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Abstract: Recent years have seen increased attention given to radon from two scientific directions.
After neglecting radon as an earthquake precursor in the 1990s, it has become the subject of discussions
in earthquake-forecast papers due to growing networks of radon monitoring in different countries,
particularly the technologies of real-time radon measurements where gamma spectrometers are of
great interest as sources of 222Rn identification. The second fast-developing direction involves radon
in Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) models as a source of boundary layer
ionization. Here we address the second topic, which is not connected with the earthquake forecast
problems, namely, the role of air ionization by radon as a source of the Global Electric Circuit (GEC)
modification. In this publication, we try to unite all of these problems to present a more complex view
of radon as an important element in our environment. Special attention is paid to the dependence of
radon variability on environmental conditions.

Keywords: radon; air ionization; global electric circuit; gamma spectrometer

1. Introduction

Radon, an odorless noble gas, is radioactive and belongs to the VIII group of
Mendeleev’s periodic table. Its atomic number is 86, and it has three natural isotopes:
219Rn, 220Rn, and 222Rn. 219Rn is a member of the actinon–uranium decay chain, so it is usu-
ally named ‘actinon’ with the symbol An. Its semi-decay period is 3.92 s. 220Rn is a member
of the Thorium decay chain and usually named ‘thoron’ (Tn); its semi-decay period is 54.5 s.
The third, and actually most important, isotope 222Rn from the uranium–radium decay
chain is radon itself, and the symbol Rn is attributed just to this isotope. Its semi-decay
period is 3.823 days. One can see the decay trees of main radon isotopes in Figure 1, and
major parameters of main radon isotopes and their progenies are given in Table 1. The
discovery of radon as an emanation of radium is attributed to German physicist Friedrich
Ernst Dorn [1] in 1900. Thoron was described by Rutherford and Owens one year earlier [2],
and the discovery of actinon in 1903 is attributed to Andre Louis Debierne [3]. Some
physicists including Rutherford proposed to name it “emanation” but finally, because it is
a radium progeny, it was named radon. Radon was the first chemical element showing the
possibility to have isotopes. The mass concentration of radon in the Earth’s atmosphere is
near 6 × 10−17%.
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could be used as a tracer. In the case of earthquakes, it is used as an earthquake precursor 
because of the possibility to register α particles emitted by increased radon volumetric 
concentration before strong earthquakes [4–6] within the earthquake preparation zone [7]. 
One can find many reports on the use of radon as a precursor of strong earthquakes [8–
12]. 

 
Figure 1. Decay trees of the main radon isotopes finished by stable elements. (Left) 222Rn (red circle) 
decay chain; (middle) 220Rn (red circle) named thoron decay chain; (right) 219Rn (turquoise circle) 
named actinon decay chain. All images copyright © 2024–2024 the International Association of Cer-
tified Home Inspectors, Inc. (InterNACHI). https://www.nachi.org/gallery/ (accessed on 21 January 
2024). 

Table 1. Uranium decay products. 

Nuclide Historic 
Name (Short) 

Historic 
Name (Long) 

Decay 
Mode Half Life MeV Product of 

Decay 
222Rn Rn Radon α 3.8235 d 5.590 218Po 
220Rn Tn Thoron α 55.6 s 6.4047 224Ra 

219Rn An Actinon α 3.96 s 6.946 223Ra 

218Po RaA 
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α 
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α− 

19.9 min 3.272 
5.617 

214Po 
210Tl 

214Po RaC’ Radium C’ α 0.1643 ms 7.883 210Pb 

Before considering the effects produced by radon in the atmosphere, we should clar-
ify the ways it is transported to the ground surface [13] and factors influencing its varia-
bility [14]. In addition to these factors, we must also consider the dependence of radon 

Figure 1. Decay trees of the main radon isotopes finished by stable elements. (Left) 222Rn (red
circle) decay chain; (middle) 220Rn (red circle) named thoron decay chain; (right) 219Rn (turquoise
circle) named actinon decay chain. All images copyright © 2024–2024 the International Association
of Certified Home Inspectors, Inc. (InterNACHI). https://www.nachi.org/gallery/ (accessed on
21 January 2024).

Table 1. Uranium decay products.

Nuclide Historic Name
(Short)

Historic Name
(Long)

Decay
Mode Half Life MeV Product of

Decay
222Rn Rn Radon α 3.8235 d 5.590 218Po
220Rn Tn Thoron α 55.6 s 6.4047 224Ra
219Rn An Actinon α 3.96 s 6.946 223Ra

218Po RaA Radium A
Polonium

α

β− 3.10 min 6.115
0.265

214Pb
218At

218At Astatine α

β− 1.5 s 6.874
2.883

214Bi
218Rn

218Rn α 35 ms 7.263 214Po
214Pb RaB Radium B β− 26.8 min 1.024 214Bi

214Bi RaC Radium C β

α− 19.9 min 3.272
5.617

214Po
210Tl

214Po RaC’ Radium C’ α 0.1643 ms 7.883 210Pb

During its decay, radon emits α-particles which are actually the helium nucleus. It
should be noted that nearly 99% of the helium produced is the result of the alpha decay of
underground deposits of minerals containing uranium or thorium. Radon radioactivity
could be used as a tracer. In the case of earthquakes, it is used as an earthquake precursor
because of the possibility to register α particles emitted by increased radon volumetric
concentration before strong earthquakes [4–6] within the earthquake preparation zone [7].
One can find many reports on the use of radon as a precursor of strong earthquakes [8–12].
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Before considering the effects produced by radon in the atmosphere, we should
clarify the ways it is transported to the ground surface [13] and factors influencing its
variability [14]. In addition to these factors, we must also consider the dependence of radon
activity on weather (precipitation, air pressure, relative humidity, and air temperature),
seasonal variability, and space weather effects.

Another important factor is the use of different technologies for radon measurements
and the environment in which measurements are taken (soil, water, or surface air layer).
The advantages and flaws of alpha and gamma sensors for radon measurements, including
gamma spectrometers, should be considered when interpreting radon variations, especially
before earthquakes.

To establish the role of radon in our environment, we should also discuss its ionization
abilities, including its impact on the Global Electric Circuit [14].

