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Abstract: Emerging research indicates that ground-level ozone (O3) has become a leading contributor
to air quality concerns in many Chinese cities, with the Yangtze River Delta (YRD) region facing
particular challenges. This study investigated the characterization of air pollutants in Wujiang, which
is located within the YRD demonstration zone, during the warm season (April–September) of 2022.
The contributions of emission and meteorology to O3 were identified, the O3-NOX-VOC sensitivities
were discussed, and the VOC sources and their contributions to O3 formation were analyzed. A
random forest model revealed that the high O3 concentration was mainly caused by a combination
of increased emission intensity due to the resumption of work and production after the COVID-19
pandemic, along with adverse meteorological conditions. The results revealed more than 92% of the
pollution days were related to O3 during the warm season, and the impact of O3 precursor emissions
was slightly greater than that of the meteorological conditions. O3 formation was in the VOC-limited
regime, and emission reduction strategies targeting VOCs, particularly aromatics such as toluene and
xylene, have been identified as the most effective approach for mitigating O3 pollution. Changes in
O3-NOX-VOC sensitivity were also observed from the VOC-limited regime to the transitional regime,
which was primarily driven by variations in the NOX concentrations. The VOC source analysis
results showed that the contributions of gasoline vehicle exhaust and diesel engine exhaust (mobile
source emissions) were significantly greater than those of the other sources, accounting for 20.8% and
16.5% of the total VOC emissions, respectively. This study highlights the crucial role of mobile source
emission control in mitigating O3 pollution. Furthermore, prioritizing the control of VOC emission
sources with minimal NOX contributions is highly recommended within the VOC-limited regime.

Keywords: ozone; random forest; O3-NOX-VOC sensitivity; source apportionment; observation-
based model (OBM); demonstration area; Yangtze River Delta (YRD)

1. Introduction

As a key product of atmospheric photochemical reactions, ozone (O3) is one of the
oxidizing trace gases that exist naturally in the atmosphere [1]. However, elevated ground-
level O3 concentrations pose significant threats to human health, agricultural productivity, and
the ecological environment [2–4]. Moreover, O3 ranks as the third most influential greenhouse
gas, contributing to global warming [5]. Due to its crucial role in atmospheric chemistry,
ecological impacts, and climate change, O3 has garnered substantial scientific attention.

Starting in 2013, China’s central government launched a series of initiatives aimed at
improving air quality [6,7]. A series of stricter emission standards and pollution control
measures have been enacted [8–11], leading to significant improvements in China’s ambient
air quality. Notably, fine particulate matter (PM2.5) concentrations have substantially
decreased, along with a significant reduction in the number of days with polluted air.
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However, a critical challenge persists in the form of regional photochemical pollution,
evidenced by the stagnating O3 concentrations and the growing extent of the polluted
area [12–15]. The concentration of ground-level O3 is rapidly increasing, which is a critical
air quality concern in China, necessitating a shift in focus to future pollution control
strategies under the context of declining PM2.5 concentrations.

The Yangtze River Delta (YRD), a powerhouse of China’s economy, also faces a critical
challenge in the form of O3 pollution [1,14,16]. Currently, O3 stands as the primary impedi-
ment to air quality improvement in the YRD region, making its control the most pressing
environmental concern. Some researchers have conducted studies on the sensitivity of
O3 formation and the source of O3 precursors in the YRD region. The calculation results
of using air quality models and observation-based models suggest O3 formation in the
urban areas of the YRD region is in a VOC-limited regime or a transition regime of VOCs
and NOX, and O3 formation is most sensitive to anthropogenic VOCs, especially alkenes
and aromatics [17–20]. In recent years, the concentration of ambient air pollutants has
changed significantly, and the composition and concentration of VOCs and NOX have
obvious inter-year differences in the YRD region. Studies on the concentration changes in
O3 precursors in typical urban areas and their impacts on O3 pollution remain limited, and
this makes it difficult to develop more efficient and refined O3 control strategies for the
YRD region.

