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Abstract: The changing climate has a serious bearing on agriculture, particularly livestock production
in Botswana. Therefore, studying the relationship between climate and livestock, which at present is
largely missing, is necessary for the proper formulation of government policy and interventions. This
is critical in promoting the adoption of relevant mitigation strategies by farmers, thereby increasing
resilience. The aim of this research is to establish associations between climate variability and
livestock production in Botswana at the national level. The paper employs time series data from
1970 to 2020 and the Vector Autoregression with Exogenous Variables (VARX) model for statistical
analysis. The trend shows that both cattle and goat populations are decreasing. The VARX model
results reveal that cattle and goat populations are negatively associated with increasing maximum
temperatures. Cattle respond negatively to increased minimum temperatures as well, while goats
tend to respond positively, implying that livestock species react differently to climatic conditions
due to their distinct features. The results of the roots of the companion matrix for cattle and goat
production meet the stability condition as all the eigenvalues lie inside the unit circle. The study
recommends further intervention by the government to deal with increasing temperatures, thereby
addressing the dwindling populations of goats and cattle, which have significant contributions to the
household economies of smallholders and the national economy, respectively.

Keywords: cattle; goats; association; standardized precipitation index; temperature

1. Introduction

Livestock is an integral part of global agricultural production. According to the Food
and Agricultural Organization, the share of livestock in the global value of agricultural
output is about 40% [1]. Livestock is a source of livelihood for 1.3 billion people worldwide
and also provides 34% of the global food protein [1]. Livestock’s contribution to the overall
agricultural output in the Global North and Global South is 40% and 20%, respectively [1].
These figures are likely to grow as the demand for livestock products, particularly meat
and dairy, are projected to increase between 2027 and 2050 [2].

Yet, livestock production continues to fall victim to the unrelenting climate shocks.
Prolonged droughts, reduced rainfall, floods, and excessive and extremely low tempera-
tures are some of the effects of varying climatic conditions that the livestock sector must
contend with. Livestock losses have been recorded in countries prone to climate shocks
like Pakistan, Afghanistan, and India, with small stockholders in rural areas being the most
affected [3]. Similar trends have also been observed in China [4].
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Although the inquiry into the relationship between climate change and livestock has
dominated academic and policy discourses since the 2000s, the breakthrough started in the
20th century. From the early 20th century until the 1940s, prominent American ecologist
Frederick Clements conducted a series of studies on vegetation and the ecology of the Great
Plains and the American West and Southwest [5–9]. Clements argued that the amount of
rainfall determines the type of vegetation likely to grow in a particular area [6,7]. Thus,
farmers can be informed about the kind of livestock that can be kept. Clements also argued
that livestock populations are more likely to be affected by droughts in areas with high
rainfall variability. Since then, some academic studies [10–12] and several reports from
international organizations [13–16] have been consistent with Clements’ findings.

Global production of cattle and goats is currently affected by severe climate change
because the two animal species all over the world are more concentrated in communal
systems, particularly in Global South countries where production is largely dictated by
rainfall and natural pasture [17]. Several modern studies have shown that cattle and
goats usually suffer from heat stress during excessive temperatures [18–21]. Heat stress
is identified as an influential factor since it affects animals in many aspects, often leading
to loss of appetite, low food intake, reduced productivity, and low quality of the animal,
hence unsatisfactory economic returns for rural poor farmers [4,18]. Heat stress also affects
livestock indirectly by compromising the amount of nutrients in plants, which animals
depend on for feed, through the process of nutrient leaching [22–27]. Some studies have
revealed that a rise of 2 ◦C will negatively impact pasture in regions with arid and semi-arid
climates and have positive impacts in humid regions [28]. This means that animals may
not acquire the nutrients they need from plants even if they eat the same amount of feed,
tempering their physical development [26,28,29].

