the NWS
operational HWRF Model before the onset of RI for Matthew (2016). Only the inner-core
and near inner-core HDOB (Figure 2a), together with the enhanced CIMSS AMVs, were
available before the onset of RI for Matthew (2016), aside from satellite radiance. These
observations are assimilated to provide a realistic three-dimensional analysis of the storm
and its environment.

Figure 2b shows the vertical distributions of the HDOB (including FL and SFMR)
and AMV observations collected during this mission of Matthew. The greatest number of
AMV observations generally concentrates in the upper-level between 400 and 150 hPa. The
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greatest number of FL observations is mainly around 850 hPa, and some are at higher levels
(around 700 hPa) within the inner core. Therefore, HDOB and CIMSS AMV together can
provide three-dimensional sampling of the TCs, including the surface, inner cores, outflow
layer, and environment.
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similated, valid at 1800 UTC 29 Sep 2016 during Hurricane Matthew. (a) Horizontal distribution;
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3.3. Experimental Design

Experiments are initialized six hours before the onset of RI for Hurricane Matthew,
valid at 18 UTC on 29 September 2016. The background is from our 2016 near real-time
experiment with the advanced hybrid EnVar DA system (Lu et al., 2017a, b). The basic
model physics and dynamic configurations follow the 2016 operational HWRF with ocean
coupling turned on, except for a modified turbulent mixing parameterization scheme
developed by Ping Zhu et al. (2016). As shown in the paper by Lu et al. (2019), this
parameterization scheme is found to help build up the secondary circulation faster and can
significantly improve the TC intensity forecast by eliminating the unrealistic discontinuity
in the vertical diffusion profile.

To investigate the optimal pre-processing and DA method of HDOB (FL and SFMR)
and AMV observations, as discussed earlier, five experiments are conducted in this report-
ing period (Table 1). Details for each experiment are described below. (1) The experiment
Baseline does not assimilate HDOB and AMV whereas other experiments do. (2) Exper-
iment 3DEV is the experiment that assimilates FL, SFMR, AMV, and other observations
using 3DEnVar. (3) Experiment 4DEV is the same as 3DEV except that 4DEnVar DA is used
instead of 3DEnVar. Together with 3DEV, this experiment 4DEV is designed to find the
optimal DA method for the HDOB and AMV observation assimilation. (4) Experiments
4DEV-thin and (5) 4DEV-sob are the same as 4DEV experiments except that the obser-
vations are pre-processed through thinning (picking the center value of a certain prism)
and superobbing (averaging over a certain prism), respectively. These experiments are
conducted to investigate the optimal pre-processing methods for HDOB and AMV data.

4. Results of Experiments
4.1. Impact of DA Methods (3DEnVar vs. 4DEnVar)

Figure 3 depicts the evolution of the maximum wind speeds for the 3DEV and 4DEV
experiments, as outlined in Table 1. Initially, the TC intensity is much stronger than the ob-
servations, and a spin-down issue occurs when both HDOB and AMV are assimilated using
3DEnVar. Further investigations reveal that this spin-down issue occurs specifically when
HDOB (both FL and SFMR) data are assimilated. Additionally, the 3DEV analysis reveals a
spurious secondary eyewall (Figure 4a), along with a spurious eyewall replacement pro-
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cess occurring (Figure 4c). Eyewall replacement processes typically entail rapid structural
changes in a tropical cyclone, often resulting in a decay. However, observations during
this period do not support the occurrence of a real eyewall replacement (Stewart, 2017).
Therefore, this short-term spin-down in 3DEV is attributed to a spurious secondary eyewall
created during HDOB assimilation. Furthermore, the intensity has increased to 42 h forecast
period; the intensifying time is longer that the observations.
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However, in comparison to the results of 3DEV, the spuriously strong initial intensity
is mitigated, and spin-down is alleviated by the flow-dependent 4DEnVar (Figure 3);
4DEnVar can create a more realistic analysis of the inner-core structure (Figure 4b), with
the spurious secondary eyewall nearly disappearing. Consequently, the 4DEnVar DA
method can alleviate the spin-down (Figure 4b,d), resulting in TC intensity forecasts that
are more consistent with observations. This improvement in 4DEnVar over 3DEnVar for
the temporally unevenly distributed observational DA is consistent with the findings of Lu
et al. (2017a). However, the initial intensity remains slightly stronger than observed, and
the spin-down still exists even with 4DEnVar. And the time of the peak intensity is later
and the intensification time exceeds that of the observations.
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4.2. Impacts of Pre-Processing (Thinning vs. Superobbing)