2. Radon Production, Transport, and Gas Migration

Every component of the upper cover of our planet (mantle, crust, and soil) contains
some amount of uranium or radium, i.e., sources of radon. For example, every 2.5 km2

of soil to a depth of 15 cm contains about 1 g of radium, which releases radon into the
atmosphere. Only the longest-lived isotope of radon, 222Rn (daughter product of 226Ra,
series 238U), whose half-life is 3.8 days, is capable of migrating over any significant distances
separately from its parent radionuclides. The concentration of radon in the pores of rocks
depends on the uranium (radium) content in them and the emanating ability of the rocks.
The release of radon from the solid phase into the pore space (emanation) occurs mainly due
to the energy of radioactive recoil. Radon atoms, formed due to alpha decay from radium,
experience radioactive recoil and move in the medium. Some of them remain in the solid
rock matrix, while some enter pores and cracks and acquire the ability to migrate further.
The proportion of radon atoms released into the pore space depends on the distribution of
parent radium in the solid phase, the size of solid particles and pores, rock porosity, the
content of film and capillary moisture in the pores, and other factors affecting the range of
recoil atoms in the medium [15,16].

The transfer of radon in the system of pores and cracks in the lithosphere occurs
primarily through two main processes—diffusion and advection. Diffusion is the molecular
transfer of radon atoms, it occurs constantly and everywhere if there is a radon concentra-
tion gradient, and is most common at the lithosphere–atmosphere interface. The low speed
of the diffusion process, combined with the relatively short half-life of radon, significantly
limits the distance of its diffusion transfer. Radon can be transported in the lithosphere by
diffusion of no more than 10 m before the decay of 222Rn atoms reduces its concentration to
a level indistinguishable from the background. At the same time, in areas located outside
fault zones, calculations using the classical diffusion model show satisfactory agreement
with the measured values of the radon concentration and radon exhalation in the surface
soil gas [17,18]. Advection is the volumetric transport of gases under the influence of a
wide variety of external forces acting in the lithosphere. The speed and spatial scale of
advective transfer of radon is disproportionately greater than diffusion; however, this type
of transfer can only be developed in large pores and in fractured fault zones, where the
development of intense volumetric gas transfer is possible. The advective gas transport is
developed both locally in cracks in the unsaturated zone due to changes in atmospheric
pressure, fluctuations in groundwater levels, changes in wind speed and other surface
factors, and more globally in fault zones in the presence of significant temperature and
pressure gradients. First of all, such conditions are created in areas of modern volcanism
in conditions close to the surface of uncooled magma chambers, where volcanic gases are
discharged onto the surface [19]. It has also been suggested that changes in stress/strain
on fault zones caused by seismic activity may cause crustal fluids to migrate by advection
up faults, carrying radon to the surface [20]. In addition, radon anomalies can arise as a
result of natural convection of atmospheric air in fault zones in the near-surface part of the
lithosphere (above the local erosion base) due to the temperature difference between inside
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and outside the mountain range and the surrounding atmosphere (the “stack” effect). This
process is not specific to fault zones and occurs in any permeable environment (layers of
highly permeable sediments, zones of exogenous fracturing, karst cavities, mine workings),
provided there is a temperature gradient between the mountain range and the atmosphere,
as well as a difference in heights (outcrops of permeable zones at different elevations above
sea level). The rate of convective air transfer at high temperature gradients can reach
significant values, which causes the formation of strong radon anomalies even at relatively
low contents of uranium and radium in rocks.

Radon is a rare gas with an average concentration in the lithosphere n·~1018 mg/kg,
and it is not able to form its own gas phase; therefore, radon advection transport occurs
as part of a gas mixture contained in pores and cracks (the so-called “geogas”). These
are mainly CO2, CH4, H2S, H2, and other lithospheric gases, which are sometimes called
“carrier gases” of radon [21]. It should be remembered that the “carrier” of radon is not any
specific gases, but a general gas mixture, the “geogas” that fills the pores and the cracks
and moves into them.

The permeability of faults for gas transfer is significantly heterogeneous and depends
on many factors, such as the intensity of modern tectonic movements, characteristics of the
fracture filler material, water saturation of fractures, and the permeability of surface sedi-
ments and soils overlying fault zones [19,22,23]. As a result, radon anomalies above fault
zones often represent a chain of individual elongated or isometric degassing spots, appar-
ently confined to the most permeable segments of faults and their intersection points [19].
In such anomalous patches, as a rule, local concentrations of radon in soil gas exceed the
levels that would be expected based on the decay of uranium and radium contained in
soils [21,24–27]. In most cases, radon concentrations in the soil air above fracture zones
slightly exceed the background (up to 2–4 times), which can be satisfactorily explained by
increased emanation and more active transfer of gases in fracture zones compared to undis-
turbed lithosphere blocks. However, there are also strong anomalies, with radon levels
exceeding the background by 10–20 times or even several orders of magnitude [28]. Accord-
ing to recently obtained data, such anomalies are associated primarily with the processes
of natural convection of atmospheric air in the near-surface part of the lithosphere [29].
A number of large radon anomalies have been recorded over fault zones where uranium
ores occur at depths of 100–500 m or more [21,29–32], which suggests the presence in these
cases of powerful deep gas flows with which radon is transported from the bowels of the
earth over very long distances. Conventional models of advection, much less gas diffusion,
cannot explain these facts, since this requires unrealistically high transport rates, especially
in water-saturated media. In this regard, the hypothesis of radon bubble transport has been
proposed [21,33], according to which radon transfer can occur due to “geogas” bubbles
rising upward in water-filled cracks. As they rise, the bubbles “collect” gases dissolved
in the water, including radon, transferring them from the liquid phase to the gas phase.
Calculations show that theoretically, thanks to this mechanism, rapid transport of radon in
the water-saturated lithosphere from the interior to the surface of the Earth over distances
of 100–500 m is possible. Bubble transport in some cases actually determines gas exchange
in the aquatic environment, for example, in local swamp ecosystems or in the thickness
of ocean waters However, there are significantly fewer facts that convincingly indicate
the widespread development of this process in fault zones. The correlations between soil
radon and the main components of “geogas” (CO2, CH4) mentioned by some authors [34]
do not in themselves indicate the presence of a bubble transfer mechanism. Experimental
observation of bubbles in faults is challenging due to small spatial scales, short time scales,
and limited observation conditions [35]. The distance of bubble transfer of 222Rn through
a porous material filled with water, obtained in a laboratory experiment, did not exceed
4–5 m, which is at least two orders of magnitude less than the theoretical values [36].
In addition, it is obvious that this mechanism can only be realized under conditions of
high gas saturation of water, otherwise the gas will dissolve in water and bubbles simply
will not form. All of this limits the possible role of bubble transport in the formation of
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radon anomalies in fault zones. A number of authors believe that the above-mentioned
strong radon anomalies are not associated with the transfer of radon from deeply buried
uranium ores, but are determined by secondary near-surface halos of uranium and radium
dispersion [37].

