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Abstract: In order to systematically understand the operational forecast performance of current
numerical, statistical, and ensemble models for O3 in Beijing–Tianjin–Hebei and surrounding regions,
a comprehensive evaluation was conducted for the 30 model sets regarding O3 forecasts in June–July
2023. The evaluation parameters for O3 forecasts in the next 1–3 days were found to be more rea-
sonable and practically meaningful than those for longer lead times. When the daily maximum 8 h
average concentration of O3 was below 100 µg/m3 or above 200 µg/m3, a significant decrease in the
percentage of accurate models was observed. As the number of polluted days in cities increased, the
overall percentage of accurate models exhibited a decreasing trend. Statistical models demonstrated
better overall performance in terms of metrics such as root mean square error, standard mean bias,
and correlation coefficient compared to numerical and ensemble models. Numerical models exhibited
significant performance variations, with the best-performing numerical model reaching a level com-
parable to that of statistical models. This finding suggests that the continuous tuning of operational
numerical models has a more pronounced practical effect. Although the best statistical model had
higher accuracy than numerical and ensemble models, it showed a significant overestimation when
O3 concentrations were low and a significant underestimation when concentrations were high. In
particular, the underestimation rate for heavy polluted days was significantly higher than that for
numerical and ensemble models. This implies that statistical models may be more prone to missing
high-concentration O3 pollution events.

Keywords: O3 forecast; forecast performance assessment; multi-model comparison

1. Introduction

Near-surface ozone has become one of the primary atmospheric pollutants. High
ozone concentrations can be harmful to human beings and the environment, potentially
causing respiratory issues and damaging plant growth [1,2]. Fluctuations in O3 concen-
trations are primarily associated with temperature, relative humidity, wind speed, and
wind direction. Different meteorological conditions have varying impacts on O3 concen-
trations. In general, higher surface temperatures, lower relative humidity, and stronger
solar radiation favor the photochemical reactions of O3, leading to an increase in O3 con-
centrations [3–5]. Since the issuance of the “Action Plan for Air Pollution Prevention and
Control” in 2013, China has achieved significant success in controlling PM2.5 pollution.
However, with the adjustment of industrial structure and changes in meteorological condi-
tions, the issue of O3 pollution has become increasingly prominent [6–10], particularly in
Beijing–Tianjin–Hebei and surrounding regions [11]. Urban air quality forecast provides
crucial information and acts as a basis for decision making, allowing local governments to
initiate emergency responses to heavy polluted days, formulate pollution control measures,
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and identify technical means for air pollution control and precise regulation [12]. Thus, in
the face of a complex pollution situation, the accurate forecast of O3 is the key for precise
control decision making.

Currently, models used for O3 forecasts mainly include numerical models, statistical
models, and ensemble models. O3 numerical models [13], based on atmospheric dynam-
ics and physical–chemical processes, predict future O3 concentrations by simulating O3
production and consumption processes in the real atmosphere. Their advantage lies in
providing a physical interpretation of the simulation process, aiding in understanding
the fundamental mechanisms of the atmospheric system. However, they require signif-
icant computational resources and detailed input data, including meteorological fields,
topographic conditions, and emission inventories. O3 statistical models [14] employ tra-
ditional statistical methods (like regression analysis and time series analysis) or machine
learning algorithms (such as non-linear or deep learning), which have been widely used
in energy and medicine fields [15–17]. They are used to analyze historical O3 monitoring
data and meteorological conditions, as well as to establish mathematical relationships
for predicting future O3 concentrations, since meteorological factors such as temperature,
relative humidity, and solar radiation exhibit a strong correlation with O3 concentration [18].
The advantage of statistical models is the fast execution speed, but they lack detailed a
physical–chemical interpretation of results and are considered black box models [19,20].
O3 ensemble models [21] utilize statistical methods to analyze and compute results based
on numerical model forecasts combined with observed data, ultimately providing adjusted
O3 forecast results. The ensemble models can enhance the system’s resilience to noise and
outliers, improving the overall model robustness [22,23]. However, the ensemble models
depend on the outputs of individual sub-models. This may lead to difficulties in providing
a clear model interpretation, which is a similar shortcoming for statistical models.

