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Abstract: In this study, the nowcast models provided by the Python pySTEPS library were evaluated
using radar derived rain rate data and the satellite product Split-Window Difference (SWD) based on
GOES-16 data, focusing on central Mexico. Initially, we obtained a characterization of the rainfall
that occurred in the region using the radar rain rate and the SWD. Subsequently the nowcasts were
evaluated using both variables. Two nowcast models were employed from pySTEPS: Extrapolation
and S-PROG. The results indicate that average SWD is below 2.5 K, 90 min before the onset of rainfall
events, and, on average, the SWD is 2 K during rainfall events. The results from both nowcast models
were accurate and produced similar results. The nowcasts performed better when SWD data were
used as input, having an average Probability of Detection (PoD) above 70% and a False Alarm Rate
(FAR) reaching 40% for the 15-min prediction. The nowcasts were less accurate using the radar rain
rate as input for the 15-min forecast, where the PoD was maximum 70% and FAR reaching 40%.
However, these nowcasts were more reliable during well-organized precipitation events. In this work,
it was determined that the nowcast models provided by pySTEPS can provide valuable rain forecasts
using GOES-16 satellite and radar data for the central Mexico region.
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1. Introduction

Nowcasting models are valuable tools for predicting short-term rainfall events, pro-
viding early alerts for potential severe weather in a region. Although these types of models
have been implemented around the world, central Mexico has yet to adopt these models,
even though the region experiences convective storms during its rainy season, spanning
from May to October, which often result in severe flooding. This region it is covered by
three radars: one located north of the city of Queretaro (north of Mexico City), one is
located in the mountain Cerro Cathedral (west of Mexico City), and the third is located in
the center of Mexico City. Additionally, the central Mexico region falls under the coverage
of the GOES-R satellite series. These two tools, the radar and satellite data, present an
ideal opportunity for the possible implementation of a nowcast system in the region. Such
implementation could significantly enhance early detection and preparedness for potential
strong convective storms.

Nowcasting models that mainly utilize radar data have been extensively studied
and implemented (e.g., [1–8]). An example of this is the Python pySTEPS library, which
offers several nowcast models designed specifically for radar data, including: a basic
simple extrapolation through an advection field, the Spectral Prognosis (S-PROG) model
and the Short-Term Ensemble Prediction System or STEPS nowcast model [9,10]. These
pySTEPS nowcast models have been used in many studies around the world to evaluate
their forecasting skill and to compare them with other types of nowcast models, using radar
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data [8,11–17] and other types of data sources such as microwave links [18], and blended
NWP data [19].

On the other hand, satellite data have not been widely used as input. Several nowcast
models have been developed to use satellite data to improve or extend radar data nowcast
models (e.g., [20–22]), while other models have been designed to operate primarily with
satellite data (e.g., [23–28]). These nowcast models often utilize threshold values of satellite
brightness temperatures or reflectance values in specific wavelengths, to determine areas
of convection and water vapor concentration prior to or at the early stages of precipitation
events. These detected areas have been used to track any convective development, and in
some cases, to assign probabilities of convective storms [23]. Other studies have used satellite-
derived precipitation data as inputs in different types of nowcast models (e.g., [29–32]).

One variable that has been observed to be a possible indicator of future convective
development has been the Split-Window Difference or SWD [33–35]. The SWD is defined
as the difference in the brightness temperature measured at the 10.33 µm wavelength
(called clean-window) and at the 12.3 µm wavelength (called the dirty-window). The
difference in these two spectral channels describes the amount of low-level water vapor
in the atmosphere because water vapor absorbs and re-emits large amounts of energy in
the dirty-channel. On other hand, the clean-window is transparent and is not affected by
the water vapor absorption, and all the energy comes from the surface of the earth (which
is warmer than the clouds). In other words, the difference measured between these two
wavelengths is related to the amount of water vapor in the atmosphere. The SWD is small
when there is water vapor in the lower atmosphere and the difference between the dirty and
clean window is small. The SWD has higher values when the water vapor concentration is
low. Although there are other variables that can affect the accuracy of the low-level water
vapor measurements obtained through the SWD [36], this study uses the simple form of
the SWD. This is because the region does not have other instruments available, such as
ground base weather stations, which would cover the whole area of study and provide the
necessary variables to correct the SWD measurements (such as surface temperature).

The first objective of this study was to evaluate the SWD as an indicator of rainfall
and convective development, using GOES-R and radar data across central Mexico. The
second and main objective was to utilize the SWD and radar rain rate data to assess the
performance of two nowcast models provided by the pySTEPS library to evaluate their
performance within the region. The premise behind using the SWD was to generate a
forecast, using the SWD signal as an indicator of convective activity prior to the onset
of rainfall.

2. Materials and Methods

The data used in this study came from two sources. The first was from NOAA’s GOES-
16 satellite, using the CONUS sector, and the second was from the Queretaro weather radar.
The analysis period spanned 47 days, from 1 July 2018 to 16 August 2018, representing the
time when the radar dataset was most complete during the rainy season.

The SWD was derived using channel 13 (10.3 µm band) for the “clean-window” and
channel 15 (12.3 µm band) for the “dirty-window”, as described by NOAA [37,38]. The
SWD was calculated using SWD = T(B, Dirty) − T(B, Clean), where T(B,) represents the
brightness temperature. These two channels have a spatial resolution of 2 km, and a
temporal resolution of 5 min.

