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Abstract: Vehicle emissions have become a significant contributor to urban air pollution. However,
studies specific to city-level vehicle emission inventories are still scarce and tend to be outdated. This
study introduces a methodology for developing high-resolution monthly vehicle emission inventories.
We applied this methodology to Changzhou in 2022 to analyze emission characteristics and generate
gridded emission data with a resolution of 0.01◦ × 0.01◦. The results show that the total vehicle
emissions of carbon monoxide (CO), volatile organic compounds (VOCs), nitrogen oxides (NOx),
and fine particulate matters (PM2.5) in Changzhou are 39.69, 8.68, 18.6, and 0.56 Gg, respectively.
Light-duty passenger vehicles are the main contributors to CO (74.3%) and VOCs (86.1%) emissions,
while heavy-duty trucks play a significant role in NOx (50.7%) and PM2.5 (34.7%) emissions. Gasoline
vehicles are mainly responsible for CO (78.6%) and VOCs (91.4%) emissions, while diesel vehicles are
the primary source of NOx (81.1%) and PM2.5 (70.6%) emissions. Notably, China IV vehicles have
the highest emission contribution rates (ranging from 32.5% to 44.9%). Seasonally, emissions peak in
winter and are lowest in April. Spatially, emission intensity is higher in the northeast of Changzhou
compared to the west and south. The methodology presented in this study offers a valuable tool for
developing comprehensive city-level emission inventories, and the results provide critical insights
that can inform the formulation of effective environmental policies.

Keywords: vehicle emissions; air pollutants; emission inventory; spatial distribution; Changzhou

1. Introduction

Since 2013, China’s clean air policies have led to notable changes in pollutant emis-
sions and surface air quality [1,2]. Nevertheless, further emission reductions are essential
for achieving substantial air quality improvements [3]. China has experienced rapid ur-
banization and motorization, resulting in a significant increase in the vehicle population,
which surged from 224 million in 2012 to 417 million in 2022 [4]. Consequently, vehicles
have emerged as a major source of air pollution in China [5]. Vehicle emission inventories
quantitatively describe the air pollutants emitted by vehicles, thus providing a scientific
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basis for the establishment of environmental control policies [6]. The rapid growth and sub-
stantial volume of vehicle emissions have attracted increasing attention from researchers [7].
Over the past decade, vehicle emission inventories have been developed at the national,
provincial, and city levels in China.

Research on vehicle emission inventories at the national level started relatively early.
Cai and Xie (2007, 2013) calculated China’s vehicle emissions from 1980 to 2009, revealing
the rapid growth of air pollutant emissions [8,9]. Zheng et al. (2014) established China’s
vehicle emission inventory for 2008 with a spatial resolution of 0.05◦ × 0.05◦, based on the
vehicle population at the county level and the technology distribution at the provincial
level [10]. Jia et al. (2018) calculated vehicle emissions in mainland China from 2011 to 2015
and found an imbalance in the distribution of emissions, with higher total emissions and per
capita emissions in developed provinces and higher emissions per unit of gross domestic
product (GDP) in developing provinces [11]. Wen et al. (2023) established monthly and
provincial vehicle emission inventories in China from 2010 to 2021 and found that vehicle
emissions varied widely in different months and regions, emphasizing the need for ambient
temperature correction [12].

At the provincial level, there have also been relatively extensive studies on vehicle
emissions. Liu et al. (2017) established a vehicle emission inventory in Guangdong Province
from 1994 to 2014, and found that changes in carbon monoxide (CO) and volatile organic
compounds (VOCs) emissions were closely correlated with the population of yellow-
labeled light passenger cars and motorcycles, while changes in nitrogen oxides (NOx) and
fine particulate matters (PM2.5) were consistent with the population of yellow-labeled
heavy passenger cars and trucks [13]. Lv et al. (2019) estimated vehicle emissions during
2003 to 2015 in Yunnan Province and found that the increase in the vehicle population
was the main driver of the increase in vehicle emissions [14]. Xu et al. (2023) developed
an air pollutant emission inventory in Hainan in 2017 to analyze the impact of vehicle
electrification on improving air quality, and found that this policy will not only reduce air
pollutant emissions but also avoid complex ozone pollution in the future [15].