Yang et al. [24], in a review of over 200 O3 numerical model applications in China since
2010, found that O3 numerical models are more widely adopted and perform well in the
Yangtze River Delta and Pearl River Delta regions, but their applications are relatively lim-
ited in Beijing–Tianjin–Hebei and surrounding areas. In recent years, numerous researchers
have conducted extensive research on the establishment and performance evaluation of
O3 statistical models [25–27] in Beijing–Tianjin–Hebei and surrounding regions. However,
the forecast lead time generally does not exceed 3 days, and the evaluation indicators used
vary from model to model. The applications of O3 ensemble models in China are relatively
scarce. There is limited research on the evaluation of O3 forecast model performance in the
current operational processes in China, and the referential quality of various O3 models
in operational processes has not been investigated. This study conducted a comprehen-
sive evaluation of O3 forecast results in Beijing–Tianjin–Hebei and surrounding regions
for June and July 2023 based on 30 models of numerical, statistical, and ensemble types.
Multiple evaluation metrics were employed to provide a comprehensive assessment of
their forecast performance, aiming to enhance the supportive role of model forecast in
environmental management.

2. Materials and Methods
2.1. Models and Setting

The forecast results evaluated in this study consisted of a total of 30 model sets,
including numerical, statistical, and ensemble models. The forecast period for each set
spanned from 1 June to 31 July 2023, covering 57 cities at the prefecture level and above in
six provinces (or municipalities), namely Beijing, Tianjin, Hebei, Shanxi, Shandong, and
Henan. The forecast content included hourly time series of O3 concentrations for the next
7 days in each city.

Numerical Models: The numerical model forecast results evaluated in this study
consisted of a total of 20 sets. Among them, six sets utilized the Nested Air Quality Predic-
tion Modeling System (NAQPMS) developed by the Institute of Atmospheric Physics, the
Chinese Academy of Sciences. Another six sets used the Community Multiscale Air Quality
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(CMAQ) Model developed by the United States Environmental Protection Agency. Addi-
tionally, six sets employed the Comprehensive Air Quality Model with Extension (CAMx).
One set was based on the Weather Research and Forecast—Chemistry (WRF-chem) Model
developed by the National Oceanic and Atmospheric Administration (NOAA), and the last
one set utilized the RuiTu Map (RMAPS)—Chemistry subsystem developed by the Beijing
Urban Meteorological Research Institute based on WRF-chem. Meteorological driving data
were sourced from National Centers for Environmental Prediction—Global Forecast Sys-
tem (NCEP-GFS) or China Meteorological Administration—Global Assimilation Forecast
System (CMA-GFS).

Statistical Models: The statistical model forecast results evaluated in this study con-
sisted of a total of 6 sets, all constructed using machine learning methods based on historical
O3 concentrations and meteorological conditions over a period of time. The nonlinear
machine learning methods employed included support vector regression (SVR), random
forest regression (RFR), and other algorithms. Additionally, deep learning methods, such
as long short-term memory (LSTM), recurrent neural networks (RNNs), and deep neural
networks (DNNs) were utilized. One of the models considered the effects of pollutant
emissions, and two models considered the spatial transport of pollutants. Multiple models
incorporated advanced algorithms, such as extreme gradient boosting, time series analysis,
and attention mechanisms, to enhance the predictive performance based on machine learn-
ing. The statistical models used in this study were not categorized by the applied machine
learning methods because several different machine learning methods were applied to one
single statistical model.

Ensemble Models: The ensemble model forecast results evaluated in this study con-
sisted of a total of 4 sets. Two sets were constructed by merging multiple-source observation
data based on the forecast results from the Community Multiscale Air Quality (CMAQ)
Model. The remaining two sets were constructed by merging observation data based on
forecast results from multiple numerical models, including NAQPMS, CMAQ, CAMx, and
WRF-chem. The ensemble models used in this study were based on numerical forecast and
observed data and generated new forecast results by establishing the relationship between
them with machine learning methods.

2.2. Evaluation Methods

This study employed three categories of forecast performance evaluation indicators,
including general statistical metrics, evaluation metrics for pollution events, and compre-
hensive assessment metrics based on the Individual Air Quality Index (IAQI) [28] for O3.
The observation data sourced from the China National Environmental Monitoring Center,
specifically data from 287 national-level ground monitoring stations in Beijing–Tianjin–
Hebei and surrounding regions, were used for verification purposes. The O3 concentration
monitoring data had a temporal resolution of 1 h. Considering the timeliness of operational
forecasting, only the forecast results generated before 8:00 AM (local time) each day were
considered valid.

