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Abstract: Low-cost sensors (LCSs) of Geekcreit PM1/PM2.5/PM10 (based on a PMS5003 sampler) and
BOHU BH-1 models A3 and B3 (based on a Pando G7 sampler) were compared for different aerosol
size ranges using a research-grade instrument (Grimm 1.109) under controlled laboratory conditions.
An aerosol generator was utilized to produce various sizes of monodispersed particulate matter (PM),
which was introduced into a laboratory smoke chamber under resistance heating/cooling and/or
varying RH conditions. In addition, the accuracy of the air temperature (T) and relative humidity
(RH) sensors of the LCSs were assessed against calibrated, laboratory-grade instruments. The study
LCSs showed generally accurate readings for PM2.5, irrespectively of the slow T and/or RH changes,
which provided apt conditions for accurate calibration slopes (S) and low intercepts/bias (b) of
the linear fits. On the other hand, PM1 and PM10 readings slightly deviated from those observed
with the reference monitor, likely due to the lower detection efficacy of the LCSs towards fine and
coarse PM. Varying RH influenced the S and b values, showing its impact on the detection efficacy of
LCSs. Under low/medium RH, homoscedastic calibration curves of PMx were found, whereas rather
heteroscedastic calibration plots were observed at high RH. For T calibration, low RH in the smoke
chamber provided more reproducible conditions in terms of lower measurement bias for LCSs as
recorded against a calibrated, reference-grade thermometer.

Keywords: low-cost environmental sensor; particulate matter; calibration; optical particle counter;
smoke chamber; laboratory calibration

1. Introduction

Air pollution is a research topic investigated worldwide due to the rising problems
in the surrounding environment, related mostly to anthropogenic activities, manifested
in human health effects [1], damage to cultural heritage [2,3], and displayed historical
items [2,4], as well as the impact of anthropogenic air components on global climate [5]. For
the past decade, low-cost sensors (LCSs) have been gaining a broader interest in air quality
research [6–41] compared to laboratory-based instrumental methods, for instance, those
applied in official air quality (AQ) stations. This is particularly due to their light weight,
small size, and low electricity consumption, thus making them easier to deploy in the
field [42–44]. However, LCSs can generally be operated at the expense of lower sensitivity,
less accuracy, and robustness, compared to official instrumentation of air sampling and
analysis [12]. Additionally, LCSs demand more frequent calibration and comparison with
reference methods, depending on several factors, such as the sampling site emission and
the sampled aerosol type, for instance, by means of using research-grade instruments
and/or data from official AQ stations [6–12,17]. Recently, it has been shown that LCSs
can be calibrated with good accuracy using commercial, DIY-kit-like electrical/chemical
apparatus, which are accessible to society at large [41]. Certainly, based on these principles,
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it would be easier to build up nodes for AQ monitoring, even a network over areas of
different anthropogenic impacts, as was already demonstrated in the literature [45].

Investigations on the laboratory testing of various types of LCSs have received
considerable attention from the scientific society [6–40]. Examples of such studies to-
wards more accurate mass calibration and determinations are reported for sensors of
Plantower PMS 1003 [6,8,27,38], PMS 3003 [6,9,11], PMS A003 [7,10,18,20,36,39], PMS
5003 [8,13,15–17,21,37], PMS 6003 [13], Shinyei PPD42NS [10,14,15,34,38], Alphasense
OPC-N3 [13,15,39], AirU [11,12], Nova SDS011 [14,38], Sensirion SPS30 [15,16,39], Sharp
GP2Y1010AU0F [15,38], Omron B5W-LD0101 [15], Honeywell HPMA115S0 [16], BOHU
BH1-A3 [17], PMS7003 [19], PurpleAir [22–26], AQMesh [28,29], SKC Split 2 [30], Mi-
crodust Pro [30], DataRam [30], Dylos [31,32], OPC-N2 [31,33,35], Dfrobot SEN0177 [32],
DSM501A [34], GP2Y11AU0F [34], Innociple PSM305 [38], Nova SDL607 [38], and Air-
Beam2 [39]. The technical specifications of these LCSs have already been discussed in detail
in comprehensive reviews, e.g., Ref. [43].

For the purposes of laboratory aerosol generation and subsequent PM mass measure-
ments by means of LCSs, various techniques/materials have been applied, e.g., incense
burning [7,25,36], oleic acid [7], NaCl [7,34,39], sucrose [34], talcum powder [7], cooking
emissions [25], monodispersed polystyrene latex spheres [7], dioctyl sebacate [13,14], ammo-
nium nitrate [9,34], aluminum oxide [9,30], industrial dust [30], dust mite [31], pollen [31],
cat and dog fur [31], monodisperse silica [31], melamine resin [31], tobacco smoke [32], coal
dust [37], cigarette and match lighting smoke [38], concrete dust [38], road dust [39], and
poly-alpha-olefin oil [39] under controlled laboratory conditions.

In general, the concentration of PM had the most dominant effect on the sensors’
responses, while the particle type and size distribution less affected the accuracy of the
readings [29]. Besides these, a couple of ambient microclimatic parameters, such as air
temperature (Ta) and relative humidity (RH), have been reported to influence the extent
of bias for PM-mass/concentration readings, e.g., [8,17,27,34]. Further methodological
improvements include the application of extended/refined calculation methods for PM
mass [23], the use of deep-learning calibration techniques [40], and the application of
various sets of internet of things (IoTs) accessible to society at large [41]. More details on
the peculiarities of the application for LCSs can be found in extensive reviews [42–44].

In a former study [17], the accuracy of GPM and BOHU BH1-A3 sensors was assessed
in the indoor and outdoor air of various urban sites. It was found that both types of
sensors were fairly accurate between each other and with those aerosol monitors in the
field campaigns, set in a nearby official AQ station for PM2.5. This type of evaluation is a
basic testing protocol for sensors, as suggested by US EPA [46]. Moreover, the obtained
data [17] covered only a fairly short mass range of aerosols, i.e., up to about 130 µg/m3 for
PM10, compared to those occurring in seriously polluted urban environments. In addition,
no accuracy testing was possible for PM1 and PM10 due to a lack of reference monitoring
data. Laboratory measurements could be controlled in a more flexible way compared to
those occurring in the field, which is in line with US EPA recommendations for advanced
(“enhanced”) testing of environmental PM sensors [46]. To fill in the above gap, in this
study, we aimed at the laboratory evaluation and calibration of two types of low-cost
sensors, i.e., PMS-5003-based Geekcreit© and Pando G7-based BOHU BH-1 (common
model A3 and a newer design B3) for PM1, PM2.5, and PM10, utilizing research-grade
reference instrumentation. Additionally, we studied some of the ambient microclimatic
parameters such as Ta and RH against calibrated, industrial-grade analog and digital
measurement units, which is expected to provide sharper insight into the measurement
accuracy of the study LCSs.