A variation in climate may also result in livestock water scarcity and low productivity
of pastures due to frequent/prolonged drought and reduced rainfall. Water sources dry
up while pastures become depleted due to prolonged dry periods and less rainfall [30,31].
However, some studies have shown that goats withstand harsh climatic conditions like
high temperatures and drought better than large stock and other small ruminants [20,32,33].
Even under extreme climate conditions, goats are considered worth investing in because
they have the potential to transform the lives of the poorest in developing countries, where
90% of the global goat population is concentrated [34]. This could be one of the reasons for
the increase in the global goat population, which has more than doubled in the last four
decades [34].

Meanwhile, in the Guinea Savannah Ecological zone of Nigeria, and countries like
Ethiopia, drought is considered the main climate event that is disruptive to cattle pro-
duction [35,36]. Kenya is another country prone to climate shocks, as indicated by the
Global Climate Risk Index [37]. Consequently, it is observed that livestock production in
that country is extremely vulnerable to climate change effects like high temperatures and
increased precipitation, hence modest gains in net income for farmers [38,39]. Along these
lines, hot temperatures are projected to severely affect net revenue, while an increase in
precipitation will positively influence livestock production [4]. In terms of current livestock
populations, there are over 1 billion goats and 940 million cattle worldwide [1,40]. The
numbers are expected to increase in the future due to a rise in the demand for meat in
Global South countries’ urban areas [1]. However, the rate of increase might vary consider-
ably depending on the region and socio-economic factors. Thus, the future of global cattle
and goat populations will depend on how climate change is managed and the adoption of
sustainable livestock practices.

In Botswana, beef cattle are the dominant livestock followed by goats in terms of
stock populations. Beef is Botswana’s only agricultural export to the European Union
(EU) and recently to the United Arab Emirates (UAE). It has the largest share of 80% of
the agricultural Gross Domestic Product (GDP) [41]. Meanwhile, goats are a valuable
resource, particularly for poor small-holder farmers, and contribute towards food security
in the country’s rural areas. Goats are the second preferred livestock because they require
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less effort and can withstand the semi-arid climatic conditions of the country better than
other small ruminants [42,43]. The livestock species are also the highest protein source
for the poor. Cattle and goat farming follow the commercial and communal systems of
farming. The commercial system is still at the infancy stage and prevalent in the west and
southwest regions. It is dominated by a few large-scale farmers who can afford private
land and the ranching system [44–46]. Therefore, the communal system, which is made up
of mostly small-holder farmers, accounts for over 90% and 95% of the total cattle and goat
populations, respectively [47]. Since the communal system is characterized by free/open-
range grazing, it is entirely dependent on natural pasture for livestock feed. This is due
to modern feeding technologies being in their infancy stage [44,45,48]. As the communal
system is largely rainfed, water scarcity is considered a serious challenge [49–51]. This
is due to Botswana being a predominantly hot and dry country. As a way of assisting
farmers in improving production, the government currently has initiatives such as the
Citizenship Entrepreneurial Development Agency (CEDA) and Livestock Management
and Infrastructure Development (LIMID) in place.

Despite the importance of livestock in the national economy and the changing climate
is a worldwide concern, the literature on climate and agriculture, particularly livestock
production in Botswana, is scant. Most studies tend to focus on farmers’ perceptions of
climate change and mitigation strategies [52–56]. There are a few notable studies that have
examined the relationship between climate and livestock production. Livestock populations
in the communal lands of Kgalagadi South (south and south-west Botswana) were found
to be increasing with higher mean annual rainfall [57]. The goat population was positively
associated with mean annual rainfall, and the relationship was statistically significant.
While cattle were also positively associated with mean annual rainfall, the relationship was
not statistically significant. Meanwhile, drought was negatively associated with livestock
populations. Beef cattle have been found to be very vulnerable to drought [58]. Furthermore,
it is projected that the cost of livestock water supply will rise by 23% in the future (2050) due
to low rainfall [59]. The shortage of rainfall is likely to contribute negatively to livestock
production. Lastly, water scarcity, which is associated with drought and low rainfall,
together with other factors like pasture scarcity, predators, theft, pests, and diseases,
were found to be a serious challenge for small-stock farmers in the Boteti-Sub District
in the Central Region [60]. However, more research on the actual relationship between
changing climates and livestock populations at the national level is necessary. Analyzing
the relationship between climate and livestock production in semi-arid areas like Botswana
is important for proper policy formulation by governments. It also informs livestock
farmers on the best mitigation strategies for climate shocks to avoid losses. Therefore, this
study aims to (1) establish the kind of associations between climate variability and livestock
populations in Botswana and (2) identify climatic variables that may be detrimental to
livestock production in Botswana. It uses cattle and goats, which are the dominant livestock
species, to determine their relationship with climate variation. In comparison with other
studies that use district or household-level data, this study utilizes national-level data.