The Queretaro weather radar is a Doppler, “C” band radar with pulse compression [39],
located at 20.7802◦ Lat, −100.5504◦ Lon, approximately 27 km northeast of the city of
Santiago de Queretaro, Queretaro, Mexico. It operates within a range of 239.75 km, with a
beam width of 1◦ and a temporal resolution of 5 min. The radar data underwent a quality
control procedure using the Gabella and PIA methodology [40,41], respectively. The rain
rate was calculated using the Z-R relation with the parameters a = 220, and b = 1.6. After
performing a visual quality control of the radar data, 5 days were excluded from the radar
data set: 2 July, 17:42 Z, to 5 July, 17:42 Z; 16 July, 2:57 Z, to 17 July, 14:07 Z; and 16 August
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starting at 2:02 Z. The prevalent type of precipitation during this time of year in the central
Mexico region is convective precipitation.

The methodology utilized to evaluate the SWD as an indicator of convective and
rainfall development was to analyze the relationship between this variable and the radar
rain rate. To achieve this, a common grid was required. For this study, the satellite’s
2 km by 2 km grid was chosen as the common grid, illustrated in Figure 1, due to its
compatibility with pySTEPS. The radar data were interpolated into the satellite grid using
the nearest-neighbor interpolation.
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Figure 1. GOES-16 satellite 2 km by 2 km grid used as common grid over the Queretaro radar
coverage area for rain characterization. Basemap sources: Esri, USGS, NOAA [42].

For the assessment of SWD nowcast, we employed the nowcasts provided by the pyS-
TEPS library of Python [9,10]. Although the pySTEPS (v. 1.4.1) library includes five types
of nowcasts, only two were used for this study: extrapolation and S-PROG. Extrapolation
is the simplest nowcast method available in pySTEPS, which is an extrapolation method
based on advection. Essentially, the model assumes a constant intensity of precipitation
and moves the provided data through a given advection field. On the other hand, the S-
PROG nowcast, as described by [1], is an extrapolation through advection nowcast method
that incorporates spectral decomposition in the spatial field, integrating an autoregressive
model within each cascade field. These two nowcast methods were chosen due to their
efficiency in computational resources, allowing forecasts to be obtained in less than 1 min.
Furthermore, given that the nowcasts were intended for use with a satellite variable rather
than radar data, understanding how they would impact the intensity of the input variable
was crucial. Both Extrapolation and SPROG models modify the intensity of the input
variable; however, the changes are a consequence of how the models operate and not a
direct modification of the intensity by the algorithm. In other words, the algorithms of
Extrapolation and S-PROG do not involve the direct modification of the intensities, such as
including dissipation factors or adding stochastic variations to the input fields [9].

Although all motion fields calculation functions through pySTEPS were tested, the
Lucas–Kanade method (LK) pySTEPS function with the default parameters was used
to derive the motion fields for all nowcast methods because its minimal computational
requirements and its ability to provide a reliable representation of the motion field. The
evaluation of these methods is based on the dichotomous verification statistics provided in
the pySTEPS library, which include the Probability of Detection (PoD):

PoD =
hits

hits + misses
(1)
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False Alarm Ratio (FAR):

FAR =
f alseAlarms

f alseAlarms + hits
(2)

and the Heidke Skill Score (HSS):

HSS = 2
hits × c.negs − f .a. × misses

(hits + misses)× (misses + c.negs) + (hits + f .a.)× ( f .a. + c.negs)
(3)

In addition to using pySTEPS’s nowcast models, the Thunderstorm Detection and
Tracking (DATing) module was also used to obtain SWD clusters that could lead the
identification of possible convective development. The DATing module uses the TRT
Thunderstorms Radar Tracking algorithm [2,9] developed by MeteoSwiss. This algorithm
involves the initial detection of storm clusters, and then it uses pySTEPS advection functions
to generate motion fields to obtain the paths of the detected storm clusters over a specific
time period. The DATing module was used in this study to filter out individual pixels or
small groups of SWD data, assuming that these will most likely not lead to strong multi-cell
convective storms. The DATing module uses natively the radar reflectivity as input, for the
SWD data; the tracking parameters were modified to improve the track, and the detailed
process are in Section 3.2.1.

Finally, the evaluation was performed for a period between 1 h and 35 min before the
onset of a precipitation event and 4 h and 55 min after the start of a precipitation event.
This time frame was used in the DATing module to obtain the SWD clusters for each event.
Each image or data matrix available in this 6:30 h interval (an image every 5 min), for
all precipitation events occurred during the 47-day analysis, was used as input for the
nowcasts. Figure 2 illustrates the study area for the nowcast evaluation, which is the 2 km
by 2 km satellite/common grid of Figure 1 beyond the radar range.
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3. Results
3.1. SWD Relationship with Radar Rain Rate