General Statistical Metrics: This category includes four common statistical indicators,
namely the correlation coefficient (R), the root mean square error (RMSE), normalized
mean bias (NMB), and mean bias (MB). These indicators are used to assess the forecast
performance of O3 numerical models.

Pollution Event Evaluation Metrics: The O3 daily assessment indicator is the 8 h sliding
average maximum value (denoted as O3–8h max). The limit value for O3–8h max in cities
was set at 160 µg/m3, and exceeding this limit indicated the occurrence of a pollution event.
The distribution of observed and model-predicted values was classified into four scenarios,
where cities were designated as follows: “a” for days when both observed and predicted
values were below the limit; “b” for days when observed values were below the limit
but predicted values exceeded it; “c” for days when observed values exceeded the limit
but predicted values were below it; and “d” for days when both observed and predicted
values exceeded the limit. The threshold forecast accuracy (FC) is used to assess the overall
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performance of the model’s ability to predict the occurrence of O3 pollution events and is
calculated using Formula (1).

FC =
a + d

a + b + c + d
× 100% (1)

The probability of detection (POD) is defined as the proportion of forecasted ex-
ceedance days among all observed O3 exceedance days. It examines how well the model
predicts O3 pollution events, with a higher POD indicating better performance. The POD is
calculated using Formula (2):

POD =
d

c + d
× 100% (2)

The false alarm rate (FAR) is defined as the proportion of forecasted exceedance days
among all days where observed values do not exceed the limit. It assesses the model’s
tendency to issue false alarms for O3 pollution events, with a lower FAR indicating better
performance. The FAR is calculated using Formula (3):

FAR =
b

b + d
× 100% (3)

IAQI Comprehensive Evaluation: The model-predicted O3–8h max values for each city
were converted into corresponding IAQI values. The IAQI forecast range was obtained
by allowing a 25% fluctuation above and below the model-predicted IAQI values. If the
observed IAQI value for the O3–8h max value in a city fell within this forecast range, it was
considered accurate; otherwise, it was determined as a high or low IAQI forecast. Based on
the daily IAQI forecast range, corresponding IAQI forecast level ranges were determined.
If the observed IAQI level for the daily O3–8h max concentration fell within this forecast
level range, it was considered an accurate forecast; otherwise, it was categorized as a high
or low forecast. The IAQI comprehensive accuracy rate (S) is calculated using Formula (4):

S =
n
N

× 100% (4)

n represents the number of days with an accurate IAQI comprehensive forecast and N
represents the total number of valid days during the evaluation period.

3. Results and Discussion

For the 30 sets of forecast results from cities in Beijing–Tianjin–Hebei and surrounding
regions, evaluation metrics for different forecast lead times were calculated based on each
city. The regional assessment results were represented by the average values of these
metrics across all cities. In Figure 1a, the distribution of regional O3 IAQI comprehensive
accuracy levels for different forecast lead times is presented (where the x-axis represents
1d, 2d . . .7d, corresponding to forecasts for the next 1–7 days). The IAQI comprehensive
accuracy could reach up to 83%, 81%, 79%, and 78% for lead times of 1–4 days, respectively,
with average accuracy levels not falling below 60%. For lead times of 1–3 days, most models
achieved accuracy levels above 65%. Figure 1b–d present statistical results for pollution
event assessment indicators. For lead times of 1–6 days, the POD of the top-performing
forecast models could reach around 90%, with most models above 70% for lead times
of 1–2 days. For lead times of 1–3 days, the FC could exceed 80%, with average values
surpassing 70%, and the FAR for a lead time of 3 days could be as low as 4%, with most
models having a FAR below 26%. Figure 1e–h provide regional average statistical results
for general statistical indicators. The correlation of O3 forecasts significantly decreased with
increasing lead times. For lead times of 1–4 days, the models with the highest correlation
coefficients could reach 0.83, 0.82, 0.79, and 0.77, respectively, while for lead times of
5–7 days, the highest correlation coefficients were in the range of 0.67–0.68. For lead times
of 1–3 days, most models had correlation coefficients exceeding 0.60. Smaller RMSE values
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indicated better forecasting performance. For lead times of 1–4 days, the models with the
smallest RMSE were 27, 28, 28, and 30 µg/m3, respectively, while most models did not
exceed 40 µg/m3. The MB and NMB were similar indicators, and when they approached
0, better model performance was achieved. Positive values indicated overestimation,
while negative values indicated underestimation. The majority of models in the statistical
period showed O3 forecast results leaning toward underestimation. In summary, the
comprehensive statistical results of all evaluation metrics for the 30 sets of O3 forecasts
in Beijing–Tianjin–Hebei and surrounding regions indicated a general deterioration trend
with an increasing lead time. The results for forecasts within the next 1–3 day range showed
significant reference significance.
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The comprehensive analysis of the forecast results for three types of models (numerical,
statistical, and ensemble) for a lead time of 3 days is presented in Figure 2. The figure
provides a synthesis of the regional average RMSE, NMB, and R values for each set
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of forecasts. In the plot, each circle represents a set of forecast results, with the y-axis
corresponding to the RMSE, the x-axis corresponding to the NMB, and the size of the
circle indicating the magnitude of R. The figure shows that the statistical models exhibited
better overall performance in terms of RMSE and R values compared to the numerical
and ensemble models. The majority of numerical and ensemble models showed small
biases, while the statistical models demonstrated good consistency in all three evaluation
metrics. The statistical models with the smallest RMSE also exhibited good NMB and
correlation coefficients. For the four ensemble forecasts, R values were very close, ranging
from 0.6 to 0.7, with RMSE differences not exceeding 8 µg/m3. However, there was a
notable disparity in the distribution of NMB, ranging from −0.26 to 0.12. The results
from the twenty numerical models showed significant variability, but the best-performing
numerical model was comparable to the statistical models and the best ensemble model.
Overall, the statistical models demonstrated a closer resemblance to the observed O3–8h
max concentrations, and the best-performing numerical and ensemble models achieved a
similar forecasting level.
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for a lead time of 3 days.