2. Materials and Methods
2.1. Instrumentation

Three types of LCSs, such as Geekcreit© model PM1/PM2.5/PM10 (China) (fur-
ther on referred to as GPM) and BOHU BH1 Models A3 and B3 (Bohu IoT Enterprise,
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Shanxi, China), were compared under laboratory conditions. GPMs incorporate Plantower
PMS5003 (Beijing, China) optical particulate counter (OPC), whereas each BH1 model is
built with a Pando G7 OPC. Each LCS reports data in six size ranges of PM (bins), of which
have lower size limits of 0.3, 0.5, 1.0, 2.5, 5.0, and 10 µm, respectively. Briefly, during
operation, the OPCs utilize continuous sampling of ambient air in a low-volume measure-
ment chamber, where light irradiation from a red laser or LED light source is applied. The
multi-angle light scattering on the sampled air suspended particles is measured with a light
detector. According to the recorded intensity and the angle of the scattered light, temporary
varying transients are recorded and processed with a built-in 32-bit microcomputer (BH1
sensors) or with a laptop running a datalogger/control software for GPMs. The analytical
results are obtained as a function of the equivalent aerodynamic diameter (EAD) of PM.
The number of suspended, size-segregated PM in a unit air volume can be obtained, from
which the PM mass concentration can be calculated with algorithms developed specifically
for each LCS design by taking into account aerosol parameters like EAD and predefined
average density of each size fraction, etc. Overview pictures of the study LCSs are plotted
in Figure 1.
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(Oneyac, Xiamen, China), while BOHU BH1 (both models A3 and B3) was fitted with an 
SHT20 module (Sensirion AG, Stäfa, Switzerland).  

To check the accuracy of the PMx data recorded with the LCSs and for calibration 
purposes, a Grimm Model 1.109 particle number counter was applied concurrently. This 
type of monitor is also an OPC, which collects aerosol data in 31 size ranges (bins), rang-
ing from 0.25 µm to 32 µm, besides calculating PM1, PM2.5, and PM10 with a proprietary 
algorithm. 

For the experiments, the LCSs were placed inside a 115 cm × 50 cm × 55 cm smoke 
chamber, built from 6 mm plexiglass walls, fitted with aluminum frames and rubber 
sealings specifically designed for aerosol investigations (Figure 2). The ambient air of the 
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Zug, Switzerland) with HEPA and active carbon filters for PM and volatile organic car-
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Figure 1. Pictures of the study LCSs: (a) back panels of BH1-B3 and BH1-A3 (background), dismantled
A3 sensor: front panel/micro PC board with LCD display (left), and the Pando G7 sampler/battery
(grey/yellow units at the right), (b) front and back panel view of the GPM: PMS5003 sampler (blue
module), Ta/RH sensor (grey module at the top), and interface/micro-PC board (left).

Besides suspended PM, the study LCSs could register Ta and RH of the monitored
environment. For this purpose, the GPM sensor was equipped with an ASAIR AW2120
(Oneyac, Xiamen, China), while BOHU BH1 (both models A3 and B3) was fitted with an
SHT20 module (Sensirion AG, Stäfa, Switzerland).

To check the accuracy of the PMx data recorded with the LCSs and for calibration
purposes, a Grimm Model 1.109 particle number counter was applied concurrently. This
type of monitor is also an OPC, which collects aerosol data in 31 size ranges (bins), ranging
from 0.25 µm to 32 µm, besides calculating PM1, PM2.5, and PM10 with a proprietary
algorithm.

For the experiments, the LCSs were placed inside a 115 cm × 50 cm × 55 cm smoke
chamber, built from 6 mm plexiglass walls, fitted with aluminum frames and rubber
sealings specifically designed for aerosol investigations (Figure 2). The ambient air of the
test laboratory was continuously cleaned using a Roger HEPA air purifier (Stadler Form,
Zug, Switzerland) with HEPA and active carbon filters for PM and volatile organic carbon
(VOC) compounds. Thus, the smoke chamber received the same clean air when it was open.
In each experiment, the LCSs were operated simultaneously with synchronized clocks to
monitor Ta, RH, and PMx.
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sensors and Testo).

2.2. Measurement Procedures

The Ta inside the smoke chamber was measured under controlled heating conditions
by either raising the Ta with resistance heaters or preheating the cell and letting it slowly
cool down. The smoke chamber is equipped with two resistance heating elements equipped
with heatsinks, connected to a digital LAE 5X type LTR-5TSRD-A controller (LAE Electronic,
Oderzo, Italy), which is meant to increase the internal Ta stepwise, i.e., about 0.2 ◦C/min.
The Ta in the smoke chamber was determined via the application of the temperature sen-
sors of the LCSs (GPM and BOHU), a Testo model 610 (Testo SE & Co. KGaA, Lenzkirch,
Germany) T/RH meter, against an analog mercury-in-glass thermometer (MTA KUTESZ,
Budapest, Hungary). For Ta determinations, the Testo device has a resolution of 0.1 ◦C and
an accuracy of ±0.5 ◦C (measurement range: −10/50 ◦C), while for RH, it has a resolution
of 0.1% in the range 0–100%, whereas the accuracy is±0.5% for the range 5–95%. For Ta and
RH, the GPM’s sensor (AW2120) has an accuracy of ±0.5 ◦C and ±3%, respectively, while
the SHT20 sensor has an accuracy of ±0.3 ◦C (range: 5–60 ◦C) and ±3% (range: 20–80%),
respectively. The glass thermometer has a measurement range of 0–50 ◦C, a resolution of
0.1 ◦C, and an accuracy of ±0.1 ◦C. Each of these devices was calibrated by the manufac-
turer.

The indoor RH of the laboratory was generally low, ranging between 20 and 45%, due
to the continuous operation of a combined air filter unit and drier. The air RH in the smoke
chamber was controlled by various means. Low RH conditions (20–30%) were adjusted
using the air drier, whereas high RH conditions were attained with the application of about
0.75 L of freshly boiled water, poured into a broad heat-resistant vessel (diameter: 15 cm),
which was instantly inserted into the smoke chamber. Soon after, this condition provided
high RH conditions, amounting to about 99%. Although RH gradually decreased with time
inside the chamber, it provided near-steady-state conditions, which was advantageous for
registering the gradually changing value with various LCSs and the Testo reference device
(precision: ±2.5%). Medium RH conditions were registered at decreasing humidity level
via performing a signal reading every 15 min.