In addition, the research adds to the limited literature on climate and livestock pro-
duction in Botswana. The study is divided into three major sections. The introduction is
followed by Section 2, which includes explanations of the pre-diagnostic tests of the model.
Section 3 is the results and analysis, which is made up of estimations of the model and its
post-diagnostic test. Section 4 concludes the results and their discussion.

2. Materials and Methods
2.1. Study Area

The area studied is Botswana. The country is located in Southern Africa. It is bordered
by Zambia in the north, Zimbabwe in the northeast, South Africa in the south, and Namibia
in the west (Figure 1). The Kalahari Desert, which contains mostly sandy soils, covers two-
thirds of the country. The climate pattern is typical of Southern Africa, although rainfall is
less compared to neighboring countries. Moreover, rainfall is usually unpredictable, erratic,
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and very unreliable [49,51,61]. It usually varies from less than 200 mm in the southwest
region of the Kgalagadi District to over 650 mm in the Chobe District to the north [49,62].
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Figure 1. Map of Africa, Botswana (Source: UN Geospatial https://www.un.org/geospatial/content/
botswana accessed on 29 January 2024).

2.2. Data and Sources

The study employs time series data from 1970 to 2020 sourced from two entities: the World
Bank and the Food and Agriculture Organization Statistical Database (FAOSTAT) [63,64]. The
data is readily available on the web pages of these two organizations (Table 1) [63,64]. The
main variables of interest are cattle production (CP), and goat production (GP), which are
the outcome variables. The independent variables are annual agricultural land area (AALA),
annual maximum surface air temperature (AMISAT), and annual minimum surface air
temperature (AMISAT). AALA, according to the World Bank, is described as the share of

https://www.un.org/geospatial/content/botswana
https://www.un.org/geospatial/content/botswana
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land area that is arable, under permanent crops, and permanent pastures. We chose AALA
since there is no data for the area of permanent pasture over the years separately. AALA is
expected to be positively and significantly associated with natural pasture areas. Therefore,
we are interested in AALA, which is land used for five or more years for forage, including
natural and cultivated crops. We also introduced binary variables: wet year (WY), which is
included in the analysis for CP, and dry year (DY) for GP analysis based on the monthly
precipitation data of Botswana from 1951–2020 obtained from the World Bank [63]. The
binary variables were created based on whether there was an occurrence of a dry month in
a year or not using the Standardized Precipitation Index (SPI), estimated from the monthly
precipitation data obtained from the World Bank. The SPI is a statistical indicator for
comparing a location’s total precipitation to its long-term rainfall over a given time period.
It is mostly preferred in climate variability studies because it analyzes rainfall accurately
rather than using average rainfall, which tends to be biased toward higher values [65]. The
SPI is more representative than average rainfall [66]. For this study, the dry months are
those whose SPI value is -1.00 or less, while those with 1.00 or more are considered wet
months. Therefore, any year with a dry month is considered a dry year. The independent
variables were chosen based on their direct and indirect relationship with livestock. Table 1
shows the variables, units of measurement, and sources.

Table 1. List of variables and data sources.