To better facilitate the integrated development and implement an eco-green integrated
development strategy, the YRD demonstration zone of green and integrated ecological
development (demonstration area) was established in 2019 [21]. The demonstration area
covers approximately 2300 km2 in the Qingpu district of Shanghai city, Wujiang district of
Suzhou of Jiangsu province, and Jiashan county of Zhejiang province. This demonstration
area is used as a research case to verify the applicability of strategies to improve the eco-
environment. A field experiment on air pollutants was conducted in Wujiang, one of the
constituent districts in the demonstration area. Monitoring data for O3 and its precursors
collected from April to September of 2022 were employed to analyze the concentration
levels and changing characteristics of O3 and its precursors. This study investigated the
contributions of meteorological conditions and pollution source emissions to O3 concen-
tration and examined the monthly variations in O3-NOX-VOCs sensitivities throughout
the warm season (April–September). Additionally, VOC sources were identified, and their
O3 formation potentials were calculated. These findings aim to establish a theoretical
foundation for O3 pollution control within the demonstration area.

2. Methods
2.1. Experimental Sites and Periods

This study utilized the monitoring data collected at the VOC monitoring site located
in Wujiang, Suzhou, a typical urban area in the demonstration area (Figure 1). The layout
of the site complied with the relevant requirements of the Technical Regulation for Selection of
Ambient Air Quality Monitoring Stations (on trial) (HJ 664-2013). Situated within a predomi-
nantly mixed residential and commercial area and free from significant local air pollution
sources, this site is representative of the ambient air quality in the demonstration area and
well-suited for the analysis of O3 pollution characteristics and formation mechanisms.

The ambient VOC concentrations were continuously monitored using an online system
equipped with a custom-built cryogen-free cooling device capable of achieving an ultra-
low temperature (−165 ◦C), a dual-channel sampling and pre-concentration unit, and a
commercially available gas chromatograph coupled with both a flame ionization detector
and mass spectrometer (GC-FID/MS). This system could analyze 29 alkanes, 11 alkenes,
1 acetylene, 17 aromatics, 35 halocarbons, 21 oxygen-containing VOCs (OVOCs) and
1 sulfur-containing VOC (a total of 115 VOCs). The following paper has provided a detailed
description of the system [22].
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2.2. Data Processing and Analytical Methods
2.2.1. Data Processing

The daily assessment value of O3 is based on the maximum daily 8 h average con-
centration of O3 (MDA8h O3), while the other pollutants (SO2, NO2, CO, PM2.5 and PM10)
were evaluated using their arithmetic means. This evaluation and calculation of the air
quality index (AQI) adhere to the Technical Regulation on Ambient Air Quality Index (on trial)
(HJ 633-2012) [23]. The concentrations of all the pollutants are reported using standard
reference conditions (1 atm, 298.15 K).

2.2.2. Meteorological Normalization Method

Meteorological normalization is a technique used to decouple the influence of me-
teorology on pollutant concentrations in air quality time series. This approach allows
for the quantitative separation of the effects of emissions and meteorological factors on
pollutants. Grange et al. [24] first applied the random forest model to the meteorological
normalization of pollutants in 2018. The random forest model is an ensemble model con-
sisting of hundreds of independent decision tree models. The bagging algorithm (bootstrap
aggregation) used in the model can effectively prevent overfitting during the training
process of the random forest model [24,25]. The random forest model takes the hourly data
of Unix timestamp (date_unix, the number of seconds since 1 January 1970), Julian date
(date_julian), weekday (weekday), hour value (hour), air temperature (Temp), relative hu-
midity (RH), wind speed (WS), wind direction (WD) and pressure (Pres) during the whole
observation period as input parameters for training, and can accurately describe the hourly
concentration of air pollutants and their input parameter characteristics. The entire dataset
is randomly divided into a training dataset for constructing the random forest model and a
test dataset for testing the performance of the model. The training dataset includes 70%
of all the data, and the remaining data are used as test data. To determine the optimal
values of model parameters, such as the number of trees (n_tree), the number of samples
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(n_sample), and the minimum number of nodes, a series of random forest simulations
and model cross-validations were carried out under different model parameters. After
obtaining the optimal values of the model parameters, they were input into the model
for training. The random sampling process of observation data is automatically repeated
1000 times to generate the final input dataset, and then 1000 datasets are input into the ran-
dom forest model for 1000 pollutant concentration predictions. A total of 1000 predictions
were used to calculate the meteorologically normalized trend. The random forest model
was constructed using the “rmweather” package in R by Grange et al. [25].