Although studies at the national and provincial levels have improved our understand-
ing of vehicle emissions, their emission inventories often lack the resolution needed for
precise policymaking. Therefore, researchers have recently turned their attention to vehicle
emissions at the city level. Jing et al. (2016) developed a high temporal-spatial resolution
vehicle emission inventory for Beijing in 2013, revealing consistent spatiotemporal trends
with human activities [16]. Zou et al. (2023) used a link-based vehicle emission model to
establish a real-world vehicle emission inventory for Zhengzhou in 2017, evaluating the
impact of traffic restriction policies [17]. These studies show that the spatiotemporal resolu-
tion of the city-level emission inventories is generally higher, which is crucial for effective
policymaking. Nevertheless, the research years of the previous emission inventories are
usually before 2020. Considering that China implemented the vehicular China VI standard
nationwide in 2020, there is an urgent need to update vehicle emission inventories. Addi-
tionally, previous studies often used non-indigenous models to develop vehicle emission
inventories in China, such as the Computer Program to Calculate Emissions from Road
Transport (COPERT) [18], the Motor Vehicle Emission Simulator (MOVES) [19], and the
International Vehicle Emissions (IVE) [20], which have problems with the applicability of
the model and may lead to uncertainty. The Ministry of Ecology and Environment has
released technical guidelines on emission inventories (GEI) [21], which incorporates more
local studies and has been widely accepted by Chinese researchers. In this study, the GEI is
used to compile the vehicle emission inventory.

Changzhou is a prefecture-level city in China, where vehicle emissions have become a
significant source of air pollution [22]. There is an urgent need for Changzhou to develop
a high-resolution vehicle emission inventory to support air pollution control. To meet
this practical need, the objective of this study is to develop a comprehensive vehicle
emission inventory for Changzhou in 2022 based on the GEI model. The specific tasks
are as follows: (1) propose a monthly vehicle emission estimation approach, (2) estimate
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vehicle emissions in Changzhou in 2022, (3) investigate vehicle emission characteristics in
detail, and (4) obtain a high-resolution gridded emission inventory with a resolution of
0.01◦ × 0.01◦.

Compared with previous studies [5,23], the main innovations of this study are twofold:
first, the emission calculation is refined from annual to monthly based on detailed road
transportation volume and meteorological data, improving the temporal resolution of the
emission inventory; second, by integrating economic activities, road networks, and driving
patterns, a comprehensive spatial allocation method is proposed, enhancing the spatial
resolution of the emission inventory. The approach proposed in this study offers a valuable
tool for developing comprehensive city-level emission inventories, and the results provide
critical insights that can inform environmental policymaking in Changzhou and beyond.

2. Methods and Data
2.1. Study Area

Changzhou, a city in the southern part of Jiangsu Province with a population of
about 3.9 million, is located in East China (see Figure 1). The administrative divisions
of Changzhou include Jintan, Wujin, Xinbei, Tianning, Zhonglou, Economic Zone, and
Liyang. In this study, a digital road network map of Changzhou was obtained from
OpenStreetMap, and three types of roads were classified, namely, highways, arterials, and
streets. Changzhou belongs to the Yangtze River Delta (YRD) region and borders two
metropolitan cities, Shanghai and Nanjing. Although there have been studies focusing on
vehicle emission inventories in the YRD [24], Jiangsu [25], Shanghai [26], and Nanjing [27],
little attention has been paid specifically to Changzhou.
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2.2. Vehicle Emission Estimation

Vehicle emissions, including both exhaust and evaporative emissions [28], are esti-
mated using the following equation:

E = Eex + Eev (1)

where E, Eex, and Eev, respectively, represent the total vehicle emissions, exhaust emissions,
and evaporative emissions.

Exhaust emissions are estimated using the following equation:

Eex,p,m = ∑
i,j,h

VPi,j,h × VKTi,m × EFex,i,j,h,p,m (2)
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where p represents the type of air pollutants, including CO, VOCs, NOx, and PM2.5, and m
is the month, from January to December. VP and EFex represent vehicle population and
exhaust emission factors, respectively, which are further subcategorized by vehicle type (i),
fuel type (j), and emission standard (h). The value of vehicle kilometers traveled (VKT) is
mainly determined by vehicle type. Besides, VKT and EFex vary in each month, considering
changes in transportation volume and meteorological conditions. The units of VP, VKT,
and EF are vehicles, km/month, and g/km, respectively.

Previous studies indicated that evaporative emissions mostly come from gasoline
vehicles, and the emitted air pollutants are mainly VOCs [29]. Therefore, only the VOCs
emitted by gasoline vehicles are considered in the estimation of evaporative emissions,
including two processes, running and parking, using the following equation:

Eev,VOCs,m = ∑
i,h

VPi,gasoline,h × Dm ×
(

EFev,run,h + EFev,park,h,m

)
(3)

where Dm represents the number of days in month m, EFev,run is the evaporative emission
factor during the running process, mainly referring to running loss, and EFev,park is the
evaporative emission factor during the parking process, including hot soak loss, diurnal
breathing loss, and refueling loss [30]. The unit of EFev,run and EFev,park is g/day.

Compared with previous studies [23], this study improved the accuracy by estimating
vehicle emissions by month. On the one hand, the annual VKT is divided into each month
according to the variation of passenger and freight transportation. On the other hand, the
emission factors are simulated based on monthly meteorological conditions.