In this part of the study, each pixel in the common grid was considered a case, using
pixel-by-pixel comparison. Figure 3 illustrates the relationship between SWD and radar
rain rate, revealing that the majority of rain rate cases shows a positive SWD. Extreme rain
rates (100 mm/h or above) were associated with SWD values ranging from 0 K to 5 K, with
an average of 1.99 K. Figure 4 displays the distributions of the SWD for pixels with rain (left
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graph) and pixels without rain (right graph). The left graph of Figure 4 suggests that most
cases where precipitation occurrence had an SWD between 0 K and 5 K, with the highest
percentage of cases (13.5%) falling within the 1.23 K and 1.44 K interval. Conversely, for the
non-rain cases displayed in Figure 4b, the majority of cases exhibited SWD values between
0 K and 10 K, with a significant concentration between 5 and 10 K. The highest percentage
of cases (4.1%) occurred within the SWD range of 1.86 K to 2.07 K. The main differences
observed between the no rain cases distribution and the rain cases distribution was the
number of cases above and below 2.5 K.
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(right). Non-rain cases are SWD cases with rain rate less than 0.5 mm/h.

A notable distinction between the distributions of no rain cases and rain cases was
the frequency of occurrences above and below 2.5 K. For the distribution of cases without
rainfall, 37.2% exhibited SWD values lower than 2.5 K, whereas for the distribution of rain
cases, 82.2% of cases had SWD values below 2.5 K, suggesting that SWD values below
2.5 K were commonly associated with precipitation.

While Figures 3 and 4 suggest a weak correlation between radar rain rate and SWD,
an analysis of SWD values prior to the onset of rainfall was conducted to gain insights
into the behavior of SWD during convective development. Figure 5 shows the average
SWD at different offset times for various rain rate intervals. These offset times represent
the time between the start of precipitation and the satellite data collection, indicating that
the average SWD was measured at the specified offset time before the recording of rainfall.
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Across all cases, the average SWD has an increasing trend with offset time, indicating that
the average SWD decreased as the time drew closer to the onset of precipitation events.
The average change between the 0- and 240-min offset times was 1.89 K; and between 0-
and 90-min offset times was 0.81 K. This rate increased with the rain rate intensity, with the
most significant change observed for the rain rate interval of >200 mm/h (3.13 K) for 0- to
240-min offsets, and 2.53 K for the 0- to 90-min offset. Furthermore, this graph also shows
that the average SWD decreased as the rain rate increased for offset times lower than 20 min.
Notably, for extreme events, the SWD exhibited a 2 K decrease one hour before the onset
of rainfall. This decline in SWD preceding precipitation events was also observed by [33],
where a storm case study analyzed the SWD derived from the GOES-16 data, revealing that
the SWD dropped below 3 degrees C just before and during the onset of rainfall. Figure 6
shows the change in average SWD per 5 min for all offset times. In general, the change
was negative, indicating that the SWD decreased before the development of rainfall. The
most substantial decrease was observed for high intensity precipitation between the 5- and
90-min offset time. Finally, the values also formed a local minimum or valley between the
75- and 25-min offset times, with the maximum change occurring between 50 and 45 offset
minutes. The average change that occurred during this downhill was of 0.6 K per 5 min for
all cases.
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The results demonstrate the feasibility of setting a threshold SWD value in order to
identify rainfall development areas. Using Figure 5, this threshold value was determined
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to be 2.5 K, since the average SWD drops below this value approximately 60 min prior to
the measurement of rain rate. Thus, if any significant SWD areas fall below 2.5 K, there is a
strong likelihood of rainfall development within the following 60 min.

Diurnal Cycle

In addition, a SWD diurnal cycle was derived for the rain rate and the SWD. This was
performed by calculating the average of radar rain rate and SWD over the entire common
grid for each image available in the analysis, observing how it varied throughout the day.
Moreover, the radar rain rate average (RR_aa) was calculated by replacing NaN values with 0
to have a consistent methodology to compare with the SWD area averages (SWD_aa) values.

Figure 7 shows the running mean for all available days for the RR_aa and the SWD_aa,
as well as the hourly average of both. The mean values show that rainfall typically
commenced after 11 h. local time, with a maximum around 17 h. local time. On the
other hand, the SWD_aa tended to increase at around 6 h. local time and its maximum
occurs at 12 h. local time. The behavior of RR_aa is consistent with the observed diurnal
cycle of precipitation in various regions during the rainy season [43–45]. The graphs also
highlight the inverse relationship between SWD_aa and the presence of precipitation, with
a noticeable decrease in SWD_aa coinciding with an increase in RR_aa. Additionally, the
rise in SWD observed around 6:00 a.m. local time corresponds to the sunrise, indicating a
decrease in low-level water vapor levels with the presence of sunlight. It is important to
emphasize that both SWD_aa and RR_aa were averages over the entire region, considering
all areas where there is no rain rate as 0.0 mm/h. Consequently, the observed maximum
and minimum SWD_aa values exceeded those reported in the previous section.
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3.2. Results of the Nowcast Model Evaluation
3.2.1. Why SWD?