After meteorological normalization, the new time series represents the pollutant
concentration excluding the influence of meteorological factors under the condition of
constant emission factors. The difference between the new time series and the actual
observed data is the contribution of meteorological influence, which is presented as follows
in Equations (1) and (2):

Mi = Oi − Pi (1)

Ei = Oi − Mi − Oi−1 (2)

where Mi represents the contribution of meteorological conditions in year i, Ei represents the
contribution of emission factors in year i, Oi represents the actual observed concentration
of pollutant in year i, and Pi represents the concentration of pollutant after meteorological
normalization in year i.

Due to the impact of the COVID-19 (coronavirus disease 2019) pandemic in
2020–2021, this period serves as a suitable reference for pollution levels in 2022. Therefore,
by decoupling the impact of meteorological changes on the pollutants, we obtained a more
nuanced understanding of how pollution levels during the warm season in 2022 were
shaped by both meteorological factors and emission sources.

In this study, the observation data encompass monitoring data from April to June
across 2020, 2021 and 2022, totaling 13,078 datasets, which had been audited by relevant
government technical departments. All the data were randomly divided into a training set
of 9154 datasets and a testing set of 3924 datasets. Only the observations with complete
data for both meteorological data and O3 concentrations were included in the training
process. To optimize the model performance and ensure the consistency of input variables,
a hyperparameter optimization procedure was employed, and 1000 trees (n_tree) and
3 features considered at each split (mtry) were employed.

It is worth noting that the emission factors in this study included not only changes in
primary emissions in the atmosphere, but also secondary pollution caused by changes in
emission levels.

2.2.3. Observation-Based Model

This study adopted an observation-based chemical box model (OBM) to quantify the
in situ O3 formation rate and sensitivity to its precursors; the OBM model equipped the
Master Chemical Mechanism (MCM, v3.3.1, https://mcm.york.ac.uk/MCM/ accessed on
15 September 2023) offered a comprehensive description of atmospheric chemical processes
from emission to decomposition for 143 VOCs species, involving 17,000 inorganic and
organic reactions for approximately 6700 species. There were great simulated results in
modeling the formation and consumption of O3 and other secondary gaseous pollutants
using the OBM model [26–29]. Hourly observational data for temperature, humidity,
pressure and O3, NOX, CO, and VOCs were used as inputs to the OBM to estimate the in
situ O3 formation rate and consumption rate. For the OBM calculations in this study, the
Framework for 0-D Atmospheric Modeling (F0AM) was employed [30].

Developed in the 1970s, the empirical kinetics modeling approach (EKMA) was de-
signed to reveal O3 sensitivity towards VOCs and NOX to identify mitigation strategies
for O3 precursor emissions [31]. Hourly data were averaged to provide the mean diurnal
variation as a base case input for the OBM model. A total of 196 scenarios were established
by systematically varying the VOC and NOX concentrations across a range from 10% to

https://mcm.york.ac.uk/MCM/
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200% increases and decreases. The isopleths of the maximum O3 formation rates were
generated based on the relationship of O3-NOX-VOC. Acknowledging the uncontrolla-
bility of biogenic emissions, the EKMA model calculations excluded any scaling of this
source [28,32,33].

Here, we used the relative incremental reactivities (RIRs) of different O3 precursors to
analyze the sensitivities of O3 formation to its precursors [34]. The calculation of RIRs is
presented in Equation (3).

RIR(s)(X) =

Ps
O3-NO(X)−Ps

O3-NO([X]−∆[X])
Ps

O3-NO(X)
∆S(X)
S(X)

(3)

where PO3-NO(X) is the mean formation rate of the O3 precursor (X) from 8:00 to 18:00,
and the relative change in the precursor (∆S(X)/S(X)) was set at 20%. The RIRs of the O3
precursors (including NOX, CO, anthropogenic VOCs (AHC) and biogenic VOCs (BHC))
were calculated. The RIRs of the different VOC categories (including alkanes, alkenes,
alkyne, aromatics, halocarbons and OVOCs) were also calculated to precisely assess the
sensitivity of O3 formation to AHC.