Monodispersed polystyrene DVB microspheres (NIST Traceable, DRI-CAL, Duke
Scientific Corporation, London, UK) with 500 nm or 1000 nm aerodynamic diameter
(standard deviation: 10%) were applied as particle standards. The powders were solved
in some mL of water and utilized as study aerosols with a GRIMM model 7.811 aerosol
generator (Durag Group, Hamburg, Germany), which was operated for about 4–6 min to
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produce aerosol puffs in the smoke chamber. The PM concentrations obtained in this way
were high enough to perform a large number of concurrent readings with the sensors. The
PM experienced slow exponential decay due to a minor loss of air through small fissures of
the smoke chamber. Overall, the ambient air inside the chamber provided near-steady-state
conditions, which was proper for recording the studied environmental parameters. There
was no significant difference observable between PMx readings of the LCSs using the two
sizes of monodispersed aerosol. The durability of the GPM and the BH1 sensors in the
indoor environment, such as the smoke chamber (generally with a “clean” atmosphere) or
indoor buildings [17], is very good (experienced via some years of continuous running).
Nevertheless, they require cover or shelter outdoors against harsh weather conditions
(wind, rain, high moisture, and other atmospheric events). Outdoors, weathering even
on the sheltered/housed sensors could be observed after around one year of continuous
operation, as found during field experiments in urban environments reported in Ref. [17].

2.3. Data Evaluation and Statistical Methods

The Microsoft Excel program was applied for the statistical analysis of the measure-
ment data. First, the monitoring data were processed and filtered for outliers related to
biased readings of the LCSs, e.g., the onsets of the puffs and internal sensor calibration
cycles. These data were discarded from further processing. The AQI data were calculated
by utilizing the stepwise function to the data sets of PM2.5, according to US EPA recom-
mendations [46]. Linear regression fittings to the data points were performed using the
least square method. The regression equations for slopes (S) and intercepts (b) and the
correlation coefficients (R values) of the linear fits were calculated to obtain insight into
the possibility of using these functions as calibration curves for performing the determina-
tions more accurately with the study LCSs. Moreover, two-paired Pearson’s correlation
coefficients were calculated at a 99% confidence level for each monitored variable and the
AQI. The limit of detection (LOD) and the limit of quantitation (LOQ), corresponding to
the average baseline concentration plus the noise/fluctuation (σ) of the baseline with 3σ
and 10σ confidence, respectively, were calculated for each study LCS following the IUPAC
recommendations for instrumental analytical methods [47]. For calculating the average
baseline concentration, we took into account the lowest PM concentrations detected in the
cleaned, aerosol-free smoke chamber by the sensors, while for σ, the fluctuation/standard
deviation of the minimum readings was implied, which still gives the lowest signal increase
for the study LCS.

Some additional performance indicators, such as the relative mean squared error
(RMSE), the mean normalized error (MNE), and the mean normalized bias (MNB), were
calculated to assess the deviation of concurrent readings of the study LCSs as suggested in
Refs. [28,46]. These error flags were calculated for n number of data pairs according to the
next equations:

RMSE =

√
1
n∑n

i=1(yi − xi)
2 (1)

MNE =
1
n∑n

i=1
|yi − xi|

xi
× 100 (2)

MNB =
1
n∑n

i=1
yi − xi

xi
× 100 (3)

where yi and xi are the concurrently recorded readings of the same variable from the
sensors, e.g., LCS vs. the reference, respectively. In terms of sensitivity, RMSE is more
sensitive to outlier values, while MNE is more robust in this sense, whereas MNB shows
the extent of under and overestimation. An accurate calibration procedure for the LCSs,
which meets the Data Quality Objective of the European Commission (EC) [48], should
give low errors in terms of RMSE and MNE and should not invoke high unwanted bias,
i.e., the MNB should be low as well. In this study, the US EPA recommendations for the
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base and enhanced testing [46] were applied for the evaluation of the sensors. Accordingly,
for PMx determinations, the following parameters were included for the linear regression
fit: S = 1.00 ± 0.35 (intercept of fitting between −5 and 5 µg/m3), linearity: R ≥ 0.8366,
error: RMSE < 7 µg/m3, MNE, (MNB) < 30%. Similar methodological considerations were
applied for evaluating the measurement data and errors for Ta and RH determinations.

3. Results
3.1. Ambient Microclimatic Measurements in the Smoke Chamber
3.1.1. Air Temperature

As the first stage of the investigation, the Ta in the smoke chamber was assessed with
various thermometers by means of adjusting low, medium, or high RH. These data were
collected every 5 min when heating the chamber and every 15 min when letting it cool.
The low, medium, and high RH values covered the range between 25 and 40%, 40–70%,
and 70–99%, respectively (Figure 3). As it appears, low RH conditions generally provide
better regression fits to the concurrent measurement points, as manifested in the R values
of the regression plots ranging from 0.97 to 0.99 (Figure 3a). The S of the fit equations are
1.09, 1.15, 1.1, 1.2, and 0.92 for GPM-1, GPM-2, BH1-A3, BH1-B3, and Testo, respectively.
The bias for Ta, as appears in the intercepts of the fits, is slightly high for GPM-2, BH1-A3,
and BH1-B3, and is 3.4, −2.1, and −2.7 ◦C, respectively, while it is still acceptable for Testo
(1.7 ◦C) and GPM-1 (−0.95 ◦C), compared to the accuracy specified by the manufacturer.
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Applying medium RH in the smoke chamber, the R values of the linear fits for Ta fell
into the 0.925–0.988 range (Figure 3b). Interestingly, medium RH provided higher deviation
in the S of the fits from the ideal unity, i.e., 0.94, 1.07, 0.73, 0.69, and 0.83, for GPM-1, GPM-2,
BH1-A3, BH1-B3, and Testo, respectively. The intercepts of these fits for GPM-1 and GPM-2
(2.6 and −1.3 ◦C, respectively) are still acceptable, whereas, for BH1-A3, BH1-B3, and Testo,
they are rather high, i.e., 7.9, 8.5, and 3.5 ◦C, respectively. The former two values are likely a
contribution of the internal heat of the BH1 sensors from the built-in, preheated gas detector
serving for VOC monitoring.