In terms of IAQI comprehensive accuracy with a lead time of 3 days, the optimal
model forecast results were selected as the top model. The models with the best IAQI
comprehensive accuracy in numerical, statistical, and ensemble categories were denoted as
top numerical, top statistical, and top ensemble, respectively. Figure 3a displays the regional
average forecast performance for the top numerical, top statistical, and top ensemble
models, which are abbreviated in the figure as Top_n, Top_s, and Top_e, respectively. The
average IAQI comprehensive accuracy is ranked as follows: top statistical (65%) > top
numerical (59%) > top ensemble (58%). Both numerical and ensemble models tended
to overestimate, while statistical models tended to underestimate the O3 concentration
observation value. When a day had a O3–8h max concentration over 160 µg/m3, this day was
defined as a polluted day. Figure 3b focuses on evaluating the model’s forecast performance
on polluted days during the evaluation period. The average IAQI comprehensive accuracy
was ranked as follows: top ensemble (65%) > top numerical (64%) > top statistical (62%).
The forecast accuracy of numerical and ensemble models improved on polluted days and
surpassed that of statistical models. Additionally, it was observed that the top statistical
bias rate is significantly higher than that of top numerical and top ensemble. This may be
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attributed to the limited predictive ability of statistical models concerning atypical events
due to the quality and quantity of historical data [29,30]. Moreover, the lack of a description
of long-distance transport and terrain for O3 and its precursors can lead to significant
deviations in pollution forecasting from complex environments [31,32]. Considering the
varying performance of each model in different cities, Figure 3c provides a breakdown of
the forecast results for top models in each city. For all days in June and 25 July 2023, out
of 57 cities, the top model had an accuracy exceeding 80%, with three cities reaching 90%.
Additionally, 30 cities had top model accuracy ranging between 70% and 80%. Figure 3d
evaluates the forecast performance on polluted days, where black dots represent polluted
days (i.e., the sample size for IAQI forecast performance assessment). It was observed that
three cities had a top model accuracy rate of 100%, indicating accurate forecasts for all
polluted days. Furthermore, 34 cities achieved accuracy rates exceeding 90%, with only
three cities having accuracy rates below 80%. The forecast bias in all cities was mainly
characterized by underestimation, demonstrating that the models tended to underestimate
pollution events.
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Figure 4 illustrates the relationship between O3 concentration and the accuracy of
model forecasts. The shaded areas represent the percentage of models with accurate IAQI
comprehensive forecasts within the corresponding O3 concentration range for each city.
The x-axis arranges cities in descending order based on the number of polluted days with
daily mean O3–8h max concentration above 200 µg/m3, which is used to represent the
pollution level. As the pollution level in cities decreased, there was an overall upward
trend in the percentage of accurate models. When O3–8h max concentrations ranged from
100 to 200 µg/m3, over 60% of models could make accurate forecasts. Specifically, in the
concentration range [100, 160), corresponding to the “Good” IAQI level, 63% of models
provided accurate forecasts. In the concentration range of “Light Pollution” [160, 215),
an average of 57% of models could accurately predict O3 levels. However, when O3–8h
max was less than 100 µg/m3 or greater than 215 µg/m3, the percentage of models with
accurate forecasts significantly dropped below 40%, especially when O3–8h max reached
the “Heavy Pollution” level, with the accuracy rate dropping to 28%.
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accurate forecasts and O3 concentrations.