Radon anomalies in fault zones are also characterized by significant temporal variabil-
ity, including periodic rhythms (seasonal, daily) and non-periodic bursts, as well as sudden
changes in the mode and pattern of fluctuations. In most studies, changes in the moisture
of the near-surface layer in which measurements are taken are considered as the main
cause of seasonal fluctuations in radon, both in fault zones and beyond. In reference [38],
various patterns of seasonal fluctuations in radon along the San Andreas fault system
(central California, USA) are demonstrated. Four types of anomalous sites were identified
in which radon variations were characterized by maximums in winter, maximums in sum-
mer, alternation of winter and summer maximums, and sudden non-rhythmic changes in
the nature of radon fluctuations. The authors explained seasonal variations in radon by
changes in the moisture saturation of surface sediments (depending on the permeability of
sediments, infiltrating rainwater reached the depth of the detector installation in summer
or winter). The sharp and sudden variations were explained by changes in seismic stresses
during the preparation and implementation of earthquakes. In addition, the anomalous
seasonal radon fluctuations of radon in fault zones were established, associated with a
change in the direction of movement of convective air flows. The change in air movement
direction is a result of a seasonal inversion of the temperature gradient between inside and
outside the mountain range which can also be characterized by maximums in summer
or in winter depending on the elevation above sea level of anomalous sites [29,39]. The
seasonal cycle is superimposed by non-periodic fluctuations associated with other reasons,
including changes in stress/strain in fault zones caused by seismic and volcanic activity.
Thus, a number of studies have recorded a sharp change in the concentration of radon
in groundwater and soil gas before strong earthquakes and volcanic eruptions and/or
immediately after them [40–43]. The response of the field of radon concentrations to the
changes of seismic stresses and deformations cannot yet be considered fully studied; the
maximums and minimums of radon concentrations do not always coincide with the time
of occurrence of earthquakes. The significant uncertainty is also introduced by the factor
of distance from the earthquake source. However, deformations of the environment both
during the preparation of an earthquake and during its implementation and propagation
of seismic waves undoubtedly create additional pressure gradients and also affect the
permeability of the environment, creating additional radon migration paths, which can
cause radon emissions into the atmosphere in fault zones during earthquakes, which is
confirmed by observational results. The most powerful radon anomalies are observed in
areas characterized by both high seismic/volcanic activity and the development of uranium
ores or rocks with uranium mineralization.

The problem of radon transport to the surface of ocean and rivers is of special concern.
The “geogas” theory resolves one more problem in discussions of the possibility to observe
radon over the ocean surface. As a matter of fact, we observe air ionization effects initiated
by radon decay both over the land and ocean. The gas migration from the ocean floor
resolves this problem, and marine exploration of hydrocarbon proves the presence of carrier
gases (at least methane) in the ocean. This problem has not been considered as widely as
radon transport over land. Nevertheless, publications have demonstrated the presence of
radon both in nearshore waters [44] and in the open ocean [45]. The intensive fluxes of
carbon dioxide, i.e., the main carrier of radon from the ocean bottom, can also be considered
as radon arising over the ocean surface [46].

3. Multifactor Sources of Radon Variability

Like any natural phenomenon that interacts with the environment, radon is exposed
to various factors, the separation of which is a non-trivial task. Simply listing these factors
shows the complexity of this task:
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1. Various sources of radon (surface layer and deep sources, local anomalies)
2. Ways of bringing radon to the surface (diffusion, transport by geogas and fluids)
3. Place and environment where measurements are taken (underground, in soil, in water,

on surfaces indoors, on open surfaces)
4. Atmospheric influences (air humidity, air temperature, atmospheric pressure, air

movements—advection and convection)
5. Gravitational deformations (diurnal tides, monthly and seasonal variations)
6. Method of measurement (alpha sensors, gamma sensors, gamma spectrometers)
7. Seismically quiet and seismically active regions.

Looking at the list above, it becomes clear that in order to isolate radon variations
associated with the earthquake preparation process, one must filter out all other types of
variations listed in the first six points. Moreover, these points are not independent. Each of
them is influenced by one or more other factors.

In this section we will try, as a brief overview, to give some idea of the causes of radon
variations. All examples will demonstrate that the observed variations are combinations of
factors mentioned above.

3.1. Daily Radon Variations

In this paragraph, we will consider two types of radon daily variations: underground
and in air. For underground measurements, we will use the results of three very recent
publications [47–49]. In publications [47,48], the active air movements in caves and wells
play an important role, and the results in general are in good agreement: daily radon
variations are controlled by atmospheric parameters, as one can see in Figure 2.
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Figure 2. One-week measurement results of radon concentration (3 h moving average) in soil at
1.2 and 1.6 m, air temperature, air relative humidity, and air pressure in typical spring days
(13–20 April). The similarity of the results of three publications is due to the fact that caves and wells
have the direct contact with the atmosphere [49].
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We see the positive correlation with air temperature, and negative correlation with
relative humidity and air pressure. The main maximum in radon variations is formed
in early afternoon hours, but sometimes we can observe smaller variations in the early
morning (3 h) maximum, which will be discussed later.

Seasonal differences are expressed only in the different magnitude of variations, but
the correlation characteristics with atmospheric parameters are the same.

Daily variations in radon in air are also controlled by atmospheric behavior, but the
main factor is the Global Boundary Layer (GBL) dynamics [50]. This effect was considered
in detail in [51] and is presented in Figure 3.
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Figure 3. (a) Schematic presentation of the GBL daily dynamics [51]. (b) Lidar measurements of
aerosol concentration in air [52]. (c) Modeling of the radon concentration S0 in local time as a function
of GBL dynamics [53]. (d) Upper panel: concentration of radon in air; bottom panel: equivalent
mixing height during 12 days in April–May 2011 [54].