2.3. Detailed Vehicle Population

The vehicle population data were obtained from the vehicle registration database
provided by the Changzhou Department of Motor Vehicles. The database records attribute
information of local vehicles, including vehicle type (i), fuel type (j), and emission standard
(h). Compared to public data sources, such as government websites or statistical yearbooks,
registration data provide a much more detailed picture. Many previous studies were
conducted to estimate vehicle emissions based on public data [31]. Public data are easily
acquired and can indicate the population of different vehicle types, but they typically
lack information on fuel types and emission standards. In fact, emission factors vary
significantly by fuel type and emission standard, even for the same vehicle type. This study
utilized detailed vehicle population data to achieve a closer match between emission factors
and vehicle classifications, thereby improving the accuracy of the emission estimation.

According to the classifications in the vehicle registration database and previous
studies, this study considered seven vehicle types: light-duty passenger vehicles (LD-
PVs), medium-duty passenger vehicles (MDPVs), heavy-duty passenger vehicles (HDPVs),
light-duty trucks (LDTs), medium-duty trucks (MDTs), heavy-duty trucks (HDTs), and mo-
torcycles (MCs). Additionally, three fuel types were considered: gasoline, diesel, and other
fuels (primarily compressed natural gas, liquefied natural gas, and liquefied petroleum gas).
Finally, this study considered seven stages of emission standards, ranging from pre-China I
to China VI.

In 2022, the total vehicle population in Changzhou amounted to 1637.98 thousand (see
Figure 2). The population of light-duty vehicles significantly exceeded that of medium-
and heavy-duty vehicles. LDPVs were the dominant type in the vehicle fleet, accounting
for 90.8%. MCs were second only to LDPVs and were significantly higher than in many
other Chinese cities [32], possibly due to the well-developed local motorcycle industry. The
total population of trucks comprised 5.2% of the fleet, with LDTs having the highest share
and MDTs the lowest. The population of HDPVs and MDPVs was relatively small, together
accounting for less than 0.5% of the total fleet.
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Figure 2. Vehicle population of different vehicle types in Changzhou in 2022. 
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2.4. Annual and Monthly VKT

VKT is a key parameter in emission estimation, influenced by various economic,
transportation, and geographic factors and, therefore, has different values across regions.
Utilizing localized VKT improves the accuracy of emission estimation. However, unlike
vehicle population, there is no officially published VKT specific to Changzhou. Previous
studies usually determined VKT values based on GEI or literature research [33], which may
lead to uncertainty. VKT derived from GEI represents national averages, while VKT from
the literature may not accurately reflect local vehicle activity patterns [34].

This study employed a questionnaire survey to collect local vehicle activity data,
including VKT and average speed, the latter serving as a critical input for emission factor
simulation (see Section 2.5). The survey was divided into two segments: one targeting
drivers, conducted in parking lots, bus companies, and highway toll booths, and the
other targeting government workers, primarily involving interviews with ecological and
environmental departments. Based on these pragmatic investigations, the values of annual
VKT and average speed were determined (see Table 1).

Table 1. Status of vehicle operation in Changzhou.

Vehicle Type VKT (km/Year) Average Speed (km/h)

LDPV 12,464 22
MDPV 31,300 18
HDPV 81,683 18
LDT 22,203 35
MDT 60,000 39.5
HDT 80,782 39.5
MC 7303 28

Overall, VKT increased progressively with increasing vehicle weight. Heavy-duty
vehicles, such as HDPVs and HDTs, have higher VKT values. The higher VKT of HDPVs
is due to the widespread use of public transportation. HDTs, frequently employed for
long-haul and intercity freight transportation, have a higher VKT. The VKT of LDPVs
has decreased compared to previous years, correlating with the significant increase in the
vehicle population. According to Huo et al. (2012), there is a negative correlation between
VKT and vehicle ownership rates [35]. Regions with higher vehicle ownership rates often
have congested roads, and they tend to have more robust public transportation systems, all
of which contribute to a lower VKT for LDPVs.
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This study used monthly data to estimate vehicle emissions; however, the surveyed
VKT data were annual. Based on the methodology introduced by Zheng et al. (2021) [36],
this study employed traffic monthly change coefficients (MCCs) to convert annual VKT
into monthly VKT.

The MCCs were calculated based on the monthly road passenger and freight trans-
portation volume released by the Ministry of Transport, as shown in the following equation:

MCCtm,m =
TVm

∑m TVm
(4)

where TV represents the transportation volume, and tm refers to the transportation mode,
which includes passenger and freight transportation, expressed in persons and tons, respec-
tively. Note that the unit of MCC is %.