Variable Abbreviation Measurement Data Source

Cattle Production CP Annual number of live animals FAOSTAT
Goat Production GP Annual number of live animals FAOSTAT
Annual Agricultural Land Area AALA Square kilometers (sq2 km) World Bank
Annual Maximum Surface Air
Temperature AMASAT Degrees Celsius (◦C) World Bank

Annual Minimum Surface Air
Temperature AMISAT Degrees Celsius (◦C) World Bank

Dry year (SPI value < −1) DY DY Dummy (1—Yes,
0—Otherwise) Author’s computation

Wet year (SPI value > 1) WY WY Dummy (1—Yes,
0—Otherwise) Author’s computation

2.3. Data Analysis: The VARX Model

The Vector Autoregressive model with Exogenous Variables, (VARX) is used for
modeling and predicting the behavior of multiple interdependent variables in time series
analysis. It includes two main concepts: Vector Autoregression (VAR) and exogenous
variables (X) [67]. The VAR captures the linear dependence of each outcome/dependent
variable on its past values (lags) and the past values of other variables in the system,
allowing the study of dynamic interactions between the variables [68–70]. In this study,
CP, GP, and AALA are regarded as endogenous variables because their existence can be
altered by national or regional policy. Exogenous variables are not part of the system
itself but influence the system and are largely not possible to alter by national or regional
policy. Including them in the model allows for analyzing their impact on the system’s
dynamics. AMASAT, AMISAT, DY, and WY are exogenous variables since they are not part
of the system but can influence the behavior of the endogenous variables. Therefore, the
VARX model is suitable for explaining the dynamic behavior of the interaction between the
endogenous and exogenous variables or endogenous variables on their own [71]. Some
studies in fields that deal with time series data, such as finance, economics, business,
political science, and agriculture, commonly employ the VARX model for analysis because
it can be used to predict and forecast time series data [71,72]. The following are studies
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from the mentioned fields that employ the VARX model [73–76]. The linear form of the
VARX model is as follows:

Yt= v+B1Yt−1+ . . . + BpYt−p+Θ0xt + . . .+Θtxt−q+εt (1)

where:
Yt: Outcome (CP or GP) at time t
p: The order of the model, indicating the number of lags for endogenous variables
xt: A vector of exogenous variable at time t
q: The order of the model, indicating the number of lags for exogenous variables
B1, Bp, Θ0, Θt: Coefficients of the variables
v: Constant
εt: The vector of the disturbance term
The VARX model specification for this study is as follows:

Yt =∝ +∑p
i=1 BIYt−i + ∑q

j=1 Θ0Xt + εt (2)

If p = 3, q = 0

Yt=∝+Yt−1 + Yt−2 + Yt−3+

X1t
X2t
X3t

 (3)

If p = 1, q = 0

Yt=∝+Yt−1+

X1t
X2t
X3t

 (4)

where:
Yt: Outcome (CP or GP) at time t
X1t, X2t, X3t: Exogenous variables of AMASAT, AMISAT, and DY/WY
∝: Constant
STATA 17 and EViews 13 were used to run the VARX model to complement estimations.

The flow of the research is shown in Figure 2.
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2.3.1. Pre-Diagnostic Tests

Diagnostic tests such as unit root (stationarity), lag order selection, and cointegration
tests are mandatory before running the VARX model.

Unit Root Test

The Augmented Dickey-Fuller (ADF) test was used to determine stationarity and
non-stationarity (the presence of a unit root) in the series. If the series are non-stationary,
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it means that the mean, variance, or covariance are non-constant, implying divergence or
convergence of the series with time [77]. The ADF test is preferred for unit root testing due
to its ability to account for autocorrelation, control for serial correlation, provide critical
values for significance testing, handle different estimation methods, and accommodate
trend and intercept terms [78,79]. Some of the drawbacks of the ADF test are that it is
sometimes oversized and finds stationarity on many occasions, despite the fact that ADF is
the single most widely adopted test for stationarity in time series data [80]. The unit root
testing was carried out at the level of the first difference with only an intercept since no
trend was detected in the series.

Lag Length Criteria

The lag length of the model needs to be determined before its construction. Through
this test, variables from previous years can be included in the model as regressors against the
current regression [81]. This boosts model robustness by incorporating dynamic interactions
between variables, thereby reducing endogeneity and residual autocorrelation by capturing
past shocks. Several tests, like the Likelihood ratio (LR), Final Prediction Error Criterion
(FPE), Akaike Information Criteria (AIC), Schwarz Criterion (SC), and Hannan-Quinn
Information Criterion (HQ) were used in determining the number of lags for the model.