From Figure 3a, we see that the Nocturnal Boundary Layer (NBL) is located near
100–300 m altitude and vertical motions are suppressed due to the cooling at the surface.
We can see this from experimental measurements of daily aerosol dynamics (Figure 3b): the
very dense aerosol layer is formed after sunset near 100 m height. Air cooling results in a
stable temperature stratification and in the formation of a thin boundary layer isolating the
surface from the residual layer above where turbulence decays. The model (Figure 3c) and
experimental measurements (Figure 3d) show that the NBL is characterized by very high
radon concentrations and significant vertical concentration gradients. During the night,
radon is emitted constantly (upper panel of Figure 3d) and, due to the stability of the NBL,
it is accumulating close to the surface. After sunrise, due to intensive vertical convection,
radon is washed out from the near-ground layer and reaches altitudes up to 2 km (bottom
panel of Figure 3d).
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Returning to Figure 2, even the underground measurements connected with the
atmosphere “feel” the increased radon concentration that is reflected in small maxima
mentioned in the legend of Figure 2.

In studies of the air electric conductivity [55] the same night-time radon concentration
maximum is marked as a main feature of the radon in air concentration (Figure 4).
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3.2. Seasonal Radon Variations

To come to some conclusion regarding the possible seasonal variations in radon, we
used both results of our own measurements and results published in the scientific literature
from different regions of the globe: Mt. Beshtau, North Caucasus [40], Northern Altai [56],
Black Sea coastal area [57], Israel [58], and Italy [59].

The authors of [39] and [58] conclude that radon concentration follows air temperature
and that its maximum is reached during local summer (Figure 5 [39]). In fact, we see the
same effect as for daily variation: positive correlation with air temperature and negative
correlation with air pressure. Here, two new features could be added. Such variations are
characteristic for measurements over the fault (both exhalation rate and radon in air) while
average background sites from both sides of the fault do not show changes in exhalation
rate (curve b in the top panel). The positive correlation with the temperature difference
between the outside air temperature and temperature in the mine where the measure-
ments were taken suggests pumping effects due to the vertical convection initiated by the
temperature difference.

The authors of [58] draw similar conclusions indicating that the atmospheric effects
are characteristic of the shallow (few meters underground) radon measurements. They
discriminate the air temperature and air pressure effects as follows:

• Radon within rock media (as measured by gamma detectors) is driven by the surface
temperature gradient to a depth of 100 m, with the same daily cycle and a specific
time lag.

• Radon in the measuring air space of open boreholes (as measured by alpha detectors)
is driven by pressure. It varies in anti-correlation with the intra-seasonal pressure
waves and the semi-daily pressure periodicity.

In [58], another important problem is raised: the difference between the alpha and
gamma detector technology in radon monitoring which will be discussed below.

Publications [56,57,59,60] provide the opposite results in seasonal radon variations:
winter maximum and summer minimum. Figure 6 shows the radon measurements for the
year 2016 in very distant locations: the Black Sea shore (38◦ E) and Gorny Altai in Siberia
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(85.5◦ E). Variations show surprising similarity: deep minimum in summer season and
large sharp intensive variations during winter. Both measurement sites were located in
basements isolated from atmospheric variations in air temperature.
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both background sites. (2) Variation in radon in air over the fault. (3) Air temperature (c)—at the
monitoring site, monthly measurements (Tair), (d)—data from Mineralnye Vody weather station
(MVWS), (e)—average annual temperature inside the mine Tmine = 11.5 ◦C. (4) Temperature difference
between the outside air temperature and temperature in the mine. (5) Atmospheric pressure.

In Italy (Aquila) [59], radon measurements in 2006 were also made in basements, but
unlike the first two sites, radon activity was measured by a gamma spectrometer; here
again, we see the late summer minimum and the negative correlation with air temperature
(Figure 7).
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Concluding this paragraph, we should state that the seasonal variation in radon
activity is controlled by the air temperature both in open space and closed basement
sites but with opposite signs of correlation. The explanation for this phenomenon will
be the subject of future studies. A control experiment which could be recommended is
taking radon measurements at the equator (for example, Singapore or Hawaii), where the
temperature is constant through all the year.

3.3. Radon Variations and Solar Activity

It is very difficult find long series of radon measurements throughout the whole
solar cycle. One of the most interesting is paper [61], in which the authors calculated
the spectra of radon variations within the solar cycle. They found several characteristic
periods of radon variations, and naturally, the main peak was near the solar rotation period:
12.39 year−1 = 29.3 days. What is the most interesting is that the positive night-time radon
variation was established, whose physical mechanism was discussed in [51] and depicted
in Figure 2. Actually, the increased radon concentration in the near-ground layer of the
atmosphere generates positive deviations in the ionosphere (Figure 8).
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A similar period of 28.5 days was revealed in the long-term radon measurements
(2012–2017) at Gorny Altai [56], but it is not a dominating spectrum line in the long-time
radon activity registration. The strongest in the observed spectrum is a period of 450 days,
which up to now has no reasonable explanation.

The period of continuous observation of the radon activity at Gorny Altai (almost
half a solar cycle duration) provides an opportunity to look for a correlation between the
RVA and solar activity. The comparison of solar radio flux F10.7 and RVA is presented in
Figure 9.
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Figure 9. (Top) Solar flux F10.7. (Bottom) Daily mean RVA.

We can clearly see the counter-directional trends of solar activity and VAR at the end
of observational period. Radon activity increases while approaching the minimum of solar
activity. The counter-directional trend is only on the surface; in reality, the picture is more
complex, as can be seen in Figure 10. The clear negative correlation is revealed in the
beginning of the decay phase of the solar cycle in 2014, and in the period approaching the
minimum in 2016. Between them, we see the oscillation character of the cross-correlation
coefficient, probably modulated by seasonal radon variations.
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3.4. How to Measure Radon

The history of radon monitoring is very long and starts from ionization chambers,
through gas analyzers, to the now widely used alpha sensors and sophisticated gamma
spectrometers. These devices currently look like complex stations that also measure air
temperature, air pressure, and relative humidity, have smart software and the possibility to
be controlled and send information remotely. A separate class of devices are small portable
gadgets to measure indoor radon for sanitary purposes.

Another type of instrument category includes passive and active measurements. The
first option does not need any operator intervention, and the instrument can operate
autonomously and even remotely. The second option involves active operator actions
when air should be pumped into the instrument, and this portion of air requires manual
chemical analysis.