The MCCs for passenger and freight transportation were calculated in Changzhou for
2022, using Equation (4) (see Figure 3). Overall, the MCCs for freight and passenger trans-
portation showed similar trends. Notably, the freight volumes experienced a significant
decrease in February, coinciding with the Chinese New Year and a slowdown in industrial
production. Both passenger and freight volumes declined significantly in April, which can
be attributed to China’s pandemic prevention and control measures implemented during
the COVID-19 pandemic.
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The MCCs were utilized to disaggregate annual VKT into monthly VKT, using the
following equation:

VKTi,m = VKTi × MCCi,m (5)

where VKTi,m is the monthly VKT and VKTi is the annual VKT for vehicle type i, measured
in km/month and km/year, respectively.

Specifically, the MCCs derived from passenger volume were employed to describe the
activity patterns of passenger vehicles, including LDPVs, MDPVs, and HDPVs. Similarly,
the MCCs derived from freight volume were utilized to depict truck activity, including
LDTs, MDTs, and HDTs. Additionally, the average MCCs, considering both passenger and
freight volumes, were used to analyze the MC activity.

2.5. Emission Factor Simulation

Vehicle emission factors are influenced by several factors, including meteorologi-
cal conditions, traffic situation, and fuel quality. Meteorological conditions, particularly
temperature and relative humidity, exhibit significant variations across different months.
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Consequently, emission factors are heavily influenced by these conditions, resulting in
obvious month-to-month fluctuations. This aspect has received limited attention in pre-
vious studies. In this study, we used a method within the GEI framework to simulate
monthly emission factors. The GEI methodology incorporates extensive test data from
China, effectively capturing the impact of local conditions on emission factors.

The exhaust emission factors were calculated using the following equation:

EFex,i,j,h,m = BEFex,i,j,h × φi,j,h,m × γi,j,h × θj,h (6)

where BEFex denotes the base exhaust emission factor in g/km, measured under the typical
natural environment, driving conditions, fuel quality, deterioration level, and load ratio
in China, as obtained from the GEI. The dimensionless correction parameters φ, γ, and θ
quantify the influence of local conditions on emission factors.

φ reflects the impact of meteorological and geographical conditions, including temper-
ature, humidity, and altitude. Monthly φ values were determined based on meteorological
data sourced from the Changzhou Statistical Yearbook [37].

γ represents the influence of driving conditions, primarily characterized by average
speed derived from traffic surveys (see Table 1). The vehicle emission factor is strongly
influenced by speed and generally decreases with increasing speed, first rapidly and then
more slowly [38]. Passenger vehicles (LDPVs, MDPVs, and HDPVs) typically operate on
urban roads, which tend to be heavily congested, resulting in lower speeds. In contrast,
trucks (LDTs, MDTs, and HDTs) have higher speeds, as they often travel on urban ring
roads and interurban routes, and many trucks operate at night due to traffic restrictions.
The speed of MCs is also relatively high, mainly due to their tendency to operate in the
suburbs, influenced by the “ban on motorcycles” policy.

θ accounts for other influencing factors, such as fuel quality and vehicle load. Fuel
quality is primarily assessed on the basis of sulfur content. Generally, fuels with lower
sulfur content contribute to reduced air pollution. In 2022, both gasoline and diesel sold in
Changzhou contained less than 10 mg/kg of sulfur. Vehicle load values were determined
using the GEI’s recommended values.

According to the GEI methodology, temperatures and average speeds are segmented
into distinct ranges for φ and γ, with each range assigned a constant correction value.
However, this approach results in discontinuous simulated emission factors when tem-
perature or speed transitions occur between ranges. To address this issue, we introduced
temperature and velocity correction curves. For a detailed discussion on correction curves,
please refer to Sun et al. (2020) [32].

Evaporative emission factors include two processes: running (EFev,run) and parking
(EFev,park). The base EFev,run and EFev,park represent evaporative emissions during vehicle
running and parking at 15 ◦C, respectively. EFev,run does not require correction, while
EFev,park requires a temperature-based correction using the following equation:

EFev,park,h,m = BEFev,park,h × φm (7)

where BEFev,park denotes the base evaporative emission factor, measured in g/d. The
meteorological correction parameter φ is determined using temperature correction curves
based on values provided by the GEI.

Using the above methods, this study derived vehicle emission factors for Changzhou
in 2022 (see Figure 4). The results show that the CO emission factors for heavy-duty vehicles
were generally higher than those for light-duty vehicles. Notably, MCs and LDPVs had
higher VOCs emission factors, despite being classified as light-duty vehicles, primarily
due to the evaporative emissions associated with gasoline-powered vehicles. Regarding
NOx and PM2.5 emissions, HDPVs had the highest emission factor, while LDPVs and MCs
exhibited considerably lower values.
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2.6. Emission Spatial Allocation

Vehicle emissions were spatially allocated to obtain a high-resolution gridded emission
inventory. This allocation process used a range of spatial surrogates, including socioeco-
nomic indicators, mileage weights, emission intensity, and road lengths. The methodology
is outlined in the following five steps:

(1) Establishing the target domain. The digital road network map of Changzhou was
re-gridded into 4481 grids, each with a horizontal resolution of 0.01◦ × 0.01◦ on the
WGS84 datum, using ArcGIS software (version 10.4.1) [39].