As mentioned in the previous section, the initial intensity remains slightly stronger
than observed and a spin-down issue still exists in experiment 4DEV. Additionally, con-
sidering the high spatial (3 km) and temporal density (30 s interval) and uneven spatial
distribution of HDOB observations used in this particular case (Figure 2), we hypothesize
that a better pre-processing method, such as thinning or superobbing, may be helpful in
improving the analysis structure and alleviating the forecast spin-down issue. Two of the
experiments (4DEV-thin and 4DEV-sob) are conducted to verify our hypothesis (Figure 5).
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Further experiments based on the 4DEnVar DA show that both superobbing and
thinning can help further reduce the spuriously strong initial Vmax analysis and produce
a more realistic inner-core structure analysis without the appearance of a spurious sec-
ondary eyewall (Figure 6), thus alleviating the spin-down issue. These results suggest
that proper pre-processing is necessary for the high-density HDOB observations. More-
over, the sensitivity experiments indicate that the initial TC intensity closely aligns with
observation, and RI predictions are more consistent with observations for the first 24 h in
experiment 4DEV-sob. However, while the initial TC intensity remains slightly stronger in
4DEV-thin, the peak intensity is more significantly under-predicted compared to observa-
tions than 4DEV-sob. Therefore, the superobbing outperforms thinning (both within over
12 km × 12 km × 20 hPa prisms). Overall, by using proper pre-processing, such as super-
obbing, of the HDOB observations with a 4DEnVar DA method, the inner-core structure
analysis can be improved, the spurious secondary eyewall can be eliminated, and RI pre-
diction can be made more consistent with the best track for the first 24 h, resulting in more
accurate RI predictions, including both the magnitude and timing of the peak intensity.
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5. Impact of Assimilating HDOB and AMV on RI Prediction
5.1. The Impact of Assimilating HDOB and AMV on Inner-Core and Outflow Structures in
Analysis Fields (Shear-Relative Distribution)

In this section, based on the comparisons between experiments Baseline and 4DEV-sob
(detail sees Table 1), the impact of assimilating HDOB and AMV on the inner-core and
outflow structures in the analysis fields is discussed.

Overall, assimilating HDOB and AMV weakens the upper-level outflow (Figure 7a)
and low-level moisture inflow (Figure 7b) in the analysis fields. Moreover, further analysis
reveals that the major differences in the analysis fields are in the USL and DSL quadrants
(the region near the hurricane center is divided into four quadrants relative to the deep-layer
shear (between 200 hPa and 850 hPa): DSL is the downshear left; DSR is the downshear
right; USR is the upshear right; USL is the upshear left). Therefore, the following analysis
will mainly focus on the data’s impact on the USL and DSL quadrants.
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Figure 7. The comparison between Baseline (blue line) and 4DEV-sob (red line): (a) the strength
of upper-level outflow (unit: 10−5/s) (averaged over 500 km radius); (b) the strength of low-level
moisture inflow (unit: 10−4 g/kg.s, averaged over 500 km radius); (c) the number of CBs (w > 3 m/s,
in 200 km × 200 km × 14 km within 100 km radius). The blue line presents the experiment Baseline
and the red presents the experiment 4DEV-sob.

Assimilating HDOB and AMV correctly weakens the upper-level outflow, both for
low-level and mid-level inflow and moisture in the USL quadrant in the analysis field
(Figures 8a, 9a and 10a). Especially, the outflow is much weaker near the hurricane center
than in the Baseline (Figure 9b). Additionally, less water vapor in the USL quadrant is
transported into the inner core in the mid-level in experiment 4DEV-sob. However, moisture
increases in the inner core above 850 hPa in the USL quadrant. Similarly, assimilating HDOB
and AMV also weakens the upper-level outflow and low-level moisture in the DSL analysis
(Figures 8b, 9b and 10b). In addition, the temperature of the inner core reduces, resulting
in a weaker warm core after assimilation than in the Baseline. Therefore, assimilating
HDOB and AMV can improve both the inner-core vortex (such as reducing the low-level
moisture and inflow) and the environmental conditions (such as upper-level outflow),
especially in the USL and DSL quadrants, providing more realistic low-level inner-core and
environmental TC structures.
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5.2. The Impact of Assimilating HDOB and AMV on the RI forecast