Although the previous section reveals an unclear relationship between rain rate
intensity and SWD, a change in the SWD was observed between 90 and 60 min prior
to precipitation occurring. In other words, the decrease in the SWD below 2.5 K indi-
cates the likelihood of rainfall within 60 min for the region. Figure 8 shows the SWD
field, for values between 0 and 2.5 K and radar rain rate of one of the events analyzed,
8:07 Z or 3:07 h local time, 9 August 2018. This figure highlights how the SWD values
can indicate potential areas of convective development one hour before and after the rain
event started. However, this example also shows that not all SWD areas below 2.5 K
developed into precipitation, suggesting that while the SWD can overestimate potential
precipitation areas, it remains a valuable tool for identifying potential convective devel-
opment ahead of rainfall. Similar instances, as depicted in Figure 8, can be found in the
Supplementary Materials (Figure S1). These observations align with findings from previ-
ous studies utilizing satellite data, including GOES-16 data [33–35]. The SWD data can
be utilized as input in nowcast models to predict potential precipitation areas before the
initial radar measurements of rainfall. Once the precipitation event commences, radar data
become more reliable for predicting rain intensity, while the SWD can aid in indicating the
possible direction of precipitation alongside radar data, though not its intensity due to the
lack of a clear relationship between rain intensity and SWD. Ultimately, the combined use of
SWD with nowcast models facilitates short-term predictions of potential precipitation areas
before the first radar measurements, followed by the use of radar observations to forecast
storm behavior.
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Figure 8. Rain rate from the Queretaro radar (top images) and SWD field below 2.5 K from the
GOES-16 satellite (bottom images) for the event starting at 18:07 Z, 9 August 2018. Left images are for
one hour before start of event, middle images are of start of event and right images are of 1 h after
start of event.

3.2.2. Setup SWD and Event Selection

The SWD field requires modification, in order to work properly in pySTEPS, because the
algorithms implemented in pySTEPS worked optimally when the input data matrix contains
NaN flags for missing values, clusters or groups of data points. Therefore, the SWD field had
to be masked using the 2.5 K (negative values were eliminated) threshold to select only areas
where rainfall is plausible. Additionally, the values had to be multiplied by 100 to amplify the
changes in the field. With the filtered SWD field, the nowcast models and the LK function
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to obtain the motion field were used and the model ran without any issue. Henceforth, any
reference to “all SWD field” or “all of the SWD field” or “the SWD field” refers to this filtered
SWD field, unless specifically stated otherwise. The following DATing tracking parameters
were observed to yield the best results for the SWD data and were consequently used for this
study: (units × K × 100) minref (lower threshold value) = 100, maxref (maximum threshold
value) = 250, mindiff (minimum difference between two maxima in one area needed to
distinguish objects) = 60, minsize (minimum size of cluster) =10 (pixels), minmax (minimum
of maximum values) = 240 and mindis (minimum distance between clusters) = 5 (pixels).

The second obstacle to tackle prior to evaluating the nowcast models was determining
the events to be analyzed. The events were selected using a 30-min running mean over the
radar rain rate, presented in Figure 9. The start of each event was defined as the occurrence
of a local minimum in the data after 10 h local time and before 20 h local time, a period
with high density of rain events. To select the events efficiently and computationally fast,
the second derivative test was used to identify the local minimum. After locating the local
minimum, the start of the event was selected as the time when the average precipitation
reaches the value of 0.002 mm/h after the local minimum. This was performed in order to
eliminate any potential noise sources during the local minimum calculation.
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RR) of the events considered for the nowcast evaluation with the start of each event.

From this methodology, 36 events were selected (23 for July and 13 for August). This
method can be considered efficient because, as Figure 6 suggests, assuming one event per
day, the process identified 36 of 43 possible events, resulting in an 83% efficiency rate.

3.2.3. Evaluation of Nowcast Models Using SWD Data

This section presents the statistics comparing all SWD fields as input and those ob-
tained only using the SWD clusters as input in the models. The forecast time was set to
15 min, because it was the shortest useful lead time for both the SWD and the rain rate. In
addition, shorter lead times result in more accurate forecasts, and, therefore, the results
from the 15-min forecast were considered the most accurate useful predictions that can
be obtained in this analysis. The input data for the models and the resulting forecast
fields were on a logarithmic scale, but the evaluation of the forecast was performed by
transforming the logarithms into K and mm/h. Furthermore, for consistency, any values of
0 K given by the models were converted to NaN.

Figure 10 shows the scatter plots of the statistics used to evaluate the two nowcast
models, comparing the results between the SWD field (All SWD field) and the SWD clusters
(SWD clusters). The scatter plots indicate that SWD clusters provided better overall results.
The PoD, FAR and HSS results show that the Extrapolation and S-PROG models were
accurate in general, with approximately 93% of cases with PoD of 0.7 or higher, 71% of
the cases had a FAR below 0.3, and 68% of the cases had a HSS at or above 0.7. Figure 11
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presents all the average statistics in every 5-min interval of the analysis period and the
difference between the average results obtained using the SWD field and SWD clusters. The
graphs illustrate that the results improved as the time elapsed. Finally, the SWD clusters
gave more accurate forecasts throughout the whole period of analysis. Although several
nowcast models use satellite data [23–32], there have been no prior studies employing
SWD satellite data as inputs in the pySTEPS nowcast models. While some studies have
utilized the optical flow fields available in pySTEPS with satellite data [46] and not the
nowcast models themselves, certain studies have evaluated S-PROG and Extrapolation
pySTEPS nowcast models with radar data, using some of the same dichotomous statistics.
The authors of [8,11,12] conducted evaluations of the two models in the USA (former two)
and China, respectively, with radar data for precipitation events. Their PoD and FAR results
closely resemble those obtained with the SWD data, with values between 0.6 and 0.75 for
average PoD and values between 0.2 and 0.4 for average FAR for lead times near 15 min.
However, because [8,11,12] involved radar data rather than satellite data, caution should
be exercised when comparing these results with those obtained using the SWD.
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Figure 11. Graph of the average statistics indicated (POD, FAR, HSS) of the 15-min forecast, using the
image of the time indicated as input (graphs on right column) and the difference between “All SWD”
and “SWD clusters” (left column, marked with a ∆). The time is every 5-min interval before (marked
with a negative sign) and after the defined start of the event for SWD data.