(2) Allocating emissions from city to district level. Owing to limited data availability on
vehicle populations at the district level, socioeconomic indicators, such as population,
were employed to allocate emissions from Changzhou to its constituent districts.

(3) Assigning emissions to road types. Vehicles have different travel frequencies on
different road types, which are described by mileage weights. In this study, mileage
weights were used to assign vehicle emissions to specific road types according to the
following equation:

Ep,dist,r = Ep,dist × MWr (8)

where dist and r represent the districts of Changzhou and road types, respectively (see
Section 2.1 for details), and MW refers to mileage weights expressed as percentages
and obtained from previous studies (see Table 2). As passenger vehicles predom-
inantly operate in urban areas, their mileage weights are higher on streets, while
trucks, primarily used for freight transportation and subject to traffic restrictions, have
higher mileage weights on highways and arterials.
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Table 2. Mileage weights for vehicles on different road types (%).

Vehicle Type Highways Arterials Streets

LDPV 18 22 60
MDPV/HDPV 25 25 50

LDT 40 40 20
MDT/HDT 50 40 10

MC 2 49 49

(4) Calculating road emission intensity. This metric is determined by considering the
emissions and lengths of different road types within each district, as expressed in
the equation:

EIp,dist,r =
Ep,dist,r

RLdist,r
(9)

where EIp,dist,r represents the emission intensity of pollutant p on road type r in district
dist, while Ep,dist,r denotes the corresponding total emissions. RLdist,r is the total length
of road type r in district dist, calculated using ArcGIS.

(5) Simulating gridded vehicle emissions. Since a grid can include multiple road types,
gridded emissions are calculated as the sum of the products of emission intensity and
road length for each road type within the grid, as follows:

Ep,dist,g = ∑
r

EIp,dist,r × RLdist,g,r (10)

where g is the grid cell number, Ep,dist,g represents the emissions of pollutant p within
grid g in district dist, and RLdist,g,r denotes the length of road type r within grid g,
obtained by ArcGIS.

3. Results and Discussion
3.1. Total Emissions and Composition

The vehicle emission inventory for Changzhou was developed using the methodology
described in Section 2. In 2022, the total emissions of CO, VOCs, NOx, and PM2.5 in
Changzhou were 39.69, 8.68, 18.6, and 0.56 Gg, respectively (see Figure 5). Nationally,
Changzhou is a medium-sized city with lower vehicle emissions than large cities, such
as Beijing [40] and Tianjin [6], but higher than small cities, such as Laiwu and Hebi [41].
Within Jiangsu Province, Changzhou ranks sixth (out of a total of 13 cities) in terms of
vehicle emissions [25], placing it at a medium level.

The main contributing vehicle types differ for different pollutants. LDPVs are the
main source of CO and VOCs emissions, accounting for 74.3% of CO emissions and an even
higher contribution of 86.1% for VOCs emissions. LDPVs are also the second largest source
of PM2.5 emissions and the third largest source of NOx emissions, with shares of 29.4%
and 11.1%, respectively. The notable contribution of LDPVs to emissions is due to their
significant share of the vehicle population, up to 90.8%. Comparable results can be found
in previous studies [41]. There is a strong correlation between vehicle population and
economic development. Over the past decade, Changzhou’s economy has grown rapidly,
and as a result, the LDPV population, especially private cars, has experienced explosive
growth, which inevitably increases emissions.

Although HDTs account for only 1.50% of the total vehicle population, they are the
main source of NOx and PM2.5 emissions, accounting for 50.7% and 34.7%, respectively.
The contribution of HDTs to CO and VOCs emissions is slightly lower at 12.4% and 4.9%,
respectively, but still significantly higher than their share of the population. This significant
emission contribution of HDTs can be attributed to two main factors. First, HDTs have
comparatively high emission factors. Second, the VKT of HDTs has increased due to the
rapid growth of freight transport in recent years. Previous studies on multi-year vehicle
emission inventories generally assume a gradual increase in the VKT of HDTs, which is in
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line with the continuous development of the socio-economy and transportation. Overall,
the conclusion that HDTs are a critical vehicle type in transportation pollution control is
consistent with previous studies [42].
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HDPVs are also a significant source of emissions, contributing 21.9% and 23.7% to
NOx and PM2.5, respectively, and 4.9% and 1.7% to CO and VOCs, respectively. These
contributions are much higher than their population share of 0.26%. HDPVs, mainly
buses, have the highest NOx and PM2.5 emission factors and VKTs among all vehicle
types. Buses, which operate more than 10 hours a day, cover long distances. At the same
time, they make frequent stops, resulting in lower speeds and higher emission factors.
Considering the increasing popularity of public transportation, the use of new energy buses
should be vigorously promoted through financial incentives, the construction of charging
infrastructure, and the phasing out of diesel vehicles to reduce HDPV emissions.