Cointegration Test

A cointegration test in any VAR model is generally used to ascertain long-run and
short-run relationships between the variables [80,82]. The cointegration determines which
model must be used based on the long- or short-run relationship. In this study, the Johansen
cointegration test was used to determine the cointegration. The test was introduced in
1991 by Johansen to test for cointegration in multivariate time series [83]. Some of the
shortfalls of the test, however, are that it is sometimes extremely oversized and tends to
imply too many cointegrations [80]. The Johansen cointegration test also has two tests,
which are trace and maximum eigenvalue. Both tests seem to have nearly equal strength,
as no major differences have been identified between them [84]. However, the trace test
tends to be more powerful in some situations. Thus, it is recommended that both tests be
applied at the same time, whereas the trace test can be employed exclusively under certain
conditions [84].

3. Results and Discussion
3.1. Trends of Cattle and Goat Population

Although the study utilizes data from 1970 to 2020, Figures 3 and 4 present cattle and
goat population trends since 1961. For cattle, there was a sharp upward trend from 1966
until 1977, when numbers reached the highest figure ever of 3.1 million. From then on, the
population kept fluctuating until it went into a downward mode in 2010. Figure 1 shows
that during the five years preceding 2020, the population did not reach 1.5 million, which
is approximately half of the highest number ever recorded. This indicates that production
has been less satisfactory.

Goat production rose steadily from 1961 to 1970 before dropping the following year.
The drop was maintained until 1982. A sharp rise can be observed from 1983 to 1995
when the highest figure of 2.6 million was recorded. However, the drop between 1992
and 1994 should not be overlooked. In summary, the graphs show that production of both
livestock species has been going down since 2010, and in 2020, it was still far from the
highest numbers ever achieved. While cattle production has been going down for most of
the time, goat production was slightly consistent. Perhaps this can be attributed to various
factors, amongst them, is climate variation.
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3.2. Pre-Diagnostic Tests
3.2.1. Unit Root Test Estimations and Results

The results of the unit root test estimated through the ADF test are illustrated in
Table A1. The results indicate that four variables, all exogenous variables, are stationary
in level form while three, the endogenous variables, are not. It is further shown that
the endogenous variables are stationary at the first-order difference. Therefore, the null
hypothesis is rejected for all the variables in the first-order differencing.

3.2.2. Lag Length Criteria

The estimations for the lag length criteria shown in Tables A2 and A3 indicate that
the number of lags selected for cattle production is three and goat production is one. The
higher number of lags for cattle production is consistent with the assertion that adding
more lags strengthens the model. The results also show that the LR, FPE, AIC, SC, and HQ
were responsible for selecting the number of lags, while none was selected by the LL.

3.2.3. Johansen Cointegration Test Estimations

Tables A4 and A5 show the results of the Johansen Cointegration Test using the Trace
and the Maximum Eigenvalue tests for cattle and goat production. For cattle production,
the trace test indicates cointegration in only one variable, while the maximum eigenvalue
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test shows the absence of a long-run relationship among the variables. The results for goat
production show cointegration amongst two and one variables for trace and maximum
eigenvalue tests, respectively. Therefore, the absence of a long-run relationship between
the variables justifies the use of VARX in the study.

3.3. VARX Model Estimations

The model estimations for cattle production in Table 2 show that the coefficient of
determination R2 is 0.8953. This suggests that 89.52% of the variation in cattle production
is explained by the independent variables. Furthermore, the coefficient of lag 1 of cattle
production is positive and significant at a 1% level. This implies that the production of the
previous year has a positive influence on the current one. The results indicate that AMASAT
and AMISAT are negatively associated with cattle production, as evidenced by the negative
coefficients significance levels of 5%. These suggest that the number of cattle tends to
decrease with increase in both minimum and maximum temperatures. This negative
association can be attributed to heat stress, which have been found to directly affect cattle
by retarding their physical development and reproductive ability [85–87]. Cattle, especially
calves exposed to excessive temperatures, often have weak immunity, which can lead to
death [88–90]. These findings are also consistent with those of other studies [18]. The results
suggest that cattle may be comfortable at average temperatures. This may be possible in
ranches where technology is well advanced enough to control temperatures, which may
be challenging for the predominant communal system in Botswana. Additionally, with
temperatures expected to increase in the future and Botswana being a predominantly hot
and dry country, the declining mode of cattle production is likely to persist.