Although Figures 10 and 11 give an idea of the nowcast behavior for each type of SWD
input, it is helpful to have a visual representation of the forecast to understand the previous
results. Figure 12 shows an example of the 15 min forecast for an event that started on
1 July 2018, 18:57 Z, or 13:57 h local time. The images show that both models provided
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similar forecasts. The forecast using SWD clusters was more accurate. The SWD clusters
obtained from the DATing module filtered out a lot of smaller SWD areas; therefore, the
errors that arose from not predicting the movement of these small SWD clusters correctly
were not considered. These errors, although small in magnitude, were significant in
quantity, providing an explanation as to why utilizing the entire SWD field (Figure 12)
led to less accurate overall forecasts. However, it is important to note that the DATing
algorithm does not always detect all large clusters, potentially resulting in missed areas
of precipitation.
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3.2.4. Evaluation of Nowcast Models Using Radar Data

The same evaluation of the Nowcasts models presented in Section 3.2.3 was also
conducted using the Queretaro radar data. To preserve the consistency between the SWD
and the radar data, the results are also presented as a comparison between the results
obtained using the rain rate field (all_RR) and the rain rate that fell into a SWD clusters
(RR_in_SWD_clusters). Lastly, the threshold value used to separate rain and no rain was
set as 0.5 mm/h (since values below this threshold were considered noise in the original
rain rate data).

Figure 13 shows the scatter plots results for the two models; the results for the PoD and
HSS show that using all_RR was less accurate than using RR_in_SWD_clusters. For both
models, the PoD of 93% of cases fell below 0.7 and the PoD of 58% of cases fell between 0.7
and 0.5. For the FAR, 87% of the cases were below 0.3. The difference between using as
input all_RR and RR_in_SWD_clusters was negligible. Figure 14 shows statistics results
for a 15-min forecast, averaged for every 5 min interval after the start of the rain event.
These graphs show that, on average, using all_RR field resulted in similar forecast as using
RR_in_SWD_clusters. Additionally, the PoD tended to increase on average by almost
0.4 in the 295 min after the start of the event, the FAR decreased by 0.2 in the same period.
These results for all_RR are not as accurate as those obtained by previous works. The
authors of [8] evaluated the models for 10 events in the Texas, USA region and obtained
PoD values of 0.6 and 0.75 for Extrapolation and S-PROG, respectively, and FAR values
between 0.3 and 0.4 for both models. The authors of [11] used 80 events from Texas and
Colorado, USA, and radar reflectivity with S-PROG and Extrapolation, which resulted
in average PoD of approximately 0.75 and average FAR of 0.2 for the 15-min lead time.
Lastly, the authors of [12] used the Extrapolation and S-PROG models with radar reflec-
tivity data from China for over 100 events. They found that for short lead times (12 and
24 min), the POD reached 0.75 and the FAR was below 0.2. However, the PoD values were
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closer to those observed by [8,11,12] as the events developed. Finally, an example of these
forecasts (Figure 15) showed similar observations as those made with the SWD data for the
same event, revealing comparable results between the Extrapolation and S-PROG models.
Additionally, both models tended to overestimate the area affected by rainfall.
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Figure 14. Graph of the average statistics indicated (POD, FAR, HSS) of the 15-min forecast, using the
image of the time indicated as input and the difference between “All RR” and “RR in SWD clusters”
(left column, marked with a ∆). The time is every 5-min interval before (marked with a negative sign)
and after the defined start of the event for SWD data (left).

As previously mentioned, the results obtained using radar data were generally less
accurate compared to those derived from SWD data. This disparity can be attributed to the
larger volume of SWD data and the comparatively larger SWD clusters, which increased the
likelihood of hits. However, the FAR results were marginally better for the radar data. This
inconsistency can be traced back to how the nowcast processed the SWD and radar data, as
depicted in Figures 12 and 15. Both nowcast models tended to generate false alarms and
misses along the edges of the clusters. Nonetheless, the models produced a greater number
of false alarms for SWD than for rain rate, likely due to the models not being designed
specifically for forecasting satellite products. The discrepancy in the number of false alarms
created by the models for each type of data influenced the statistics that relied on false
alarms, such as FAR. Consequently, the average FAR for the SWD was approximately
0.1 higher than that for the radar data.
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Figure 15. Images of the RR field for the actual data and the 15-min forecast obtained using the
two nowcast models indicated (top) occurring on 14 July 2018, 20:47:00 Z; and comparison between
the actual data and the forecast data (bottom).