The problems of radon measurements and discussions about are very old but it seems
that paper [62] made the final point in this discussion: the authors demonstrated the
clear advantage of gamma sensors, which have a sensitivity 2–4 orders higher than the
alpha detectors. Gamma sensors are able to monitor temporal radon variations directly
within the geological media without the time delay required for the radon to move and
reach equilibrium within the air volume where the alpha detector is located: cave, tunnel,
basement, or narrow borehole. The readers can familiarize themselves with this publication,
but we want to add something what was not mentioned in it.

First, the most important thing pertains to when we use radon variations as an earth-
quake precursor. During the years of defamation of physical precursors of earthquakes [63],
opponents of forecasts argued that radon was not a harbinger of earthquakes because its
anomaly often cannot be registered. However, the problem is not in the absence of radon
anomaly before earthquake but in the alpha-particles emitted by the radon-free path in air,
which is near 5 cm. This means that the sensor measuring pre-earthquake increase in radon
flux should sit directly within this flux, because only a few meters away, it will see nothing.
It is quite natural that without knowing the location of an active fault, it is very difficult to
“catch” pre-earthquake anomalies. Contrary to alpha emission, the gamma emission is long
range and easily penetrating, which means that the gamma sensor will be able to register
the radon precursor everywhere within the earthquake preparation zone.

The second important advantage is the possibility to use the gamma spectrometer
instead of gamma sensor. Radon itself does not emit gamma quants. Gamma emission
is a result of its daughter products. Different radon isotopes (Table 1) produce different
daughter products (Figure 1), which, in turn, emit gamma emission producing the rich
energy spectrum. We consider that the main isotope to be used as a precursor is 222Rn,
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whose daughter products are 214Pb and 214Bi. They emit gamma lines with energies 295
and 352 keV for 214Pb and 609, 1120, and 1764 keV for 214Bi. Thus, if we select only these
lines from the total gamma spectrum, we will identify the 222Rn with 100% probability.
More details can be found in [59].

One more advantage of a gamma spectrometer placed in an isolated room is that it has
no daily amplitude variations correlated with ambient air temperature, contrary to alpha
sensor. This is shown in Figure 11, which compares the data series registered by an alpha
sensor Rad 7 and a gamma spectrometer PM-4 [59].
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3.5. How to Distinguish Soil and Tectonic Origin Radon

As mentioned above, radon is formed during the decay of radium contained in all
layers of the Earth’s crust, from the “granite layer” at depths of several kilometers to
shallow soils. A natural limitation to the distance over which radon can be transported in
the Earth’s crust is its relatively short average lifetime, determined by radioactive decay and
amounting to 5.5 days. With real speeds of advective transfer of gases in cracks unsaturated
with water in the Earth’s crust, apparently averaging no more than a few meters per day,
and in extreme cases up to 25–35 m/day, the distance over which radon can be transported
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to the surface of the Earth with the help of advection averages 20–30 m, in extreme cases
perhaps up to 200 m.

However, during radon monitoring, the concentration of radon in soil gas is recorded,
as a rule, in near-surface conditions, at a depth of no more than 1 m. In this regard, every
time when interpreting the results of radon monitoring, the question arises—What is the
nature of the radon that we register with our sensors? Is it formed directly in near-surface
soils, in fact, in the area where the measuring device is located, or is all or some part of the
recorded radon not of local origin, but arrives through advective transport to the surface
along faults from greater depths? In the case of some other gases, for example, He, CO2, or
CH4, the answer to the question of the depth and genesis of the gas can to a certain extent
be given by the isotope ratios of helium and carbon. However, in the case of radon, such
isotopic tracers are absent. Radon atoms formed directly at the surface of the Earth and in
the deep parts of the Earth’s crust do not differ from each other.

At the same time, it is possible to distinguish between radon of soil and tectonic
(deeper) origin based on the analysis of data from simultaneous monitoring of radon
concentration in soil gas at a depth of 0.5 to 1 m and the radon exhalation rate from the
soil surface.

As we have established during experiments on radon monitoring, in the case when
radon is formed directly in the near-surface soil layer, an inverse correlation is observed
between the concentration of radon in soil gas and the rate of radon exhalation from the
soil surface: with an increase in radon exhalation from the surface, its concentration in the
soil gas decreases (top panel of Figure 12). This is logical, because the more radon that
flows out of the soil, the less of it remains in the soil air. This type of correlation is typical
for areas located outside fault zones, characterized, as a rule, by a relatively thick layer of
soils overlying bedrock, where diffusive transfer of radon predominates [17,18,64]. Most
often, fluctuations in soil radon under such conditions are caused by changes in soil perme-
ability, which is associated, in turn, with fluctuations in air temperature and soil moisture.
A decrease in permeability leads to an increase in radon exhalation and an increase in the
concentration of radon in soil gas, and vice versa, a decrease in soil permeability causes an
increase in exhalation and a decrease in the concentration of radon in the soil.

In the case when radon is transferred to the near-surface zone along cracks from
deeper horizons, including radon of tectonic origin, the nature of the correlation between
the concentration of radon in soil gas and the rate of radon exhalation from the surface is of
the opposite nature. There is a direct correlation between these parameters (lower panel
of Figure 12). This is due to the fact that in this case, radon enters the near-surface layer,
where measurements are taken, with an advective gas flow from a certain depth, which
leads to a synchronous change in both the radon concentration at a depth of 0.5–1.0 m and
the exhalation speed of radon from the Earth’s surface. This type of correlation is observed
in highly permeable zones of tectonic faults [18,29]. Under such conditions, high-amplitude
synchronous fluctuations in the concentration of radon in soil gas and exhalation of radon
from the surface are observed, which, as a rule, are closely correlated with air temperature.