In this section, the impact of assimilating HDOB and AMV observations on the RI
prediction is discussed by analyzing the improvement of the shear-relative distribution of
environmental conditions and its impact on physical processes of intensification. The RI
prediction of 4DEV-sob is close to the observation (Figure 11a), but the intensification rate
of Baseline is much higher than both the observation and 4DEV-sob in the first 12 h (over-
prediction) (Figure 11). However, the intensification rate of Baseline is lower than both the
observation and 4DEV-sob after 12 h (under-prediction). Moreover, the intensification rate
of 4DEV-sob is consistent with the observation in the first 24 h (Figure 11b) and the time of
peak intensity occurs at the same time as the observation.
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From the above discussion, the assimilation of FL and SFMR changes the shear-relative
structure of the inner-core vortex and the environment, especially correctly reducing the
low-level moisture and weakening the upper-level outflow in the USL and DSL quadrants
in the analysis fields for 4DEV-sob. Additionally, the low-level moisture is greater, and
upper-level outflow is stronger in Baseline than in 4DEV-sob, causing stronger convergence
at the low level and divergence at the upper level in the Baseline than in 4DEV-sob in the
first 18 h. Moreover, deep convection in both the DSL and USL quadrants is stronger and
the total number of CBs is higher for the Baseline (Figures 7c, Figures 12–14, especially the
USL is much stronger than in 4DEV-sob for the first 18 h (Figures 14 and 15).

Further diagnostics show that CBs are stronger in the DSL and USL quadrants in the
Baseline than in 4DEV-sob, causing subsidence warming to occur faster before the first
18 h, especially on the left side (including the DSL and USL quadrants) and maximized in
the upshear left (Figure 16). Additionally, the positive temperature anomaly in the USL
quadrant is higher than in the other three quadrants, subsequently resulting in a larger
pressure gradient than in the other three quadrants. Furthermore, the wind distribution
of Hurricane Matthew also shows a significant asymmetric structure, with the wind on
the left-shear side being much stronger than on the right-shear side (Figure 15). And
the location of Vmax moves from the DSL to USL, and the wind in the USL quadrant
increases faster than other quadrants for the Baseline, representing the intensity of the
hurricane. However, the Vmax in the Baseline is bigger than the best track, causing an
over-prediction during the first 18 h. This is consistent with the earlier results of Chen
and Gopalakrishnant. Compared with 18 h earlier, the deep convection on the downshear
side strengthens and is stronger in the Baseline than in 4DEV-sob after 18 h, expanding
cyclonically to the USL quadrant, and then most of the deep convection mainly concentrates
on the dowshear side and left-shear side. The asymmetry of the deep convection results in
different subsidence warming in the four quadrants. The subsidence warming accelerates
in 4DEV-sob, especially on the left-shear side, while it is cut off for a short time, causing
under-forecasting in the Baseline. The warm anomaly region on the left side, especially in
the USL quadrant, becomes much more significant. Subsequently, the Vmax increases more
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rapidly on the left side than in the Baseline and extreme RI occurs. Particularly, the Vmax
increases faster in USL quadrant and then it is almost the same or even stronger in the USL
than DSL; the intensification rate of 4DEV-sob is more consistent with the best track.
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Figure 13. The vertical wind of USL (shaded), the first row is Baseline (a–d), the second row is.
4DEV-sob (e–h).
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Figure 14. The distribution of average vertical wind (averaged over 100 km radius) in the shear-
relative quadrants of experiment Baseline (a) and 4DEV-sob (b). 

 

  
Figure 15. Potential temperature (unit: K, averaged over 40 km radius) in the shear-relative quad-
rants of experiment Baseline (black line) and 4DEV-sob (blue line). (a) DSL quadrant, (b) DSR quad-
rant, (c) USL quadrant, (d) USR quadrant. 

(a) (b)

(c) (d)

Figure 14. The distribution of average vertical wind (averaged over 100 km radius) in the shear-
relative quadrants of experiment Baseline (a) and 4DEV-sob (b).
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Figure 15. Potential temperature (unit: K, averaged over 40 km radius) in the shear-relative quadrants
of experiment Baseline (black line) and 4DEV-sob (blue line). (a) DSL quadrant, (b) DSR quadrant,
(c) USL quadrant, (d) USR quadrant.
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(blue line) and 4DEV-sob (red line). (a) DSL quadrant, (b) DSR quadrant, (c) USL quadrant, (d) USR
quadrant.