Table 2. Model estimation for cattle and goat production.

Variables
Cattle Production (CP) Goat Production (GP)

Coefficient Std. Err. p-Value Coefficient Std. Err. p-Value

CP L1 1.147 0.140 0.00 ***
CP L2 −0.309 0.206 0.13
CP L3 0.042 0.134 0.75
GP L1 0.886 0.048 0.00 ***

AALA L1 93.697 58.230 0.11 0.088 0.044 0.05 **
AALA L2 −113.877 60.717 0.06 *
AALA L3 −23.789 55.783 0.67
AMISAT −167,364.9 82,533.9 0.04 ** 309.889 73.688 0.00 ***
AMASAT −44,806.8 22,429.7 0.05 ** −102.965 20.609 0.00 ***

WY −131,144.4 65,697.9 0.05 **
DY −203.386 73.421 0.01 ***

_cons 15,300,000 13,300,000 0.25 −23,749.9 12,140.42 0.05 **
R-squared 0.8953 0.9175

Notes: ***, ** and * represent 1, 5, and 10% significant level.

Regarding the variable wet year, the coefficient is also negative and significant at the
5% level. This implies that cattle populations tend to decrease during wetter years. This
may also mean that more rainfall is not good for beef cattle. The reason for this could
be that wet conditions are a perfect breeding time for parasites such as ticks, tapeworms,
wireworms, mites, and liver fluke which often transmit diseases to livestock. Common
livestock diseases that occur during the rainy season due to the prevalence of parasites are
heartwater, foot rot, and gastrointestinal diseases [91,92]. Gastrointestinal parasites have
been found to be largely distributed across small stock and bovine calf species in southern
Botswana [93,94]. The downtrend in the cattle population may be abated given that
precipitation is projected to decrease in the future in Botswana and other areas of Southern
Africa [49,50,63,95,96]. However, this will depend on other factors such as technological
advancements, diseases, and feeding techniques. The findings of a negative correlation
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between cattle production and rainfall conform with some studies [97,98]. The findings are,
however, in disagreement with other previous studies [4,57].

The estimations for goat production show that the coefficient of R2 is 0.9175, meaning
that the explanatory variables explain 91.75% of the deviation in goat production. Lag 1 for
goat production has a high positive coefficient at a 1% significance level, showing that the
previous year’s production has a positive influence on the next year’s. This is similar to
cattle production, although the coefficients and significance levels are different. The results
indicate that goat production also tends to increase with an increase in AALA, and this is
significant at 5%. This could mean that the increase in AALA brings more pastures, and
thus, plenty of feed for goats, which may boost their reproductive ability. This is also the
case with lag 1 of AALA in cattle production, although the results have weak statistical
significance. Goat production decreases with an increase in maximum temperatures at the
significance level of 1%. Like cattle, this can be connected to heat stress. On the contrary,
goat production increases with an increase in minimum temperatures. This can partly be
associated with the nature of goats being able to withstand tougher climatic conditions,
as established by numerous studies. Lastly, there is a negative association between goat
populations and dry years. This may be due to two factors: natural forage and water
shortages during dry years, and the findings are similar to those of other studies [57].
The goat population may continue to be in a downward mode if projections of decreased
rainfall in the coming years are anything to go by.

3.4. Post-Diagnostic Tests

Tests were also conducted after the model estimation to identify potential model
misspecifications and issues like non-normality, autocorrelation or serial correlation, and
instability to check the robustness of the model. Those were also conducted to improve
the model reliability of the results. The post-diagnostic tests performed were the Granger
causality, serial correlation LM, normality tests, and stability. The Granger causality test
determines whether one variable can predict the performance of another [99,100], while
the Serial correlation LM, also known as the Autocorrelation test, measures the similarity
between a time series set and its lagged values [101,102]. The normality test verifies whether
a data set is distributed along a normal distribution curve. Results and interpretation may
not be reliable if normality has been violated [103,104]. Similarly, VAR models also require
stricter stability conditions to be met.