3.2.5. Evaluation of Nowcast Models with Variation in Coverage Area

Previous results showed that the nowcasts gave less accurate results when radar data
were used as input. This might be due because the radar has some limitations in the
coverage area. To explore if this limitation had any effect in the results, the nowcast models
were evaluated by applying two radar coverage area limits. The first constraint was the
whole radar coverage area (all radar area; Figure 1); and the second was a constrain the
radar range to 180 km (180 km radar area). Figure 16 shows the differences in the average
PoD and FAR between all radar area, and 180 km radar area. The 180 km radar area
demonstrated improved results for both PoD and FAR during the initial 60 min following
the event’s commencement. However, this improvement diminished to less than 0.05 for
the subsequent period.
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3.2.6. Real-Data Pixels and Statistics Results Relationship

Following the findings of the previous section, which indicated a change in nowcast
skill corresponding to decreasing coverage, a question emerged regarding the significance
of NaNs in the analysis. Consequently, the subsequent analysis focused on assessing
the impact of NaNs on the applied statistics. One of the primary motivations for this
investigation was the observation that the radar data contained fewer data values within
each image than the SWD data, resulting in outliers exerting a substantial influence on
the outcomes. To test this hypothesis, a comparison was made using the fraction of pixels
containing real data (non-NaN) for each variable across all cases, aiming to identify any
potential correlations with the results.

Figure 17 shows the scatter plot of the logarithm-10 of the fraction of pixels in each
image with real data (pixel fraction) and the PoD for each nowcast model divided into
SWD and radar data, as well as their linear correlation for the two nowcast models. All
data sets had a positive, linear correlation with the log-10 of pixel fraction. For the SWD
data, the data were more concentrated in the PoD values above 0.5, but the outliers present
were very separated from the main cluster of data. For the radar data, the data remained
below 0.8 and were more scattered, unlike the SWD, which did not have many outliers very
separated from the main data cluster. Figure 18 shows the same but for FAR. This variable
has a negative, linear correlation with the log-10 of pixel fraction. The SWD data were
less spread with some outliers, and the radar data were more spread, especially for pixel
fraction values below 0.003 (approximately 186 pixels). The linear correlation observed in
the graphs was calculated using the Pearson’s correlation (R) and Spearman’s Rank (rho)
(Table 1). This table shows R and rho values for each of the statistics studied and the log-10
of the pixel fraction. All variables showed a high correlation with pixel fraction, except for
the HSS for SWD, which had a moderate correlation.
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Figure 18. Scatter plot of the logarithm-10 of the pixel fraction (real data pixels over total pixels)
and the FAR for all cases and events of radar rain rate and SWD results for (a) Extrapolation and
(b) S-PROG.

Table 1. Results of the correlation coefficients between the fraction of total pixels with real data and
the statistics results for all nowcast models. Asterisk (*) marks the use of the logarithm-10 of the pixel
fraction (real data pixels over total pixels) for the correlation analysis.

Statistic Model
Pearson’s R Spearman’s Rank

SWD RR SWD RR

PoD *
Extrap 0.77 0.91 0.83 0.88

S-PROG 0.78 0.91 0.84 0.87

FAR *
Extrap −0.79 −0.84 −0.83 −0.73

S-PROG −0.79 −0.84 −0.84 −0.73

HSS *
Extrap 0.55 0.91 0.60 0.87

S-PROG 0.60 0.91 0.66 0.87

The results of Figures 17 and 18 and Table 1 clearly indicate a strong correlation
between the nowcast evaluation statics and the quantity of real data (non-NaN) pixels
within an image. The nowcast evaluations demonstrate superior results with a higher
number of real data pixels present in the input image. Notwithstanding, an important
point from the results needs to be addressed: The difference between the relationship of
the variables and the pixel fraction when using the SWD and using the radar data. The
difference can be observed in the variation in the R and rho values of Table 1 for each type of
data, and more clearly in the plots of Figure 18. The discrepancy arises from the nowcast’s
tendency to generate a greater number of false alarms when utilizing the SWD compared to
radar data, primarily because the nowcast models are not specifically designed to predict
the SWD. Consequently, this discrepancy significantly impacts the statistics reliant on false
alarms when utilizing SWD data.

3.2.7. Deeper Evaluation of Nowcast Models with Radar Data

In general, the results using radar rain rate data were less favorable than those obtained
using SWD data, particularly during the initial stages of precipitation events. Although
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Section 3.2.6 demonstrated the influence of the real data points in the input image on the
results, there exist other potential factors that could affect the nowcast skill outcomes. One
of these factors is the radar’s ability to “see” or accurately measure the entire region covered
by the radar range.