Under high RH conditions (Figure 3c), the R values of the linear fits are in the range of
0.926 and 0.983, indicating strong correlations. The S values of the linear fits are somewhat
increased for GPM-1, GPM-2, and BH1-A3, i.e., 1.37, 1.23, and 1.28, respectively, whereas
they approach unity well for BH1-B3 (1.07) and Testo (1.01). The intercept is negligibly
small for the latter two LCSs (−1.4 and −0.57 ◦C), while increased values were experienced
for GPM-1, GPM-2, and BH1-A3, i.e., −8.2, −4.2, and −6.9 ◦C, respectively.

Overall, for T calibration, it appears that the low RH provides more reproducible
conditions in the present smoke chamber in terms of the lowest measurement biases for
LCSs as recorded against a calibrated, reference-grade thermometer. Applying medium or
high RH introduced an increased deviation of concurrently recorded readings. This could
either be due to water vapor circulation or vapor loss-induced temperature gradients within
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the smoke chamber, e.g., a relatively sharp RH change via fissures and small openings of
the chamber. This is a definite disability of the measurement procedure/system at medium
and high RH, which might be overcome by reducing the volume of the smoke chamber
and/or utilizing a T-insulating medium inside, as suggested in Ref. [41]. Otherwise, this
source of measurement error could be overcome with the use of the outer, moisturized
air in the laboratory, which could make a better balance with the internal of the smoke
chamber.

3.1.2. Relative Humidity

Under low RH, a strong correlation between each LCS and the reference sensor
(Testo) was found, manifested in high R values of 0.89–0.97 (Figure 4a). The S of the fits
approximated unity quite well for GPM-1 (1.04) and GPM-2 (1.24), whereas lower values
were observed for BH1-A3 (0.69) and BH1-B3 (0.71). The intercepts of the fits for GPM-1,
GPM-2, BH1-A3, and BH1-B3 were about 4, −9, 15, and 12%, respectively.
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When applying medium RH (Figure 4b), strong correlations were attained with
R ≈ 0.87–0.89, except BH1-B3 (R = 0.96). The S of the linear fit was ≈0.74 for GPMs,
while somewhat lower values of ≈0.57 were obtained for both BH1 sensor models. Com-
pared to low RH, the intercepts of the fits increased to 11–23%, showing lower accuracy,
i.e., the worsening of the conditions for RH determinations with LCSs in the measurement
system. This bias most likely arose from slow microclimatic changes in the smoke chamber
and/or higher RH gradients. For high RH (>80%), the R values of the fits ranged from 0.31
to 0.73, corresponding in most cases to rather low correlations (Figure 4c). The S of the
linear fits were also low, ranging from 0.29 to 0.55, while the intercepts were very high, lying
between 23% and 59%. These findings point towards higher bias on RH determinations and
the rather different readings of the LCSs as compared to those observed with the reference
sensor. The difference in the minute monitored Ta and RH data of various LCSs are further
evaluated and discussed with the sampled PMx data as follows below.

3.2. Monitoring Size-Segregated Aerosol in the Smoke Chamber
3.2.1. Comparison of LCSs of the Same Design
GPM Sensors

The concentration of PM1, PM2.5, and PM10 observed in the smoke chamber under
varying RH with the assistance of GPM sensors (Figure 5a–c) reached as high as 145, 300,
and 400 µg/m3, respectively, while AQI peaked at 290 (Figure 5d). It should be noted
that the peak mass concentrations of the three PMx species are different (e.g., Figure 5a,c)
despite the application of a chemically stable, monodispersed polystyrene DVB for aerosol
production. This is likely due to the coagulation of the evolved aerosol, which starts already
in the aerosol generator and continues in the transfer tubing towards the smoke chamber.
Certainly, this effect is more expressed in the smoke chamber itself, where the aerosol is of
higher residence times than in the former units.
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As seen for low/medium (Figure 5a–c) and medium/high (Figure 5g–i) RH conditions,
the GPM sensors show strong correlations for each PMx range, manifested in high R values
(0.993–0.997). In general, the S of the linear fits for PMx approached unity well, ranging
between 0.923 and 0.995, except for PM1 under low RH (S = 0.84) (Figure 5a) and for PM10
under high RH (S = 1.21) (Figure 5i). Nevertheless, these close calibration slopes and low
intercepts point towards the good intra-model accuracy of the GPMs.

As observed for PMx, similarly sharp linear fitting was attained for AQI (S = 0.94/0.98,
R = 0.993/0.995) and Ta (S = 0.94/0.98, R = 0.993/0.995) under any RHs (Figure 5d,e,j,k).
On the other hand, a slightly lower correlation of the RH data was obtained under higher
RH (R = 0.957) with close to an ideal slope (S = 1.05), but an increased intercept (−11.8%),
compared to those observed under low/medium RH (intercept: 2.2%, R = 0.994) (Figure 5f
vs. Figure 5l). Interestingly, the RH curve for GPMs starts to “saturate” and shows a higher
spread for concurrent RH readings higher than 80%. This finding is not merely unexpected
when one recalls the plots for high RH determinations, as reported in Section 3.1. Appar-
ently, monitoring under high RH conditions in the smoke chamber could be characterized
by higher uncertainty than those measurements performed in the low/medium RH range.

It is also noticed in Figure 5 that there is a strikingly different evolution of PMx
plots towards higher concentrations under low/medium and medium/high RHs. The
former curves show homoscedasticity (Figure 5a–c), whereas the latter is rather strongly
heteroscedastic (Figure 5g–i), i.e., displaying increasing variance towards higher aerosol
concentrations. Similar divergence can be observed for AQI and Ta plots (Figure 5k,l).