Additional information about the sources of radon is provided by measurements of
the content of 226Ra, the parent of radon, in the near-surface soil layer where the sensors
are located. Thus, the totality of information about fluctuations in radon concentration
in soil gas, the rate of radon exhalation from the soil surface, and the radium content in
these soils makes it possible to attempt to separate radon of soil and tectonic origin during
gas-dynamic monitoring. The first of such studies show their high promise [18,39].
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4. Radon as Diagnostic Means and an Earthquake Precursor

From the discussion above we see that radon reacts to variations in atmospheric param-
eters. This means that by solving the inverse problem, we can try to determine atmospheric
parameters based on measurements of radon variations [65]. In this publication Robertson
demonstrates the different atmospheric borders and air movements where radon can be
used as a tracer (Figure 13).
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As it was mentioned above, radon emanation is now used as a tracer of the upper
border of the Global Boundary Layer of the atmosphere.
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Gamma emission within the energy band of 214Bi 484–800 keV, the daughter of 222Rn
was used to monitor the spatial distribution of crustal activity in Japan during 8 years [66].
The gamma scintillation counter RE-100 was installed close to the earth surface while
moving by car or Shinkansen bullet train on the route from Kyoto to Tokyo. This monitoring
showed a long-term increasing trend in radon concentration in Inagawa Town, Hyogo
Prefecture, from around the end of 2001 with a rate of 16/count/min/year. An increase in
the level of radon emanation by 22% was also revealed in particular regions near Kyoto.

4.1. Radon Activity as a Measure of Tectonic Stress

When filtering radon variations caused by meteorological factors and air movements
the question arises: are the residual variations in radon concentration (including variations
before earthquakes), both increasing and decreasing, connected only with the transport
of radon through the new ways of migration, or can the rock deformation itself change
the radon emanation effectiveness? Paper [67] provides an answer to this question. It
presents the results of laboratory experiments on the effects of radon emanation changes
after mechanical and thermal damage of various granite representatives of the upper
crust. In comparison with other experiments using one-dimensional loading, the authors
of [67] used three-dimensional deformation when the samples were placed under natural
conditions (controlled confinement and pore pressure), and then they were flushed with
pore gas. Their results show that radon emanation increases up to 170 ± 22% at the last
moments before the sample rupture. At the same time, heating of the sample to 850 ◦C
shows that thermal fracturing irreversibly decreases emanation by 59–97% due to the
amorphization of biotites hosting radon sources. Thus, we can conclude that the temporal
radon variations before earthquakes are the result of two effects: new ways of gas (and
fluid) migration and changes in radon emanation from solid bodies under increasing stress
and temperature.

Is there any possibility to check the stress-radon release relation not only in laboratory
experiments but in natural conditions besides earthquakes? The closest to the seismic cycle
conditions and well-controlled experiments were produced with transient deformation
near reservoir lakes [68]. It is reported that the electric potential, radon emanation, and
deformation measurements recorded since 1995 in the French Alps vary in the vicinity of
two artificial lakes, which have strong seasonal variations in water level of more than 50 m.
In both emptying and filling of water reservoirs during transition periods, increased radon
emanation was observed.

In [69], the authors tested the dependence of the radon emanation intensity on the
tectonic fault parameters. Emanation survey results for Central Mongolia and the Baikal
region show that faults and their key parameters, such as size rank, internal structure
peculiarities, dynamic formation conditions, and seismic activity, have a significant effect
on radon activity. Additional analysis of the radon survey data from other regions confirms
the discovered regularities. Dependence of radon emanation intensity on fault parameters
is shown in Figure 14.

The correction of the atmospheric chemical potential (ACP) parameter (discussed
below) was derived from studies of radon ionization effects on the lower atmosphere [70],
and it was demonstrated that it can be used as a radon activity proxy [71]. It follows, with
a high level of correlation, the tectonic shear traction [72], which was checked by mutual
global monitoring. Figure 15 demonstrates the variations in ACP (blue and green) and
share traction around the time of the Fukushima earthquake on 16 March 2022.
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Figure 15. Average of near- and intermediate-field of ACP (unfiltered—blue; filtered—green) and
shear-traction field (red) in the epicentral area of the 16 March 2022 Fukushima earthquake, Japan
(time shown with grey vertical dashed line). The ACP follows the temporal evolution of the shear-
traction field before the earthquake, while the spike in ACP occurs at the same time and shear
traction increases.

We obtained enough proof that radon reacts to deformation in the Earth’s crust,
including laboratory experiments [67], natural monitoring of tectonic fault activity [69],
artificial stress initiation due to large water reservoirs filling and emptying [68], and
global monitoring of shear stress with the radon proxy [72]. The paper length limitations
prevent us from providing more examples, but even from the examples provided, it is
clear that radon-stress effects can be used in practical applications including short-term
earthquake forecasts.
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Organization of earthquake forecasts using radon variations is not the subject of the
present paper. We will only demonstrate what forecast parameters can be estimated using
the radon variations.

4.2. Radon as an Earthquake Precursor

For correct forecasts, we need to determine three main parameters: time, location,
and magnitude. We have many examples of pre-earthquake radon anomalies. Some
recent examples include [73–75]. But for real forecasts, these values should be determined
with sufficient precision. What does this mean? For example, the leading time of the
pre-earthquake anomaly should be sufficiently stable. Otherwise, the time spread makes
parameter values insignificant. Of course, in different areas of seismic activity, the leading
time value can be different, but for the given place it should be stable. Figure 16 shows
results of radon in air monitoring in Azov and Black Seas area.
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Figure 16. Charts of radon volumetric activity fluctuations in the near-surface atmosphere:
(a) 38 days before the earthquake in the Sea of Azov; (b) 32 days before the earthquake in the
Black Sea [75].

One can clearly see that the main maximum of radon pre-earthquake variation for
both cases have a leading time of nearly 6 days.

It is difficult to find the epicenter position from single-sensor radon measurements. In
this case we can use the radon proxy ACP, which is calculated from assimilative atmospheric
models; with its help, we can obtain its spatial distribution within the zone of earthquake
preparation. Figure 17 shows the ACP spatial distribution map one day before the M6.3
earthquake 34 km from Herat, Afghanistan.