LDTs contribute 5.1%, 2.9%, 8.0%, and 5.6% to CO, VOCs, NOx, and PM2.5 emissions,
respectively. MDTs contribute 7.5% and 4.7% to NOx and PM2.5 emissions, respectively,
which is comparable to the contribution of LDTs. Currently, while the electrification of
HDTs faces challenges, such as range, battery weight, and charging infrastructure, the
electrification of LDTs and MDTs is well underway. According to policies released by
the Ministry of Industry and Information Technology [43], China aims to increase the
electrification rate in the fields of short-distance transportation and urban construction,
mainly involving LDTs and MDTs.

3.2. Emissions by Fuel and Standard

There are significant differences in vehicle emissions by fuel type and emission stan-
dard (see Figure 6).
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Although China has implemented measures, such as car purchase subsidies and unre-
stricted driving policies, to encourage the purchase of new energy vehicles, the population
of fuel-powered vehicles remains significant. Consequently, the majority of pollutants are
emitted from gasoline and diesel vehicles.

Gasoline vehicles are the primary source of CO and VOCs emissions, accounting for
78.6% and 91.4% of the total, respectively. Specifically, VOCs emissions encompass both
exhaust emissions (accounting for 53.4%) and evaporative emissions (46.6%), with their
respective contribution rates being relatively close. This is consistent with the findings
of Yan et al. (2021) [44]. On the other hand, diesel vehicles are the main contributors to
NOx and PM2.5 emissions, responsible for 81.1% and 70.6% of the total, respectively. This is
due to the high proportion of diesel vehicles among HDPVs (over 50%) and HDTs (almost
all) [45]. The inherent characteristics of gasoline and diesel engines lead to distinct emis-
sion patterns. Diesel engines, with their compression ignition and diffusion combustion
processes, promote complete combustion, but tend to emit higher levels of NOx and PM2.5.
In contrast, gasoline engines rely on spark ignition of the air–fuel mixture, which can result
in incomplete combustion and higher emissions of CO and VOCs.

China IV vehicles were found to be the largest contributors to emissions, with CO,
VOCs, NOx, and PM2.5 emissions of 12.90, 3.14, 7.11, and 0.25 Gg, respectively. These emis-
sions accounted for 32.5%, 36.2%, 38.2%, and 44.9% of the total, respectively. Specifically,
China IV gasoline vehicles were the primary emitters of CO and VOCs, accounting for 24.7%
and 33.0% of the total, respectively. China IV diesel vehicles, on the other hand, were the
primary emitters of NOx and PM2.5 emissions, accounting for 33.3% and 32.3%, respectively.

Previous studies generally identified China III vehicles as the primary emission source
for most pollutants. However, in this study, China III vehicles were found to be the
secondary emission source of CO, VOCs, and PM2.5, accounting for 24.2%, 24.3%, and
30.4% of the total, respectively. The higher emission contribution of China IV vehicles
compared to China III vehicles is mainly attributable to the updated emission standards.
The implementation of these standards has accelerated the phase-out of vehicles with lower
emission standards, leading to overall lower emissions. Meanwhile, China V vehicles
were found to be the secondary source of NOx emissions, contributing 35.9% to the total.
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Notably, China V HDTs were the top NOx emitters among all vehicle types, accounting for
20.8% of the total. This is due to the fact that the NOx emission factor for HDTs did not
decrease as significantly as that for other pollutants with the emission standard update.

Old vehicles (including those meeting pre-China I, China I, and China II standards)
constitute 5.0% of the vehicle population but contribute significantly to CO and VOCs
emissions, accounting for 20.4% and 14.6% of the total, respectively. However, their
contribution to NOx and PM2.5 emissions is relatively low, accounting for only 3.1% and
3.5% of the total, respectively. This indicates that phasing out old vehicles remains an
effective measure to reduce CO and VOCs emissions in the short to medium term. The low
contributions of NOx and PM2.5 emissions from old vehicles can be attributed to the high
scrapping rates of older heavy diesel vehicles, especially HDPVs and HDTs.

China VI vehicles emitted significantly lower amounts of pollutants compared to their
population share of 13.4%. Specifically, they emitted 2.00, 0.42, 0.80, and 0.02 Gg of CO,
VOCs, NOx, and PM2.5, respectively, representing only 5.0%, 4.8%, 4.3%, and 3.2% of the
total. This reflects the importance of continuously upgrading emission standards to reduce
vehicle emissions.