BH1 Sensors

The maximum concentrations of PM1, PM2.5, and PM10 recorded in the smoke chamber
with the assistance of BH1-A3 and B3 sensor designs under low/medium RH were as high
as 183, 464, and 594 µg/m3, respectively (Figure 6). As it appears, the BH1-A3 and B3
sensors demonstrate strong correlations for each size range of PM, shown with high R
values (0.985–0.993). The S of the linear fittings for PM1, PM2.5, and PM10 was close to the
unity, i.e., 1.07, 1.13, and 1.04, respectively. On the other hand, the increased intercepts of the
fittings (1.6–5.3 µg/m3) indicate an enhanced baseline bias for the model A3 sensor in each
PM size range. This result is in accordance with former findings from a field monitoring
study conducted with the same type of LCS [17]. The AQIs of A3 and B3 sensors correlated
well, too (R ≈ 0.98, S = 0.93), whereas the high intercept of ≈23 points to an increased
positive bias of the BH1-A3 sensor, which, nevertheless, is still acceptable for AQ reporting.
The concurrent values of Ta and RH show a strong correlation between the two BH1 sensor
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models (R = 0.979 and 0.994, respectively). Both linear fits are characterized with S of ≈1.06
and low intercepts (−1.5 ◦C and 0.5%, respectively). Fitting to the AQI data series of the
BH1-A3 and B3 sensors also revealed that they followed a slightly S-shaped curvature, an
interesting feature that has not been observed for BH1 models in a field study [17].
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0.25, −0.31, and −0.42 µg/m3, respectively, pointing to a low bias. The AQI data of the B3 
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Under medium/high RH (Figure 7), the BH1-B3 sensors show strong correlations
for each PMx, manifested in high R values of the regression fits (0.976–0.985). This is a
somewhat lower correlation compared to those observed between sensor models of B3 and
A3, which is due most likely to the different RHs applied for the tests. The S of the fitting
equations for PM1 and PM2.5 approached unity fairly well, i.e., 0.91 and 1.24, whereas,
oddly, a higher value of 1.5 was found for PM10. In general, a higher spread of the data
could be observed at PM1, PM2.5, and PM10 concentrations higher than about 50, 70, and
100 µg/m3, respectively. This deviation could be due to the “saturation” under high RH
conditions and/or higher inhomogeneity of PM in the smoke chamber, a possible result
of internal heating, which causes an upwards convective stream of suspended particulate.
In general, low intercepts have been calculated for PM1, PM2.5, and PM10, i.e., 0.25, −0.31,
and −0.42 µg/m3, respectively, pointing to a low bias. The AQI data of the B3 sensors also
correlated well (R = 0.972, S = 1.18although with a much lower intercept (−2.0) compared
to that of the BH1-A3 sensor (Figure 6). The simultaneously recorded data for Ta and RH
correlated strongly between the BH1-B3 sensors (R = 0.975 and 0.98, respectively), while S
of 0.79 and 1.22, respectively, were obtained with slightly enhanced intercepts, i.e., 3.8 ◦C,
and −6.8%, respectively. These biases are still acceptable for the purpose of environmental
monitoring.
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3.2.2. Comparison of Sensors of Different Types
GPM versus BH1 Sensors

The fitted PMx data recorded in the smoke chamber with the assistance of GPM and
BH1 sensors under various RH conditions are plotted in Figure 8. It appears that the R
values of the linear fit for each PM fraction were close to 0.993, which indicates a strong
correlation; moreover, it is independent of RH (Figure 8a–c,g–i). The PM1, PM2.5, and PM10
concentrations in the smoke chamber peaked at 150, 354, and 440 µg/m3, respectively
(Figure 5a–c).
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The S of the linear regression fit for PM1, PM2.5, and PM10 approached the ideal quite
well for low/medium RH, i.e., 0.93, 1.1, and 1.06, respectively (Figure 8a–c), whereas for
medium/high RH, the S was similar or slightly higher, i.e., 1.00, 1.08, and 1.29, respectively
(Figure 8g–i). The intercepts of the fits were low for low/medium RH, i.e., −0.21, −0.48,
and −0.41 µg/m3, respectively, while slightly increased bias was observed at high RH,
i.e., −0.29, −0.53, and −0.98 µg/m3, respectively. Close fitting was, in general, found for
AQI data (R ≈ 0.99, S ≈ 1.04) with negligibly low intercepts (−1.5 and −2.1) at each RH
range (Figure 8d,j). A good fit was established for the data series of Ta recorded under
low/medium RH (R = 0.987, S = 0.96, intercept: 0.76 ◦C, see Figure 8e), while for higher
RH (Figure 8k) lower correlation and higher bias was found (R = 0.96, S = 0.87, intercept:
2.5 ◦C). Although the RH data strongly correlated under low/medium RH (R = 0.966),
the fitting deviated from the ideal (S = 0.68) with a quite high intercept (8%), pointing
towards systematic errors (Figure 8f). Interestingly, a better fit was acquired for higher RH
(R = 0.935, S = 0.84), with a lower intercept (−2.7%, Figure 8l) than the former
(Figure 8f). Like the above observations (Section “GPM Sensors”), homoscedastic graphs
were found under low/medium RH, whereas the calibration plots become heteroscedastic
at medium/high RHs.

GPM versus GRIMM Monitor

The PMx and AQI data series obtained with the GPM and GRIMM sensors (Figure 9)
are characterized by strong correlations (R ≈ 0.984–0.988). The S of the regression fits
for PM2.5 approached the ideal accurately (1.03), whereas lower and higher values for
PM1 and PM10 were observed, i.e., 0.703 and 1.22, respectively. These data show that the
GPM sensor has lower detection capability towards accurately predicting fine and coarse
(PM10–2.5) aerosol fractions, due likely to the much lower bin number of the PMS5003
sampler, compared to the GRIMM sensor. The intercepts of the fitting equations were
negligibly low for each PMx species and AQI, ranging from 0.2 to 0.44 µg/m3 and 0.61,
respectively. Interestingly, the results on the overestimate of PM10 readings are not in line
with the findings in Refs. [13,14,26], reporting underestimates for coarse aerosol when
applying LCSs equipped with PMS5003 sensors.
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BH1 versus GRIMM Monitor

Similar observations to those attained for GPM and GRIMM were made when com-
paring BH1 sensors (designs A3 and B3) with the GRIMM reference monitor under
medium/high RH conditions (Figure 10). The B3 sensor approached PM2.5 and AQI
accurately (S ≈ 1.12, R ≈ 0.98). A very low bias was found for PMx, ranging between
−0.08 and −0.56 µg/m3, and for AQI too (−1.52). On the other hand, slightly higher PM10
readings were observed with BH1-B3 (S = 1.59), compared to GPM and GRIMM, which is
somewhat higher than well accepted for environmental monitoring, i.e., the S value should
be a maximum of 1.35 [46]. Accordingly, the PM10 data recorded with the BH1-B3 requires
a definite mathematical correction and calibration in the laboratory and on the field as well.
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For the BH1-A3 model and the GRIMM monitor under medium/high RHs, less steep
slopes of PM1, PM2.5, and PM10 and AQI were obtained with S data of 0.694, 0.796, 0.97,
and 0.80, respectively, which are still acceptable for AQ reporting. On the other hand,
the intercepts of the fits for PM1, PM2.5, and PM10 are fairly enhanced, i.e., 3.0, 4.7, and
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4.5 µg/m3, respectively, pointing to biased measurements with this sensor at low aerosol
levels. The LOD values calculated for this sensor type under high RH conditions support
this affirmation (see Section 3.3.2) and are in quite good agreement with the corresponding
PMx bias. Nonetheless, these calibration curves invoke errors, which is still acceptable for
AQ reporting, as one recalls the US EPA recommendations [46].