The same approach of ACP distribution is used for earthquake magnitude estimation
assuming that the radius of the ACP anomaly is on the order of the Dobrovolsky earthquake
preparation zone radius [7] determined as:

R(km) = 100.43M (1)

where M is the earthquake magnitude
This estimate is based on the fact that spatial radon distribution determined statistically

from many publications on radon monitoring in seismically active regions follows the
Dobrovolsky law of magnitude–size relationship [7], as demonstrated in Figure 18.
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Figure 17. Spatial distribution of ACP one day before the M6.3 earthquake in Afghanistan on
15 October 2023. Epicenter position is shown by the orange star, and the white circle indicates the
earthquake preparation zone for M6.3.
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To estimate the radon contribution in air ionization is not a simple task because the 
real global distribution of radon is very rough. Nevertheless, such an attempt was made 
in [80]. The author used the chemistry–climate model SOCOLv3 [81] considering ioniza-
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Contribution of radon in air ionization is calculated as: 

IR = ((CRn-222 × 10−3)/5.69 × 1015) × ρ (2)

Figure 18. (a) Distance from the precursor to the epicenter as a function of earthquake magnitude.
Geochemical precursors are denoted by filled circles; the resistance from different sources, by dashes
and crosses; telluric currents, by triangles; radon, by arrows; and light effects, by open circles.
Modified from [7]. (b) Distance from the precursor to the epicenter as a function of the earthquake
magnitude for geochemical data. Modified from [5]. Opened and filled squares denote measurements
of radon and other gaseous anomalies, respectively. Continuous thin lines show the relation between
the deformation radius and magnitude for deformations of 10−7 to 10−9 in accordance with the
empirical Equation (1). The thick line represents the empirical dependence derived in [76] as a
result of calibrating the maximal distance between the measured anomaly and epicenter for a given
magnitude on the basis of the shear dislocation law for earthquakes. The dashed line shows the
typical size of the rupture zone of an active fault as a function of magnitude in accordance with the
empirical equation of Aki and Richards [77].

Another indicator for earthquake magnitude estimation can be the amplitude and
duration of the radon anomaly, but this question needs more statistical studies.

5. Radon as a Component of the Global Electric Circuit

The Global Electric Circuit (GEC) exists due to two major processes: creating the
potential difference of nearly 250 kV between the ionosphere at altitude ~80 km and
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ground surface created by the global thunderstorm activity [78] and the existence of air
conductivity which provides the fair weather vertical current from the ionosphere to the
Earth’s surface due to air ionization by external sources (galactic cosmic rays, solar proton
events, magnetospheric electrons and protons, and solar electromagnetic emission) and an
internal source, i.e., natural ground radioactivity, where radon plays the major role [14,79].

To estimate the radon contribution in air ionization is not a simple task because the
real global distribution of radon is very rough. Nevertheless, such an attempt was made
in [80]. The author used the chemistry–climate model SOCOLv3 [81] considering ionization
by solar energetic particles during an extreme solar proton event (SPE), galactic cosmic
rays (GCR), and terrestrial radon (222Rn).

Contribution of radon in air ionization is calculated as:

IR = ((CRn-222 × 10−3)/5.69 × 1015) × ρ (2)

where CRn-222 is the ratio of the mass of 222Rn to the mass of dry air; 5.69 × 1015 Bq
is the conversion factor between mBq/(m2·s) and g/(m2·s) (1 g 222Rn in the calculation
corresponds to 5.69 × 1015 Bq); and ρ is air density (kg/m3).

The global distribution of the ionization rate at an altitude 1000 hPa (near ground
surface) according to the model distribution of radon emanation is presented in Figure 19.
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Figure 19. Global distribution of atmospheric ionization rates at an altitude of 1000 hPa caused by
222Rn emissions averaged over January 2005, calculated using the SOCOLv3 chemical–climate model.
Reprinted from [80], with permission from A.V. Karagodin.

It should be mentioned that at the regional level, models exist based on real measure-
ments. The radon activity map for Russia is presented in the Figure 20 [82].

Figure 19 shows that the ionization rates from radon do not exceed values of the
order of 6 ion pairs/cm3/s, and the highest ionization rates caused by radon emissions are
observed in individual foci in the territories of Eurasia, part of Africa, and the west coast of
North America. The average values of radon ionization rates obtained in the SOCOLv3
model were compared with other results obtained previously in other models [83,84]. The
comparison showed good consistency of results in terms of the order of magnitude and
distribution of radon on the surface. Since the ground surface in ocean areas is covered by
water, there is a very low level of ionization caused by radon over the surface of the oceans.
Only in coastal areas close to the continents is there an increased level of ionization from
222Rn, due to radon transport by rivers [44].
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According to [85], we calculate the air conductivity as:

σ = n × e × (µ− + µ+), (3)

where: σ—specific conductivity (Sm/m); n—total number of ion pairs from all included
sources (cm3); e—elementary charge (C); µ− + µ+—mobility of positive and negative ions
(in our work, we assume an equal number of negative and positive ions). Three separate
numerical experiments were carried out in which conductivity was calculated for each of
the three ionization sources in order to estimate the contribution of each of the considered
natural ionization sources to the overall conductivity of the atmosphere. The calculation
results are presented in Figure 21. To calculate ionization rates from fluxes of galactic
cosmic rays (GCR), solar cosmic rays (SCR), and solar proton events (SPE), the CRAC
model CRII was used [85,86]. Figure 21 shows calculations of atmospheric conductivity
caused by 222Rn, GCR, and SPS through the SOCOLv3 model. In Figure 21, two SPEs are
considered, one on 17 January 2005 and another SPE of the ground level enhancement
(GLE) type on 20 January 2005. SCR flows are considered on undisturbed/quiet days from
1 January to 15 January 2005.

From Figure 21, it is clear that above 50 hPa, the predominant contribution to the
ionization rate is made by ionization from the event of 20 January 2005. Ionization from
radon is the main contributor to conductivity only in the layer of the atmosphere that is
closest to the Earth’s surface, somewhere below 850–900 hPa. In general, ionization has an
exponential dependence and grows from the Earth’s surface, where it has an average global
value of the order of 10−13, and to the upper boundary of the model atmosphere, where the
conductivity value grows to values on the order of 10−7, which corresponds to observations
and previously obtained numerical results [84]. To compare the specific conductivity
during the disturbed period (for 17 and 20 January 2005), the specific conductivity was
also calculated for ionization from SCR during the quiet period. The time period from
1–15 January 2005 was chosen as the quiet period. It can be seen from the figure that the
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conductivity during the quiet period differs from the conductivity during the disturbed
period by approximately two to three orders of magnitude, depending on the height. This
modeling study took into account all of the main natural sources of atmospheric ionization
and took into account the contribution to atmospheric conductivity from a solar event
compared to quiet conditions.
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Figure 21. (Left) Global average ionization rates from various sources. Red lines: Ionization rates
from the SPE on 17 January (dashed line) and 20 January (dotted line) 2005; purple dotted line: SCR
ionization rate on undisturbed/quiet days (1–15 January 2005); green curve: ionization rate from
GCR (averaged for January 2005); blue curve: ionization rate from 222Rn (averaged over January
2005). (Right) Global average contribution of various ionization sources to the total atmospheric
conductivity. Red lines: conductivity caused by ionization from the ATP on 17 January (dashed line)
and 20 January (dotted line) 2005; purple dotted line: conductivity caused by ionization from SCR on
undisturbed/quiet days (1–15 January 2005); green curve: conductivity calculated using ionization
from GCR (averaged for January 2005); blue curve: conductivity calculated using ionization from
222Rn (averaged over January 2005). Reprinted from [80], with permission from A.V. Karagodin.