2.2.4. O3 Formation Potential

To assess the contributions of VOCs to O3 formation potential (OFP), the concept of
maximum incremental reactivity (MIR) was studied, as detailed in Equation (4).

OFP =∑ MIRi × [VOCi] (4)

where [VOCi] and OFP are the mass concentration (in µg/m3).

2.2.5. Positive Matrix Factorization (PMF) Model

VOC source apportionment was performed on the measured concentrations using
positive matrix factorization (PMF, version 5.0) [35]. We evaluated the model robustness by
examining the Qrobust/Qexpected change rates for different factor solutions. As the number
of factors increases, a decrease in the rate of change for these values indicates the overfitting
of data [36–38].

Based on the observed VOC characteristics and source emission profiles within the
demonstration area, the tracer species exhibiting representative source contributions and
obvious temporal variations were selected for source analysis. The ozone formation poten-
tials (OFPs) of these identified VOC sources were calculated to evaluate their maximum
potential contribution to O3 formation.

3. Results and Discussion
3.1. Overall Characteristics of O3 Pollution

During 2022, Wujiang experienced a total of 73 pollution days, during which O3
was polluted on 56 days (76.7% of the total pollution days) (Figure 2), highlighting its
emergence as the most concerning ambient air quality issue in the district. Fifty-two (92%)
of these O3 pollution days occurred during the warm season, characterized by higher
temperatures and less humidity, which promote enhanced atmospheric photochemical
reactions. Adverse meteorological conditions or elevated O3 precursor concentrations can
further exacerbate O3 formation. Therefore, in the following analysis of O3 formation
sensitivity and VOC source apportionment, this study focused on observational data in the
warm season (April–September) in 2022.
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in 2022.

3.2. Contributions of Meteorological Factors and Emission Factors to O3

The deweathered and detrended data were used to better understand how the air
quality responds to changes in source emissions and meteorological conditions.

The assessment of the effectiveness of the proposed machine learning models involves
the evaluation of a comprehensive set of performance metrics, including the determination
coefficient (R2), root-mean-square error (RMSE), and normalized mean bias (NMB), which
are given in Equation (5), Equation (6), and Equation (7), respectively. Here, y′i represents
prediction, yi represents observation, and y represents the average value of yi.

R2 =
∑n

i=1
(
y′i − y

)2

∑n
i=1(yi − y)2 (5)

RMSE =

√
1
n ∑n

i=1

(
y′i − y

)2 (6)

NMB =
∑n

i=1
(
y′i − y

)2

∑n
i=1 yi

(7)

The statistical metrics of our random forest model simulation of pollutants are as
follows—R2 value: 0.94; RMSE: 12.99 µg/m3; and NMB: 9 × 10−4. The results confirm that
the simulation of the model is good and demonstrate the suitability of further applications.

After the procedure of meteorological normalization, the O3 daily average concentra-
tions (arithmetic means) during the warm seasons of 2020, 2021 and 2022 in Wujiang were
87, 86 and 89 µg/m3, respectively, while the observed values were 84, 82 and 95 µg/m3,
respectively. From Equations (1) and (2), it can be calculated that, in 2022, due to adverse
meteorological conditions, the concentration of O3 increased by 5 µg/m3 (5.7%), and due
to emission factors, the concentration of O3 increased by 7 µg/m3 (7.7%). Therefore, the
high O3 concentration in the warm season of 2022 was caused by the superposition of
adverse meteorological conditions and increased emission intensity from the resumption
of work and production after the implementation of the dynamic zero COVID-19 guide-
lines during the pandemic, in which the emission factors were slightly greater than the
meteorological factors.
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3.3. O3-NOX-VOC Sensitivity

This study employed the OBM to calculate the net in situ O3 formation rate as a function
of NOx and anthropogenic VOC (AHC) reactivities during the warm season. The results
are presented as an isopleth diagram. The results indicated that O3-NOX-VOC sensitivity
was in the VOC-limited regime. O3 formation exhibited the greatest sensitivity to VOCs,
and emission reduction focused on VOCs could be the most effective strategy for mitigating
O3 pollution. Reducing the NOX concentrations could weaken the NOX titration effect,
potentially leading to the unintended enhancement of O3 formation. Thus, NOX emission
reduction may not be the optimal strategy for mitigating O3 pollution in the short term.