3.3. Analytical Performance of the Sensors
3.3.1. Error of the LCSs for Ambient Microclimatic Parameters

The error indicator metrics of the GPM and BOHU LCSs, evaluated for Ta, are pre-
sented in Table 1. As can be seen, under low RH, the RMSE for Ta ranged from 0.7 to
1.9 ◦C (average: 1.2 ◦C, median: 1.0 ◦C) for GPM and BH1 sensors, while MNE ranged from
2.4 to 6.7% (average: 3.9%, median: 3.3%). For medium RH, the RMSE for Ta was in the
range of 0.8 to 1.7 ◦C (average: 1.1 ◦C, median: 1.0 ◦C) for the two types of LCSs, whereas
the MNE increased, lying in the range of 2.4–7.7% (average: 4.7%, median: 4.4%). Under
high RH in the smoke chamber, the RMSE for Ta was in the range of 0.8–2.2 ◦C (average:
1.6 ◦C, median: 1.7 ◦C), whereas MNE was between 2.5 and 7.5% (average: 5.3%, median:
5.7%). These data all show that, in general, the bias of the Ta readings with the study LCSs
increases slightly in the medium, especially in the high RH range, compared to low RH
conditions. The MNB values were similar or lower compared to MNE for each LCS in any
studied RH range.

Table 1. Error indicators for Ta under various RH conditions (RMSE (◦C), MNE and MNB (%)).

Sensor Type/No. Low RH Medium RH High RH

RMSE MNE MNB RMSE MNE MNB RMSE MNE MNB
GPM-1 1.9 6.7 6.7 1.7 7.7 5.4 2.2 7.5 7.5
GPM-2 0.8 2.7 2.2 0.8 2.4 2.1 2.1 7.2 7.2
BH1-A3 0.7 2.4 1.6 0.9 2.6 0.9 1.2 4.1 4.1
BH1-B3 1.1 3.8 3.5 1.2 6.2 1.5 0.8 2.5 2.5

As appears in Table 2, the LCSs (GPM and BOHU) for RH monitoring have shown
larger errors than those calculated for Ta. Under low RH conditions, the RMSE was fairly
low, i.e., it ranged from 1.2 to 5.4% (average: 3.5%, median: 3.7%), while the MNE was high,
ranging between 3.2% and 15.5% (average: 9.8% (rel.), median: 10.4% (rel.)) for GPM and
BOHU sensors. Under medium RH conditions, higher RMSE was experienced between
4.4% and 9.7% (average: 7.3%, median: 7.6%), while MNE ranged from 5.6 to 12.5% (rel.)
(average: 15.6% (rel.), median: 15.1% (rel.)). For high RHs, the RMSE increased significantly,
ranging between 9.7 and 21.6% (average: 15.2%, median: 14.6%), whereas MNE ranged
from 9.5. to 22.8 (average: 15.6% (rel.), median: 15.1% (rel.)) for the two sensor designs.
The MNB values were found to be similar or slightly lower compared to MNE data for
each LCS over any studied RH range. It can also be seen that the bias in several cases is
negative, corresponding to an underestimation of the true value by the use of the LCSs.
Overall, the pattern is obvious for RH measurements: the higher the RH, the higher the
bias of the readings obtained from LCSs. Nevertheless, both error indicators showed an
aptly low level (<30%) as recommended for LCS testing by US EPA [46].

Table 2. Error metrics for various RH ranges: RMSE (% RH), MNE and MNB (rel. %).

Sensor Type/No. Low RH Medium RH High RH

RMSE MNE MNB RMSE MNE MNB RMSE MNE MNB
GPM-1 5.1 14.5 14.5 4.4 5.6 2.8 9.7 9.5 −9.4
GPM-2 1.2 3.2 −2.5 7.5 9.0 −8.5 13.2 13.6 −13.6
BH1-A3 5.4 15.5 15.5 7.7 8.9 −8.3 16.0 16.6 −16.6
BH1-B3 2.3 6.2 5.8 9.7 12.5 −12.5 21.6 22.8 −22.8
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3.3.2. Performance of LCSs for Size-Segregated Aerosol

The error indicator metrics were evaluated for various PMx species besides the concur-
rent Ta and RH data, registered every 1 min with the assistance of the studied LCSs (Table 3).
As can be seen, under low/medium RH, the GPM-1 and GPM-2 sensors showed quite
low RMSE for PM1, PM2.5, and PM10, i.e., 3.8, 6.5, and 15 µg/m3, respectively, whereas
increased bias was experienced under high RH conditions, e.g., 5.7, 8.2, and 26 µg/m3,
respectively. On the other hand, under low/medium RH, the MNE values of PM1, PM2.5,
and PM10 were 7.0, 9.1, and 11.7%, while similar or higher MNEs of 8.5, 8.6, and 17.2%,
respectively, were experienced for high RHs. Interestingly, for Ta and RH, the RMSE and
the MNE values were of a similar extent under medium and high RH conditions for both
GPMs. Under medium RH conditions, the MNB shows a different pattern for PM1, PM2.5,
and PM10, i.e., −4.3, −6.4, and 9.0%, respectively, whereas at high RH, its value changed
differently for the three PMx species, i.e., 4.6, 0.9, and 19.4%, respectively. These data
indicate the negative bias of the LCSs for low/medium sized PM under low/medium RH,
whereas the bias is positive for coarser aerosol, manifested in PM10 at high RHs.

Table 3. Error indicators for PMx and microclimatic parameters between various LCSs (resolution:
1 min) calculated for aerosol levels not lower than 10 µg/m3 under low/medium and (high) RH.