In summary, the Baseline experiment over-predicts the RI without assimilating the
HDOB and AMV data, while under-forecasting occurs after 18 h. But the assimilation
of HDOB and CIMMS AMV correctly weakens the upper-level outflow and changes
the structure of the inner-core vortex, such as reducing the low-level moisture and then
weakening deep convection, especially in the DSL and USL quadrants. This leads to the
intensification rate being consistent with the best track and improves the forecast skill
of RI. Therefore, shear-TC intensification is sensitive to the shear-relative distribution of
inner and environmental conditions and assimilation can provide a realistic shear-relative
inner core or environment and help improve the prediction of RI. Moreover, these results
further show that deep convection is highly asymmetric in the process of shear-TC rapid
intensification, and the cyclonic movement of that convection from downshear to upshear,
especially CBs in the USL quadrant, is key for RI occurrence, and this feature is consistent
with early studies [29,38].

6. Conclusions and Discussion

Hurricane rapid intensification prediction remains a big challenge in numerical
weather prediction. Hurricane Matthew (2016) underwent extreme rapid intensification,
intensifying from a Category 1 storm to a Category 5 hurricane within 24 h, despite in a
strong shear environmental condition. Most models failed to accurately predict this rapid
intensification event. This study aims to investigate the optimal methods for pre-processing
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and assimilating HDOB (including FL and SFMR) and CIMMS AMV observations using an
advanced cycling hybrid EnVar DA system, and diagnose the impact of assimilating these
observations on the prediction of Matthew’s RI.

4DEnVar outperforms 3DEnVar without producing a spurious secondary eyewall in
the intensity forecast. Additionally, utilizing proper pre-processing techniques (both of
thinning and superobbing) for HDOB observations with a 4DEnVar DA method further
improves both the analysis and intensity forecast. Notably, the superobbing outperforms
thinning, resulting in a RI prediction that is more consistent with the best track without spin-
down for the first 24 h, and enhances both the magnitude and timing of the peak intensity.
Therefore, with proper pre-processing (thinning or superobbing) of the HDOB observations,
the 4DEnVar method enhances the inner-core structure analysis while mitigating the
occurrence of the spurious secondary eyewall and spin-down issues.

During the first 18 h, the assimilation of FL and SFMR, along with CIMMS AMV,
correctly weakens the upper-level outflow, particularly in the USL quadrant, and changes
the shear-relative structure of the inner-core vortex by reducing the low-level moisture
and inflow, particularly in the DSL quadrant. Consequently, convection, especially in
the DSL and USL quadrants, is weaker compared to the Baseline. However, the stronger
convection in these quadrants leads to over-prediction in the Baseline. After 18 h, the
deep convection strengthens on the downshear side with assimilation of observations,
moving cyclonically to upshear in the left quadrant. This movement results in an increase,
maximized in the USL quadrant, and accelerates the maximum wind speed compared
to Baseline. Consequently, the intensification rate becomes more consistent with the best
track. However, without assimilation, the enhancement of deep convection diminishes,
especially in the USL quadrant, leading to under-forecasting in the Baseline. Therefore,
while the Baseline experiment without assimilating the HDOB and AMV data over-predicts
the RI during the first 18 h, under-forecasting occurs after 18 h. With assimilation, the RI
prediction improves and becomes more consistent with the best track.

Hurricane RI prediction remains a significant challenge in numerical weather pre-
diction, particularly in cases of unexpected RI in moderate or strong shear environments,
which adds to the difficulty and increases uncertainty. The results of this study suggest that
shear-TC intensification is sensitive to the shear-relative distribution of both the inner core
and environmental conditions. Proper assimilation can provide a realistic shear-relative
inner core or environment, further enhancing the RI forecast skill of the numerical mod-
els. Overall, the observations are necessary for improving the prediction of unexpected
shear-TC RI. Moreover, these findings further highlight the highly asymmetric nature of
deep convection during shear-TC intensification, with deepest convection concentrated
on the dowshear and left-shear sides. The cyclonic movement of deep convection from
downshear to upshear, especially in the USL quadrant, plays a crucial role in RI occurrence.
However, these conclusions are based solely on one storm and one cycle, and more runs
and statistics are needed to come up with robust conclusions.
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