An initial assessment was to observe how the nowcast skill varied with radar range.
This was performed by dividing the radar coverage area into rings, 10 km in width, and
obtaining the evaluation statistics for each ring. Figure 19 shows the average PoD and
FAR per outer ring radius. For PoD, the average value was around 0.2 near the radar, and
increased gradually until reaching 40 km, when the PoD decreased to slightly less than
the initial value and continued with a gradual increase up to 0.5 at 120 km. This value
was constant up to 220 km, then there was slight decrease to 0.4 in PoD for the outer-most
radiuses. FAR, the opposite behavior, started near 0.40 and maintained these values until
50 km, where a peak occurred, followed by gradual decrease to around 0.2–0.3 at 120 km,
remaining constant up to 220 km, and ending with a slight increase. Additionally, there
was larger difference between SPROG and extrapolation nowcast of around 0.05 for all
radiuses up to 170 km. Figures 20 and 21 show the average PoD and FAR across distance
rings per time after the start of the rain events, for each nowcast model. The averages were
obtained for 30 km rings for these graphs for clarity. These graphs show that the PoD was
low for rings closest to the radar and increased as the distance from the radar increases,
and the opposite occurs for FAR. The slight decrease in the models’ skill in the outer
rings that was observed in Figure 19 can also be observed in these graphs, especially after
120 min after the start of the events. Additionally, the PoD tended to increase with time
and the FAR decreased with time.
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Figure 19. Average PoD (top) and average FAR (bottom) for all radar rain rate results per outer
radius of the evaluation rings for each nowcast model.

The last two figures showed that between 100 km and 220 km, the nowcast performed
consistently; this area includes the 180 km radius where the radar has the best “view” (no
obstruction or problems with visibility) used in Section 3.2.5. And the nowcasts were less
accurate, both at closest and farthest away points from the radar.
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3.2.8. Evaluation of the Intensity of Rain Rate Forecast by the Nowcast Models

The previous sections presented the nowcast evaluations using dichotomous veri-
fication statistics, which were used because the intensities of the satellite products are
not expected to be correctly predicted by the nowcast models developed for radar data.
Nevertheless, to complete the evaluation of the nowcast models for the rain rate, a brief



Atmosphere 2024, 15, 152 18 of 24

analysis on how both nowcast models predict the intensity of the rain rate provided by
the Queretaro weather radar was performed. Figure 22 shows the average mean error
(ME), mean absolute error (MAE) and the root mean standard error (RMSE) for each model,
all obtained through the pySTEPS functions, for the 15-min forecast obtained every five
minutes for the 295 min after the start of the events. The ME indicates that the models
tended to underestimate more on average the rain rate for the first 165 min. The MAE
showed that mean magnitude of the errors was generally below 4.5 mm/h for Extrapo-
lation and decreased to around 3 mm/h at the end of the period of analysis, indicating
that the errors in intensity tended to decrease as the events grew and evolved. A similar
behavior was observed for S-PROG, but the errors were around 0.5 mm/h higher. Finally,
the RMSE for Extrapolation started around 8 mm/h, and increased to approximately
11 mm/h at 160 min after the start of the events, followed by a decrease to around
9 mm/h by the end of the analysis. A similar pattern was observed for S-PROG with
an increase of 0.5 mm/h. The results in comparison with the work of [8] are far better. The
authors of [8] analyzed 10 events in Texas and obtained an MAE of between 11 mm/h and
12 mm/h on average. Additionally, the authors of [11] tested both S-PROG and Ex-
trapolation among other models and found that the MAE was higher for S-PROG than
Extrapolation, although [11] results were obtained comparing radar reflectivity and were
presented as an average for various minimum reflectivity thresholds.
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Figure 22. Average ME (top), MAE (center) and RMSE (bottom) for each 15-min forecast, obtained
using the images in every 5-min interval as input image, for the Extrapolation and S-PROG nowcast
in the 295 min after the start of the events. The red line indicates the average mean rain rate that
occurs in that interval (average of the whole image observed in the interval).
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Figure 23 shows the difference in the average of the mean rain rate for the Extrap-
olation, S-PROG and the observed rain rates. It is clear from these images that both
models consistently underestimated the rain rate, between 2.0 mm/h and 1.2 mm/h for
the Extrapolation model, and between 1.4 mm/h and 0.6 mm/h for the S-PROG model.
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Figure 23. Average mean rain rate for the output image of the 15-min forecast, obtained using the
images in every 5-min interval as input image, for the Extrapolation and S-PROG nowcast in the
295 min after the start of the events; and the average mean rain rate of the image observed in
the interval.

4. Discussion

Due to the extensive number of results, a brief flowchart is presented in Figure 24
that highlights the main findings from the results. These findings are discussed in detail in
this discussion.
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The results of the evaluation of nowcast models suggest that the Extrapolation and
S-PROG models can be used with the SWD data without any technical issues. In general,
the 15-min forecast gave good accuracy, with the average accuracy being above 60% within
the 90 min before and the two hours after the start of a precipitation event. Additionally,
the utilization of the DATing module provided by pySTEPS can also be used to detect and
track large clusters of the SWD data, albeit with some missed medium-size clusters. And
due to its nature and how it works, the results of the 15-min forecast from the nowcast
models when using the detected and tracked SWD clusters were far better than when using
the entire SWD field available. As mentioned in the results, the only use of the pySTEPS
library involving satellite data were primarily centered on the implementation of optical
flow algorithms [46]. But the PoD and FAR results of the SWD data are consistent with
previous studies [8,11,12] that used radar data for the evaluations of both models. However,
a direct comparison cannot be made, given the distinct characteristics between SWD and
radar data. As mentioned previously, the 15-min forecast was considered the shortest lead
time that could have some operational used in the future, and the results obtained with this
forecast were considered good. However, it is more ideal to use longer lead times with the
SWD data set because the SWD dropped below a threshold value in the 60 min before the
rainfall measurement. Considering this result, if the SWD is observed to decrease below
a threshold value (2.5 K), one could potentially predict the possibility of rainfall up to
one-hour prior. Thus, a 30-min or a 60-min forecast would be even more useful when using
SWD data. For this reason, the evaluation analysis with SWD data was also performed
using the 30-min forecast and the 60-min forecast. The general patterns observed with the
15-min forecast were also present with the 30- and 60-min forecast, including the differences
in accuracy between using all the SWD field and only using the detected and tracked SWD
clusters and the similar results from both nowcast models. However, the 30-min forecast
was, on average, 15% less accurate than the 15-min forecast, and the 60-min forecast was
around 30% less accurate, as expected because larger lead times result in less accurate
forecast. Although these forecasts were less accurate, they can still be useful. Applying
the methodologies used in this study, the nowcasts have the potential to predict the areas
of possible rain development one hour prior to the event with an accuracy of around 40%
and 30 min prior with an accuracy of approximately 50%. Nevertheless, further research is
essential to enhance and refine these forecasts.