From the perspective of different months during the warm season, April exhibited
the highest O3 formation potential, with a formation rate approaching 30 micrograms
per cubic meter per hour (µg/m3/h), coinciding with elevated concentrations of the O3
precursors. From May to July, both the VOC and NOX concentrations showed a monthly
decreased trend. Especially in July, those of VOC and NOX dropped by 50% and 64% more
than those in April, respectively. This decrease was also accompanied by a significant
decline in the O3 formation rate (approximately 22 µg/m3/h). Compared with those in
July, the VOC and NOX concentrations rose slightly more in August. In September, the
VOC concentration maintained at a similar level to that in July and August, but the NOX
concentration increased significantly. Notably, the September increase in NOX concentration
led to a substantial reduction in the O3 formation rate (Figures 2 and 3). Overall, in the
warm season of 2022, the changes in O3 formation regime were mainly driven by the
variations in NOX concentration and less by the VOCs (Figure 4). While both NOX and
the VOCs are key precursors of PM2.5 and O3, a coordinated reduction strategy remains
crucial. The isopleth diagram shows a value of approximately six for the VOCs and NOX,
suggesting that control strategies prioritizing VOC reductions should maintain a ratio of
six or higher for optimal O3 mitigation in the demonstration area.
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Figure 4. Monthly changes in anthropogenic VOCs and NOX in the warm season of 2022 (VOCs were
calculated by their reactivity with OH radicals).

3.4. RIR Analysis of O3 Precursors

According to the sensitivity analysis of O3 formation (Figure 5), O3 formation in the
demonstration area was in the VOC-limited regime, although exhibiting slight monthly
variations. The O3 formation sensitivities in April, May and September were in the strong
VOC-limited regime. The O3 formation sensitivities shifted towards the weak VOC-limited
regime from June to August, implying that the titration effect of NOX for O3 formation is
neglected. However, the contribution of anthropogenic VOCs to O3 formation consistently
displayed the highest across all the months, while the contributions of biogenic VOCs and
carbon monoxide were relatively minor.
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In terms of various VOC species, aromatics originating from anthropogenic VOC
sources emerged as the most significant contributors to O3 formation, followed by alkenes.
Alkanes and OVOCs also exhibited a certain level of contribution. This study further
investigated the O3 formation sensitivity to typical high-reactive VOCs (including ethylene,
propylene, toluene and xylene); the results show that toluene and xylene contributed
significantly to O3 formation, followed by ethylene and propylene. The total RIRs of toluene
and xylene were slightly lower than those of the aromatics, and the similar contributions
of ethylene and propylene to alkenes also mean that the specifically high-reactive VOCs
species were the dominated compounds for O3 formation. These findings suggested
that prioritizing the control of aromatics, particularly toluene and xylene, is crucial for
mitigating O3 pollution in the demonstration area. Concurrently, coordinated control
strategies targeting alkenes, especially ethylene and propylene, are also recommended.

3.5. Source Analysis of VOCs

The observed VOC concentrations were input into the PMF model for source allocation.
This analysis identified seven distinct source profiles, including gasoline evaporation,
gasoline vehicle exhaust and industrial emissions, solvent use, biogenic emissions, diesel
engine exhaust and fossil fuel combustion.

The identification of VOC sources relies on specific tracer species (Figure 6). Large
contributions of propane, n-pentane and iso-pentane indicate gasoline evaporation, with
this source exhibiting pronounced diurnal variations characterized by higher concentrations
during the day and lower concentrations at night [39]. Low-carbon alkenes, such as propylene
and 1-butene, are primarily associated with gasoline vehicle exhaust [40]. Industrial emissions
are distinguished by the dominance of n-butane and benzene, along with a notable presence of
other alkanes [41]. Toluene is a key tracer for solvent use, reflecting its widespread application
as an organic solvent [41,42]. Biogenic emissions are identified by the presence of isoprene,
which exhibits peak concentrations during the daytime, reflecting its light-dependent produc-
tion processes [43,44]. Due to the well-developed water transport network and the frequent
use of off-road machinery in factories and construction in the demonstration area, the diesel
engines in this study are composed of diesel trucks, diesel off-road machinery and inland
vessels. Diesel engine combustion is distinguished by the high proportion of propane and
m/p-xylene, along with the elevated proportion of n-heptane and ethylbenzene, all of which
are known to be abundant in diesel combustion [45–47]. Fossil fuel combustion is identified
by the relatively high ratio of acetylene to benzene [48,49].