Sensor/Error Types * Bias for Low/Medium RH (High RH)

PM1 PM2.5 PM10 Ta RH
GPM-1–GPM-2

RMSE 3.8 (5.6) 6.4 (8.1) 15 (26) 0.2 (0.3) 7.5 (8.1)
MNE (%) 7.0 (8.6) 9.1 (8.7) 12 (17) 0.5 (0.8) 11.7 (9.1)
MNB (%) −4.3 (4.6) −6.4 (0.9) 9.0 (19) −0.4 (0.1) −10.5 (−7.7)

GPM-1–BH1-A3
RMSE 7.1 (7.8) 11 (18) 14 (21) 1.2 (1.7) 2.3 (4.3)

MNE (%) 21 (22) 33 (41) 36 (46) 4.5 (2.8) 15 (14)
MNB (%) −7.7 (−12.4) −23 (−27) −24 (−29) −4.3 (−2.7) −12.8 (−12)

GPM-2–BH1-A3
RMSE 9.4 (11) 7.7 (21) 24 (44) 1.2 (1.7) 2.3 (5.0)

MNE (%) 21 (29) 25 (43) 46 (73) 4.1 (2.9) 3.0 (5.2)
MNB (%) −3.0 (−15) −17 (−27) −30 (−40) −3.9 (−2.8) −2.6 (−4.6)

GPM-2–BH1-B3
RMSE 14 (12) 11 (20) 23 (43) 2.2 (2.8) 13 (16)

MNE (%) 40 (46) 42 (59) 66 (94) 6.7 (8.8) 25 (26)
MNB (%) −7.8 (20) −21 (−32) −35 (−44) 7.3 (−5.2) −20 (−20)

BH1-A3–BH1-B3
RMSE 5.4 (6.8) 6.6 (8.4) 7.3 (10) 3.1 (2.6) 11.1 (13)

MNE (%) 18 (19) 16 (17) 17 (19 10 (8.6) 22 (21)
MNB (%) −6.9 (−6.8) −6.2 (−6.3) −7.6 (−7.8) 11.6 (8.1) −18 (−16)

* The RMSE for PMx, Ta, and RH is specified in µg/m3, ◦C, and %, respectively, while MNE and MNB are given in
relative percent (n = 920 for medium RH and n = 840 for high RH).

Under medium RHs, the GPM and BH1-A3 LCSs demonstrated somewhat higher
RMSE as compared to that experienced between the two GPM sensors, except for PM10
of a similar extent. The RMSE for PM1, PM2.5, and PM10 was 7.1, 11.3, and 13.8 µg/m3,
respectively, while an increased bias was obtained at high RHs, i.e., 7.8, 18, and 21 µg/m3,
respectively. Similarly, the MNE increased compared to those found between the GPMs.
Under low/medium RHs, the MNE for PM1, PM2.5, and PM10 was high, i.e., 21, 33, and
36%, while similar or higher values of 22, 41, and 46%, respectively, were experienced for
high RH conditions. At low/medium RH, the MNB data showed an increasing pattern
from PM1, PM2.5, to PM10 with values of −7.7, −23, and −24%, respectively, whereas at
high RH, it increased to −12, −27, and −29%, respectively. For Ta and RH, the RMSE and
the MNE between BH1-A3 and any of the GMPs were of similar extent, irrespective of RH
in the smoke chamber, except for GPM-1 that was a five-fold higher value (14%).

The error indicators evaluated for various PMx species, registered every 1 min with
the study LCSs against the reference sensor, are listed in Table 4. As can be seen, under
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medium RH conditions, the GPM-1 and GPM-2 sensors showed quite similar RMSE for
PM1 and PM2.5, i.e., about 20 and 10 µg/m3, respectively, whereas somewhat increased
bias was experienced for PM10 of GPM-2 (30 µg/m3). A similar pattern was observed for
MNE of PM1 and PM2.5, i.e., about 24% and 42%, respectively, whereas an increased value
was experienced for PM10 of GPM-2 (64%). Under high RH conditions, the RMSE increased
slightly for PM1 and PM2.5, whereas a higher increment of PM10 was observed. This effect
is likely due to the higher rate of particle growth under increasing RHs, which brings more
uncertainty in the measurement of coarse aerosol [49]. The MNB was quite high in the
case of GPM sensors, apart from PM1 (−2.8/−8.5%), and more or less acceptable for PM2.5
(41/33%) but outstandingly high for PM10 (65/57%). These findings point to the lesser
usability of the GPM sensor for coarse aerosol quantitation.

Table 4. Error flags for PMx species of the study LCSs determined against the GRIMM reference
sensor for aerosol levels not lower than 10 µg/m3 under medium/(high) RH conditions.

Sensor/Error Type Parameter/Bias Value *

PM1 PM2.5 PM10
GPM-1
RMSE 18 (22) 10 (11) 19 (22)

MNE (%) 24 (22) 42 (37) 64 (57)
MNB (%) −2.8 (−8.5) 41 (33) 64 (56)
GPM-2
RMSE 21 (21) 9.5 (10.8) 30 (40)

MNE (%) 24 (22) 36 (37) 75 (83)
MNB (%) −6.9 (−5.0) 31 (33) 75 (83)

BOHU BH1-A3
RMSE 14 (22) 7.5 (16) 8.0 (9.3)

MNE (%) 17 (25) 13 (19) 20 (17)
MNB (%) −15 (−22) 5.0 (−5.2) 20 (8.0)

BOHU BH1-B3
RMSE 12 (21) 6.8 (15) 12 (10)

MNE (%) 25 (30) 9.2 (19) 13 (16)
MNB (%) −22 (−29) −3.4 (−13) 8.9 (−7.0)

* The RMSE is expressed in µg/m3, while MNE and MNB are in percent (n = 920 for medium RH and n = 840 for
high RH).

Under medium RH, the BH1-A3 sensor featured similar or lower RMSE as compared
to those found for GPM sensors against the reference monitor. For instance, the RMSE
for PM1, PM2.5, and PM10 was 14, 7.4, and 7.8 µg/m3, respectively, whereas its increase
was observed at high RH, i.e., 22, 16, and 9.3 µg/m3, respectively. The MNE formed a
similar pattern to the RMSE. Under medium RH, the MNE of PM1, PM2.5, and PM10 for the
BH1-A3 sensor was found to be 17, 13, and 20%, respectively, whereas under high RHs,
it was 25, 19, and 17%, respectively. Interestingly, for BH1-A3 sensors, the RMSE and the
MNE values develop a decreasing trend from PM1 towards higher PMx ranges, which is
the opposite order experienced for the GPMs. Similar patterns of RMSE and MNE were
observed for the BH1-B3 sensor (Table 4). Under low/medium RH conditions, the MNB
displayed a varying bias for PM1, PM2.5, and PM10 with −15, 5, and 20%, respectively,
whereas decreased values were found for high RH conditions.

The LOD and the LOQ data under low/medium and high RH conditions are presented
in Table 5. As can be seen, at low-to-high RH, the LODs of each PMx fraction for the GPM
and the BH1-B3 sensors are advantageously low (1.5 µg/m3) compared to those calculated
for the BH1-A3 (3.5–4.5 µg/m3). This is likely due to the higher background noise of the
latter design, manifested in enhanced readings (2–3 µg/m3) in the otherwise clean air.
These LOD data are in line with those observed for GPM and BH1-A3 in field campaigns,
although the latter value was slightly higher due to the higher background PM levels [17].
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Table 5. Limit of detection (LOD), limit of quantification (LOQ), and the peak concentration recorded
with the study PMx sensors under low/medium and high RH § conditions.