3.3. Monthly Vehicle Emissions

Vehicle emissions vary considerably from month to month, but they show certain con-
sistent trends in terms of pollutant patterns (see Figure 7). Specifically, the emissions of CO,
VOCs, and PM2.5 closely follow changes in passenger volume, as evidenced by correlation
coefficients of 0.96, 0.66, and 0.50, respectively. This indicates a predominant influence of
passenger vehicles on these emission variations. Meanwhile, a notable correlation, denoted
by a coefficient of 0.58, links monthly NOx emissions with freight volume trends, indicating
that trucks play a significant role in determining emission changes.
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Regarding monthly emissions, August stood out with the highest CO emissions of
3.95 Gg, representing 10.0% of the annual total. Meanwhile, January had the highest
emissions of VOCs (0.89 Gg, 10.3% annual share), NOx (2.10 Gg, 11.3%), and PM2.5 (0.07 Gg,
12.7%). In contrast, April recorded the lowest emissions for all four pollutants: CO (2.16 Gg,
5.4% annual share), VOCs (0.58 Gg, 6.7%), NOx (1.01 Gg, 5.4%), and PM2.5 (0.03 Gg, 5.1%).
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Overall, vehicle emissions tend to be higher in winter due to increased cold-start
emissions at lower temperatures. However, an interesting exception occurred from January
to February, when emissions decreased despite colder weather. This can be attributed to the
reduced social activity and transportation demand during the Spring Festival in February.

Previous studies have often relied on annual emissions and temporal surrogates,
such as traffic volume, to derive monthly emissions. Such approaches might lead to the
conclusion that February, with its fewer days and the Spring Festival holiday, has the lowest
emissions [5]. However, this study incorporated monthly meteorological conditions into
the emission factor simulations, providing a more accurate representation of the impact
of temperature and humidity changes on emissions. As a result, it became evident that
February is not necessarily the month with the lowest emissions due to increased emission
factors in winter. It is noteworthy that April showed exceptionally low vehicle emissions, a
phenomenon rarely reported in previous studies. In general, the period from March to May
marks a period of industrial prosperity, with an expected increase in road transportation
volume compared to February. However, in 2022, the COVID-19 pandemic broke out in
the YRD region. Due to the interconnected economies and industries within the YRD
region, road transportation volumes are typically high. However, the implementation
of pandemic prevention and control policies restricted the vehicle travel, resulting in
a significant decrease in transportation volumes. Wang et al. (2023) reported that the
daily transportation capacity in Jiangsu Province decreased by 14.3% from March to May
compared to the previous year, with the largest decrease occurring in April [46]. This
finding is consistent with our study’s conclusion of a significant emissions decrease in
April. This underscores the complexity of vehicle emission processes, which are influenced
by a variety of interacting factors, making it difficult to accurately characterize emission
changes by considering only individual factors.

3.4. Spatial Distribution Characteristics

There is obvious heterogeneity in the spatial distribution of vehicle emissions in
Changzhou (see Figure 8). The emission intensity is higher in the northeast of Changzhou,
especially concentrated in Zhonglou District, Tianning District, and the Economic Zone,
whereas it is lower in the west and south, with emissions more scattered in Jintan District
and Liyang City.

The spatial distribution of different pollutant emissions exhibits several common
characteristics [47]. Firstly, the gridded emissions are superimposed on the road network
and show linear characteristics. Secondly, high emission grids tend to be concentrated
in the city centers, with emission intensity decreasing as the distance from these centers
increases. Lastly, emission intensity varies by road type, being significantly higher on
highways and arterials compared to streets.

However, subtle differences exist in the spatial distribution of various pollutants,
mainly influenced by the driving patterns of the main emission contributors. CO and VOCs
emissions, mainly from LDPVs, are evenly distributed throughout the region due to the
widespread presence of these vehicles on streets. Conversely, HDTs, which are the main
contributors to NOx and PM2.5 emissions, often operate on highways and arterials. As a
result, the distribution of NOx and PM2.5 emissions tends to be more uneven and linear,
reflecting the concentrated nature of these roadways.

Specifically, the distribution of vehicle emissions varies by road type. CO and VOCs
emissions are predominantly emitted from streets (52.3% and 57.2%, respectively), followed
by arterials (26.9% and 25.3%) and highways (20.8% and 17.5%). In contrast, NOx emis-
sions are higher on arterials and highways (37.5% and 34.9%, respectively) and lower on
streets (27.5%). Regarding PM2.5 emissions, the highest contribution is observed on streets
(37.7%), with relatively small differences observed on arterials and highways (33.0% and
29.3%, respectively).
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Previous studies have used various spatial surrogates to allocate vehicle emissions
to grids, such as GDP [48], population [49], and road density [24]. While these surrogates
provide a partial picture of the spatial distribution of emissions, they could not reflect
the comprehensive characteristics of economic activities, road networks, and driving
patterns. In this study, emissions were initially allocated to districts based on socioeconomic
indicators, followed by a more refined allocation to grids that take into account the road
network and travel frequency. The resulting gridded emissions not only closely follow
with the road network but also distinguish between different road types. Overall, the
methodology employed in this study offers a more accurate representation of spatial
emissions’ data than relying on a single spatial surrogate.