The source apportionment of VOCs (Figure 7) showed that gasoline vehicle exhaust
are the most prominent contributor (20.8%), likely attributable to the extensive vehicle
population and well-developed road traffic network in the demonstration area. The contri-
butions of biogenic emissions and diesel engine exhaust to VOCs ranked in the second and
third positions (18.1% and 16.5%), followed by industrial emissions (14.7%). The relatively
high vegetation coverage in the demonstration area contributed to the higher biogenic VOC
contribution compared to the Suzhou average [27]. Solvent use, gasoline evaporation and
fossil fuel combustion exhibited similar contributions, ranging from 9.7% to 10.2%. Notably,
mobile sources (gasoline and diesel vehicle exhaust) constituted the largest contributor to
VOC emissions, accounting for 37.3%.

This study redistributed the contributions of the VOC species in each emission source
according to their MIR value and calculated the OFP contributions of the VOC emission
sources. On the whole, the OFP contributions of all the emission sources were 20.5%, 17.7%,
16.5%, 14.8%, 10.5%, 10.1% and 9.9% from the highest to the lowest for gasoline vehicle exhaust,
biogenic emission, diesel engine exhaust, industrial emission, gasoline evaporation, solvent
use and fossil fuel combustion, respectively. Compared with the proportion of each source
in concentration analysis, the proportion of fossil fuel combustion, industrial emissions and
gasoline evaporation increased, indicating that the VOCs emitted from the above three sources
had higher reactivity. Comprehensive analysis emphasizes the critical need for prioritizing
control strategies that target VOC emissions from gasoline vehicles and diesel engines (trucks,
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off-road machinery and inland vessels) for effective O3 pollution mitigation, which is similar
to the findings of other studies [27,50,51]. Additionally, controlling the VOC sources from
solvent use and gasoline evaporation, which are characterized by minimal NOX contributions,
can provide additional environmental benefits beyond O3 mitigation.
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4. Conclusions

This study investigated the characteristics of air pollutants in Wujiang, one of three ar-
eas within the demonstration zone of the YRD region, during the warm season
(April–September) in 2022. The findings revealed that O3 has become the most critical pollu-
tant, and more than 92% of pollution days are O3 pollution days during
the warm season.

A random forest model revealed that adverse meteorological conditions contributed
5 µg/m3 (5.7%) to the increase in O3 concentration, while the pollution source emissions
played a slightly larger role, contributing 7 µg/m3 (7.7%) to the increase in the O3 con-
centration. The high O3 concentration was mainly caused by a combination of increased
emission intensity due to the resumption of work and production after the COVID-19
pandemic, along with adverse meteorological conditions. The impact of emission factors
was slightly greater than that of the meteorological conditions.

O3-NOX-VOC sensitivity occurred in the VOC-limited regime during the warm season.
The reduction of VOC emissions is the most effective method for O3 control, particularly
aromatics and alkenes, while NOX emission reduction is not conducive to mitigate O3
pollution. Changes in O3-NOX-VOC sensitivity were observed from the VOC-limited
regime to the transitional regime, primarily driven by variations in the NOX concentrations
and less by the VOCs.

The VOC source analysis results showed that the contribution of gasoline vehicle
exhaust and diesel engine exhaust (trucks, off-road machinery and inland vessels) were
significantly higher than those of the other sources, accounting for 20.8% and 16.5%,
respectively, of the total VOC emissions. Therefore, prioritizing the control strategies
targeting mobile VOC emissions (gasoline vehicle and diesel engine exhaust) are crucial
for mitigating O3 pollution. Furthermore, it is suggested that the emission sources with
minimal NOX contributions should be controlled under the VOC-limited regime.
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