Looking at the results of modeling, a reader may not notice anything unusual; however,
something that was never acknowledged before is that air ionization by radon produces an
essential impact on the GEC parameters. In Figure 22, the computed latitudinal distribution
of the vertical fair-weather current is shown at a longitude near 1◦ W.

The difference between calculated fair-weather current density taking into account
only GCR ionization and fair-weather current density taking into account radon and the
GCR effect is about 0.2–0.6 pA/m2 and appears in the 222Rn active regions, see [14]. It is an
essential contribution that should create a local anomaly of the ionosphere potential.

We made model calculations using a commonly accepted radon concentration on the
ground surface of nearly 3 Bq/m3, but in the Figure 16, we see values close to 60 Bq/m3

which were measured at 2 m altitude above the ground surface. It is more than an order of
magnitude larger than the radon concentration used in calculations. Some time ago, we
provided radon measurements in a closed box to prevent wind effects at 3 levels: −70 cm,
0 cm, and 100 cm in relation to ground surface in two different regions of Mexico [87]. The
results are presented in Table 2. Altitude −70 cm is the level where the original ground
radon concentration was measured. From these values at the ground surface, we see
concentrations reaching 288 Bq/m3, which is two orders of magnitude larger than accepted
in the calculations. At the altitude of 100 cm, radon concentrations are similar to those
presented in Figure 16 from the Azov and Black Sea shore areas.
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Table 2. Radon concentration values in Bq·m−3: average (Av) and relative standard deviations (RSD)
in percentage (Av ± RSD (%)), maximum (Max), and minimum (Min)values obtained at 70 cm below
the surface (−70 cm), at the surface (0 cm), and at 100 cm above the surface, in air [87].

Location −70 cm 0 cm 100 cm

Max Min Av ±
RSD Max Min Av ±

RSD Max Min Av ±
RSD

Cuernavaca (Bq m−3)
% original soil radon

4813
100

873
100

2249 ±
71

100

288
6

86
10

179 ±
48
8

37
0.8

20
2.3

29 ± 6
1.3

Las Cruces (Bq m−3)
% original soil radon

3197
100

500
100

1574 ±
64

100

159
5

59
12

106 ±
33
6.7

18
0.5

17
3.4

18 ± 4
1.1

The future direction of our work in radon ionization ability will concentrate on areas
of increased radon concentration to calculate local anomalies of the ionospheric potential.

6. Conclusions

In this research, we tried to create a comprehensive picture of radon variations under
action of different factors. We demonstrated that meteorological effects have important
contributions to radon variations. It was revealed that effects also depend on the sensor
location, e.g., closed spaces or directly connected with the atmosphere (even in caves). The
convection direction depending on the temperature difference between outside and inside
of a room where the sensor is located my change the sign of dependence on air temperature
and pressure. The main results of this consideration are as follows:

1. Meteorological effects depend not only on the pure variations in meteorological param-
eters but also on the methodology and location of radon measurements (pumping ef-
fect) and differences between outside and inside (where the sensor is
installed) temperatures



Atmosphere 2024, 15, 167 25 of 29

2. Daily radon variability (night-time maximum) is determined by daily dynamics of
the Global Boundary Layer

3. Two types of seasonal variation in radon (summer maximum or minimum) need
further clarification. The summer maximum is likely a result of measurement site
location. The summer minimum should be checked by long-time measurements at
the geodetic equator where the air temperature does not change throughout the year

Tectonic activity also has different methods of action on radon concentration. Stress
works at a microlevel and can change the level of radon emanation, increasing it by 177% (in
laboratory experiments), and increases in the crust temperature lead to decreases in radon
emanation. In addition, large-scale deformations can create new ways of gas transport
within the crust, leading to changing the levels of radon exhalation at the ground surface.
Thus, radon exhalation intensity should depend on the earthquake source mechanism:
extension, compression, or shear. During the preparation period, we can observe the
increase or decrease in radon flux intensity, or even no changes.

It was demonstrated that there are two types of radon origin:

1. The surface radon contained in radium grains of the soil
2. Tectonic radon coming from deeper layers of the crust. The problem with many

publications is that dependence of surface radon on meteorological parameters is
applied to tectonic radon, creating a ‘mish-mash’ in data interpretation

3. One of the new and important results is the way of discriminating between surface and
tectonic radon. It is simple but effective: for surface radon, the radon concentration
and exhalation are in counterphase, while for the tectonic radon, they are in phase.

The solar activity effects on radon activity were practically not studied in the literature;
here we made two contributions:

1. We supplemented the description in [60] of the oscillation of radon intensity within
the solar cycle with a maximum period of 12.5 years, which is modulated by radon
changes in local time. The maximum of radon activity is observed during night-time
hours, coinciding with variations in the Total Electron Content provided by radon
activity.

2. The study of long-term observations of radon activity in Gorny Altai implies the
possible anticorrelation of solar and radon activity within the solar cycle. Nevertheless,
more long-term observation analyses are necessary to make a more definite conclusion.

Advantage of gamma spectrometry for 222Rn monitoring and discriminating from
other radon isotopes and daughter products was demonstrated.

The role of radon in environmental monitoring applications was highlighted. It is
used as a tracer for determining the upper boundary of the Global Boundary Layer and as
an earthquake precursor.

One of the more significant results of this publication is a demonstration of the
importance of radon contribution to the vertical current–ionospheric potential of the
global electric circuit. It opens the way to further improvement of the Lithosphere–
Atmosphere–Ionosphere Coupling (LAIC) model where the GEC plays an important role
in the atmosphere–ionosphere coupling mechanism.

All results mentioned above are not considered final and will be improved and devel-
oped in future work.
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