The tests for Serial correlation depicted in Table 3 suggest that there is no autocorrela-
tion among the variables in the selected lag, as evidenced by the probability values that are
greater than 0.05. This applies to both cattle and goat production (Table 3).

Table 3. Autocorrelation LM test for cattle and goat production.

Lag
Cattle Production Goat Production

LRE * Stat Df Rao F-Stat p-Value LRE * Stat Df Rao F-Stat p-Value

1 5.41 4 1.385 0.24 2.88 4 0.724 0.58
2 0.18 4 0.044 0.99
3 5.06 4 1.293 0.28

* Edgeworth expansion corrected likelihood ratio statistic; Df—degree of freedom.

The findings of the Granger causality test, shown in Table 4, point out some causal
relationships between CP and GP and certain variables. There is a bidirectional causal
chain connecting CP and AALA. A unidirectional causal chain also exists between CP and
AMASAT and CP and WY. In the case of GP, there is only a one-way association between
GP and AALA, and GP and AMISAT. All these causalities established by the Granger
causality test are also reported in the main estimation (Table 2).
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Table 4. Granger causality tests.

Variables Granger Causality F-Statistics p-Value Direction of Causality

C
at

tl
e

pr
od

uc
ti

on
(L

ag
3)

AALA does not Granger Cause CP 2.922 0.05 **
BidirectionalCP does not Granger Cause AALA 3.196 0.03 **

AMASAT does not Granger Cause CP 2.547 0.07 *
UnidirectionalCP does not Granger Cause AMASAT 0.981 0.41

AMISAT does not Granger Cause CP 1.850 0.15 No causality
CP does not Granger Cause AMISAT 1.996 0.13

WY does not Granger Cause CP 2.546 0.07 *
UnidirectionalCP does not Granger Cause WY 1.534 0.22

G
oa

tp
ro

du
ct

io
n

(L
ag

1)

AALA does not Granger Cause GP 6.393 0.05 **
UnidirectionalGP does not Granger Cause AALA 0.933 0.34

AMASAT does not Granger Cause GP 0.758 0.39 No causality
GP does not Granger Cause AMASAT 1.608 0.21
AMISAT does not Granger Cause GP 2.636 0.10 *

UnidirectionalGP does not Granger Cause AMISAT 0.058 0.13
DY does not Granger Cause GP 0.003 0.96 No causality
GP does not Granger Cause DY 0.019 0.89

Notes: ** and * represent 1, 5, and 10% significant level.

The distribution of observations for cattle and goat production is presented in
Figures 5 and 6. The probability values of the normality test results were 3.643 (Jarque-Bera
coefficient) with a p-value of 0.16 in the case of cattle production and 2.597 (Jarque-Bera
coefficient) with a p-value of 0.27 in the case of goat production confirm that the series is
normally distributed.
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For the stability test, the roots of the companion matrix were used and the results are
illustrated in Figures 7 and 8. The figures show that all the eigenvalues lie inside the unit
circle, which satisfies the stability condition. Thus, all the results for the post-diagnostic
tests point out that the results are robust and reliable.
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4. Conclusions

This study has examined the relationship between climate variables and livestock
production, namely cattle and goats in Botswana. Cattle and goat populations have been
on a downward spiral during the five years preceding 2020. Aside from climate, the
downward mode of livestock populations may be due to the failure of government policies
in the livestock sector. Results reveal that livestock tend to react similarly to some climatic
conditions and differently to others. Both cattle and goats tend to decrease alongside
increasing maximum temperatures. This may be due to heat stress which tempers the
physical development of animals and weakens the immune system. The trend is likely to
continue in the future as temperatures are expected to increase in the future. While cattle
react negatively to increase in minimum temperature, goats tend to respond positively.
Furthermore, cattle are negatively associated with wet conditions while goats decrease with
the occurrence of dry conditions. These show that the animals have distinctive features
that make them react and adapt differently to various climatic conditions. The positive
relation between goat production and AALA could be an indication that more agricultural
land area is needed for pastures or cultivation of goat feed, which could also contribute
to cattle production. Lastly, since livestock reacts differently to climatic conditions, the
government may consider offering more subsidies for farm equipment and livestock feed
to mitigate the effects of predicted increases in temperature and precipitation, specifically
for cattle production. Policies like CEDA and LIMID may need to be revisited for easy
implementation to ease the capital, management, and infrastructure constraints faced by
livestock farmers. This could help livestock farmers ease the challenges posed by climate
variability such as increasing temperature and more frequent incidences of intense rain
(wet year) or drought (dry year). However, the impacts of such policies on livestock
production are yet to be established. Studying the causal impacts of the policies is crucial
for their revamping to respond to the actual needs of farmers. Lastly, since this study only
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establishes correlations there is a need for more quantitative research to establish the actual
causal effect of climate variation on livestock production.
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Appendix A