To analyze the forecast performance of different models across different O3 concentra-
tion ranges, the IAQI comprehensive accuracy of the next 3-day was used as the indicator
to pick the top numerical, statistical, and ensemble models for each city. The forecast
performance for all cities against the variations in the observed O3 was then analyzed in
Figure 5. When O3–8h max was in the concentration range of [110, 190), the accuracy of all
three models was relatively high, i.e., around 80%. When the O3–8h max value was low,
both overestimation and underestimation could be observed in the numerical and ensemble
models, while the statistical models tended to overestimate only. When the O3–8h max value
was high, the forecast bias for all three types of models was mainly underestimation. The
numerical models had significantly more accuracy than the statistical models and slightly
more accuracy than the ensemble models. The statistical models showed a significantly
higher underestimation rate than the numerical and ensemble models, indicating that
the statistical models have higher possibilities in failing to report high-concentration O3
pollution events.
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4. Conclusions

This study conducted O3 forecast experiments for all cities in Beijing–Tianjin–Hebei
and surrounding regions, generating 30 sets of data from different numerical, statistical,
and ensemble forecasting models. A comprehensive evaluation of 30 sets of forecasts
results was explored and the conclusions are listed below:

When the lead time increases, the declining trend in O3 concentration forecast perfor-
mance becomes more evident. The forecasts for lead times of 1–3 days had higher reference
significance, while the forecasts for 5–7 days had larger errors. At a lead time of 3 days,
most models achieved an IAQI forecast accuracy rate exceeding 65%, with the highest
reaching 79%. For most models, the POD values surpassed 65%, with the highest being
90%. The lowest FAR did not exceed 4% and most models had a FAR below 26%. However,
at a lead time of 5–7 days, forecast performance significantly declined, with an average
IAQI forecast accuracy rate below 60%, POD averaging around 60%, a FAR over at least
10%, an average RMSE exceeding 40 µg/m3, and an average R dropping below 0.6.

An evaluation of different models across cities with varying pollution levels revealed
that when O3–8h max is in the concentration range of (100, 200), over 60% of models
can accurately predict it. However, beyond this concentration range, the proportion of
models with accurate predictions significantly dropped to less than 40%. Overall, as the
pollution level in cities increased, the proportion of models with accurate predictions
showed a decreasing trend, indicating that there are still considerable shortcomings in the
ability of various O3 models that can be used to accurately predict polluted days. Future
efforts should focus on optimizing models to enhance the forecasting capability of O3
pollution processes.

From the perspective of statistical metrics, such as RMSE, NMB, and R, statistical
models outperform numerical models and ensemble models in general. Numerical models
exhibited significant performance variations, with only the best-performing numerical and
ensemble models being comparable to statistical models, suggesting that well-designed
numerical models have the potential to achieve high forecast accuracy. The continuous
optimization of numerical models has significant importance. In terms of IAQI forecast-
related metrics, statistical models exhibited significantly higher rates of underestimation
compared to numerical and ensemble models. For the forecast of polluted days, numerical
models and ensemble models could achieve accuracy rates of 65% and 64%, respectively,
surpassing statistical models at 62%. The underestimation rate of numerical models was
25%, lower than that of other models. As underestimation may lead to missed opportunities
for implementing control measures in advance, the results from best-performing numerical
and ensemble forecasts provide more meaningful insight into pollution process. The
best-performing numerical model showed significantly better forecasting performance in
the high O3 concentration range compared to the best-performing statistical model, and
slightly outperformed the best-performing ensemble model. In general, the overall forecast
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performance of numerical models was less accurate than that of statistical models, but the
statistical model was less effective in predicting the O3 pollution process.
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