3.5. Uncertainty Analysis

Uncertainty in vehicle emission inventories often results from inadequate data on
local vehicle populations, VKT, and emission factors. The vehicle population data obtained
from local authorities in this study were deemed highly reliable. However, differentiating
the vehicle population based on emission standards using the registration date and stan-
dard implementation date inevitably introduced uncertainty. VKT and emission factors,
influenced by various factors, such as economic development, transportation facilities, and
driving conditions, are difficult to accurately simulate.

To improve the accuracy of emission inventories, this study estimated vehicle emis-
sions using monthly VKT and emission factors. Monthly emission factors were simulated
with an improved GEI model, utilizing monthly meteorological data to reduce uncertainty.
Monthly VKT was derived by disaggregating annual VKT based on the monthly trans-



Atmosphere 2024, 15, 192 15 of 18

portation volume. Although this methodology has been employed in previous studies,
further validation of its accuracy is warranted.

Taking into account road networks, socioeconomic indicators, and driving patterns, a
gridded emission inventory with a resolution of 0.01◦ × 0.01◦ was obtained. This gridded
emission inventory depicted the spatial distribution of vehicle emissions well, but its
accuracy still needs to be validated through integration with air quality modeling and
monitoring data.

To ascertain the reliability of the emission inventory, this study compared its results
with those from previous studies on vehicle emissions in Changzhou (see Table 3). Despite
utilizing differing methodologies and data sources, these studies showed good agreement in
their calculation results. In recent years, the vehicle population in Changzhou has increased
rapidly, but emissions have decreased. Our results are in close agreement with the 2020
emission inventory [50], where VOCs emissions were 5.2% higher and NOx emissions
were 16.0% lower. Compared to the 2018 emissions [25], CO, VOCs, NOx, and PM2.5
emissions were 32.7%, 24.1%, 56.1%, and 62.3% lower, respectively. This decrease in vehicle
emissions can be attributed to the policies implemented in Changzhou, including upgrading
emission standards, improving fuel quality, and scrapping older vehicles. Future studies
should focus on discrepancies in emission inventories due to different methodologies, and
quantitatively assess the influence of factors such as data collection and methodological
application on these discrepancies.

Table 3. Changzhou vehicle population (thousands) and emissions (Gg) in this and previous studies.

Studies Year Vehicle Population CO VOCs NOx PM2.5

This study 2022 1637.98 39.69 8.68 18.60 0.56
Yu et al. [50] 2020 1565.31 - 8.25 22.15 0.29

Sun et al. [25] 2018 1412.90 58.95 11.44 42.34 1.48
Li et al. [51] 2015 1103.24 84.30 8.40 28.90 1.00

Gao et al. [52] 2010 869.19 87.33 10.01 13.60 0.82

4. Conclusions

This study presented an approach to develop a high-resolution monthly vehicle
emission inventory. Using this approach, we developed a vehicle emission inventory for
Changzhou in 2022. The emission estimation was based on the vehicle population obtained
from the vehicle registration database, VKT calculated from the monthly transportation
volume, and emission factors simulated according to the monthly meteorological condi-
tions. We developed a high-resolution gridded emission inventory with a resolution of
0.01◦ × 0.01◦, considering socioeconomic indicators, mileage weight, emission intensity,
and road length.

In 2022, the total vehicle emissions of CO, VOCs, NOx, and PM2.5 in Changzhou were
39.69, 8.68, 18.6, and 0.56 Gg, respectively. LDPVs were the main source of CO and VOCs
emissions, while HDTs were a significant source of NOx and PM2.5 emissions. CO and
VOCs emissions mainly came from gasoline vehicles, while diesel vehicles were the primary
source of NOx and PM2.5 emissions. China IV vehicles were the largest contributors to
emissions. Despite the small population of older vehicles, their emissions contribution was
comparatively significant.

In terms of temporal variation, vehicle emissions were higher in winter than in other
seasons. The lowest emissions of CO, VOCs, NOx, and PM2.5 occurred in April, mainly due
to the COVID-19 pandemic prevention and control policies. Regarding spatial variation,
the emission intensity was higher in the northeast of Changzhou and lower in the west and
south. The gridded emissions exhibited linear characteristics, were concentrated in urban
centers, and varied depending on the road type.

The results of this study are consistent with previous studies, indicating the reliability
of the proposed method. However, further validation with additional methods and data is
necessary to determine the extent to which the emission inventory reflects actual vehicle
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emissions. In future studies, we recommend combining emission inventories with air
quality models to compare simulated pollutant concentration results with monitoring data.
Furthermore, it is crucial to analyze the differences in calculation results arising from
different emission inventory methods and to quantify the impact of influencing factors on
these differences.
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