Table A1. ADF unit root test results.

Variables T-Statistics at Level T-Statistics at 1st Difference

CP −0.806 −5.243 ***
GP −1.441 7.929 ***

AALA −1.441 −7.523 ***
AMASAT −5.664 ***
AMISAT −3.237 **

WY −7.207 ***
DY −8.164 ***

Notes: ***, and ** represent 1, and 5% significance level.

Table A2. Lag length criteria for cattle production analysis.

Lag LL LR FPE AIC SC HQ

0 −1037.84 NA 7.30 × 1016 44.50 44.82 44.62
1 −990.57 82.57 1.16 × 1016 42.66 43.13 * 42.84
2 −985.40 8.58 1.11 × 1016 42.61 43.24 42.85

3 −979.34 9.55 * 1.02 ×
1016* 42.53 * 43.31 42.93 *

* Indicates lag order selected by the criterion.

Table A3. Lag length criteria for goat production analysis.

Lag LL LR FPE AIC SC HQ

0 −734.34 NA 9.32 × 1010 30.93 31.24 31.05
1 −673.19 107.08 * 8.61 × 109 28.55 29.02 * 28.73 *
2 −670.22 4.96 9.02 × 109 28.59 29.22 28.83

3 −664.88 8.45 8.59 × 109

*
28.54 * 29.32 28.83

* Indicates lag order selected by the criterion.

https://climateknowledgeportal.worldbank.org/country/botswana
https://www.fao.org/faostat/en/#data/QCL
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Table A4. Johansen Cointegration Test: Trace and the Maximum Eigenvalue for cattle population.

Hypothesized
No. of CE(s)

Eigenvalue
Trace Maximum Eigenvalue

Statistics 0.05 CV Prob. # Statistics 0.05 CV Prob. #

None 0.49 72.386 69.819 0.03 ** 35.022 33.877 0.077 *
At most 1 0.333 40.110 47.856 0.219 19.057 27.584 0.410
At most 2 0.224 21.053 29.797 0.334 12.226 21.132 0.554
At most 3 0.163 9.120 15.495 0.351 8.383 14.265 0.341
At most 4 0.015 0.736 3.841 0.391 0.736 3.841 0.391

**, * denotes rejection of the hypothesis at 5% and 10% significance level respectively; # MacKinnon –Haug-Michelis
(1999) p-values; CV—Critical Value.

Table A5. Johansen Cointegration Test: Trace and the Maximum Eigenvalue for goat population.

Hypothesized
No. of CE(s)

Eigenvalue
Trace Maximum Eigenvalue

Statistics 0.05 CV Prob. # Statistics 0.05 CV Prob. #

None 0.573 91.482 69.819 0.00 *** 41.713 33.877 0.00 ***
At most 1 0.408 49.769 47.856 0.03 ** 25.682 27.584 0.09 *
At most 2 0.310 24.087 29.797 0.20 18.192 21.132 0.12
At most 3 0.072 5.896 15.495 0.71 3.666 14.265 0.89
At most 4 0.044 2.230 3.841 0.14 2.230 3.841 0.14

***, **, * denotes rejection of the hypothesis at 1, 5, and 10% significance level respectively; # MacKinnon –Haug-
Michelis (1999) p-values; CV—Critical Value.
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