Monitor Type Aerosol
Size-Range LOD (µg/m3) LOQ (µg/m3)

Peak Conc.
(µg/m3) *

GPM
PM1 1.5 (1.5) 5.1 (5.1) 120 (145)

PM2.5 1.5 (1.5) 5.1 (5.1) 190 (240)
PM10 1.5 (1.5) 5.1 (5.1) 280 (290)

BOHU BH1-A3
PM1 2.5 (3.5) 9 (12) 140 (160)

PM2.5 3.5 (4.5) 12 (15) 170 (200)
PM10 3.5 (4.5) 12 (15) 210 (250)

BOHU BH1-B3
PM1 1.5 (1.5) 5.1 (5.1) 167 (162)

PM2.5 1.5 (1.5) 5.1 (5.1) 205 (198)
PM10 1.5 (1.5) 5.1 (5.1) 256 (240)

GRIMM
PM1 0.25 (0.25) 0.85 (0.85) 165 (205)

PM2.5 0.25 (0.25) 0.85 (0.85) 180 (220)
PM10 0.25 (0.25) 0.85 (0.85) 185 (230)

* The maximum concentration for error calculations registered in the smoke chamber. § High RH values in
parentheses.

On the other hand, for the GRIMM monitor, the LOD as low as 0.25 µg/m3 was
experienced due to the higher sensor sensitivity towards finer PM fractions, which arises
from the enhanced detection capability for lower aerosol masses, compared to GPM and
BH1 sensors. In general, under low/medium RHs, lower LOD values of PMx for the
BH1-A3 sensors were attained, whereas the rest of the study sensors experienced the same
LODs at various RHs.

4. Discussion

The literature reports on several kinds of LCSs based on PMS5003, as noticed above,
and a couple of AQ networks, including PurpleAir [22–26] and Clarity [13]. Moreover,
this sensor has been applied in several geospatial and exposure studies, for instance, in
Refs. [50,51]. A couple of studies suggest that the readings for PM1 and PM2.5 of this
LCS are in good correlation with those measured against reference methods, but its low
performance was found for coarse aerosol, e.g., PM10–2.5 [8,14,15,50].

In a former field monitoring study [17], the GPM and the BH1-A3 sensors provided
similar linearity for indoor and outdoor aerosols. But a relatively short PM mass concen-
tration range could be covered and assessed for calibration, i.e., up to about 130 µg/m3

for PM10. Moreover, the studied LCSs could be measured against a less sharp OPC sensor,
which could only assess PM2.5 levels but not give information on accuracies towards fine
and coarse aerosol fractions. In this investigation, it was shown that the studied LCSs
can be calibrated and tested with monodispersed spherical latex aerosol introduced into
a laboratory smoke chamber for a much higher concentration range of the aerosol under
controlled slow heating and/or varying RH conditions. By using an aerosol generator, as
high PM1, PM2.5, and PM10 levels as about 150, 350, and 450 µg/m3, respectively, were
reached in the smoke chamber. This is already about three times higher PMx concentration
than those obtained in the former field study, with similar types of LCSs [17]. In general,
linear relationships were established between the concurrently registered data with the
various OPCs regarding intra- and inter-model accuracy.

For this investigation, some LCSs, such as Geekcreit PMx, built on a PMS5003 sampler,
and BOHU BH1 (models A3 and B3) monitors (built with a Pando G7 OPC) were compared
with a laboratory-grade sensor, GRIMM 1.109 used as a reference monitor. The results
have clearly shown that the accuracy of the readings for PM1, PM2.5, and PM10 with the
different and the same types of LCSs was acceptable, corresponding to those observed by
means of the reference, research-grade sensor. The GPM sensors are based on PMS5003
OPC, which is characterized by low detection efficacy for coarse PM [13,14,26]. This would
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introduce some bias into the determination of the coarse fraction, i.e., PM10–2.5, manifested
in the underestimate of PM10 levels. On the other hand, in this study, an overestimate was
observed for PM10 by the PMS-based LCSs, indicating the coagulation of particulates and a
positive bias of higher RH on the PM10 determinations.

Controlled slow heating (0.2 ◦C/min) of the smoke chamber was advantageous for
calibration/checking of the Ta sensors of the monitors against an industrial-grade, analog
thermometer, whereas Ta data observed during the cooling stage of the smoke chamber
was rather hampered by higher measurement bias.

The RH sensors of the LCSs were assessed with the application of slow evaporation of
boiled/hot water in the smoke chamber. With this simple procedure, even the medium and
high RH ranges could be covered for calibration. Nevertheless, the high RH ranges are less
accurately approached and had the drawback of lower detection efficacy, as can be seen
from the analytical performance/error indicator metrics (RMSE, MNE, MNB, LOD, and
LOQ).

5. Conclusions

In this study, various laboratory conditions inside a smoke chamber were adjusted for
the calibration of low-cost air quality devices, i.e., Geekcreit and BOHU BH1 models A3 and
B3, each based on the OPC principle for PMx components. Microclimatic variables such as
air temperature and relative humidity were also monitored. It was demonstrated that the
LCSs provided generally accurate readings for PM2.5, irrespective of the air temperature
and relative humidity changes in the smoke chamber. On the other hand, the PM1 and
PM10 readings of the LCSs (irrespective of either with PMS5003 or Pando G7 sampler) were
slightly lower and higher, respectively, compared to those recorded with the research-grade
air monitor. This is likely due to the lower detection efficacy of the fine and coarse fraction
of ambient aerosol with the assistance of low-cost OPCs possessing a low number of
bins. Moreover, at high RH, the calibration plots showed heteroscedasticity (about 10–20%
increase in bias) towards higher PMx concentrations, which was also observed for AQI, Ta,
and RH calibration curves.

For temperature calibration, it appears that the low RH in the smoke chamber provided
more reproducible conditions in terms of the lowest measurement bias for LCSs as recorded
against a reference-grade analog thermometer. The relative humidity measurements with
the LCSs performed against an industrially calibrated RH meter provided accurate readings
at the low and medium RH range, but high RHs caused increased bias. Although the
experimental arrangement with the smoke chamber provided relatively reliable values
for PMx and microclimatic parameters, the accuracy of the data could be improved, for
instance, with the application of lower volumes of the aerosol chamber, lower heating rates,
and more sharply controlled RH conditions, e.g., by means of those reported in Ref. [41].
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