Furthermore, while the SWD fell below 2.5 K around 60 to 90 min before the rainfall
event, not all areas of SWD that fell below 2.5 K developed into rain. These observations
indicate that the SWD is not enough to detect a precise area of future rain development.
This study only used the SWD because it lacked any other tools and other sources of data
that could provide more information on the atmospheric condition of the whole area of
study. As mentioned in the introduction, Mexico lacks a nationwide rain gauge system
or a comprehensive meteorological station network, with the ones that exist being very
scatter around the country to provide the necessary spatial resolution for these types of
nowcast systems to function efficiently. Moreover, the authors also explored the use of
other GOES-16 satellite products but found several to be unavailable at in the region in the
period of analysis, and the ones that were available did not have a clear relationship with
rain rate or the development of rainfall like the SWD did. Regardless, once the data sets for
the other GOES-16 products become available for the region, future research can use these
satellite products to further examine the precipitation that occurs in the region with the
radar data, as well as determine more precise locations for future precipitation along with
the SWD.

Continuing, the statistics used to evaluate the models were purposely chosen as
dichotomous evaluators that only analyzed whether the forecast correctly predicted the
presence of the SWD and not its magnitude. This is because these models were designed to
predict radar derived rainfall rate or radar reflectivity, rather than satellite products. As
highlighted in Section 3.1, the SWD tends to decrease before the presence of rain. Thus, if
the models are predicting in general the dissipation of rainfall by decreasing the rain rate,
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they can possibly cause an apparent increase in the development of convection when used
with SWD values. For this reason, other nowcasts available in the pySTEPS library were
not used for this work. The Extrapolation and S-PROG models yielded satisfactory results
due to the absence of elements in the algorithms that directly alter the intensity of the input
variable, like other models such as a dissipation factor. Additionally, the fact that S-PROG
and extrapolation yielded similar results indicates that the spectral decomposition of the
spatial scale used in S-PROG does not improve or modify the position forecast when using
SWD, although a modification in the intensity was observed in the SWD forecast.

When using the radar rain rate data, the Extrapolation and S-PROG models demon-
strated satisfactory performance, showing minimal disparity between using the entire rain
rate field and solely considering the data within the SWD detected and tracked clusters. In
addition, there was a significant increase in the skill of the nowcast as the events evolved
and grew. The forecast obtained using the radar rain rate data was also less accurate than
the forecast from SWD data, with the PoD being between 0.2 and 0.4 smaller for rain rate
data. Conversely, the FAR was around 0.1 smaller for rain rate data. The slightly better
results for FAR were mainly because the nowcast models tended to create more false alarms
around the SWD data than the rain rate data, affecting statistics that depend on this variable,
including FAR. Comparing the findings of this study with the earlier works of [8,11,12], the
PoD and FAR values did not significantly deviate for developed events. Although the PoD
values were significantly worse than those observed in both studies at the beginning of the
events, within the events developed, the PoD improved, coming within approximately 0.1
of the values observed in the other studies. It is essential to note that the studies did not
utilize the same threshold rain rate value (indicating rainfall and non-rain conditions.

Regardless, the overall results were less accurate than those obtained using SWD
data. This discrepancy can be attributed, in part, to the higher presence of real (non-
NaN) SWD data per data matrix compared to the rain rate data. As demonstrated in
Section 3.2.6, a positive correlation exists between the quantity of real data pixels and most
of the statistics. This correlation arises due to the increased impact of outliers on the results
in instances of a reduced number of actual data points within an input image. Throughout
the majority of each analyzed event, the SWD data substantially outnumbered the rain
rate data, contributing to the superior statistical outcomes observed for the SWD. It was
calculated that an image with at least 420 pixels (out of 58,880 total pixels) with rain rate
values above the set noise threshold of 0.5 mm/h was necessary to obtain a skilled forecast.
Another reason the radar rain rate results were not as good as the SWD results is the radar’s
lack of consistent accuracy throughout the radar coverage area, whether this is due to
blockages from mountains or radio antennas or attenuation. For the Queretaro weather
radar, most of the echo blockage occurs beyond 180 km radius. The effects of this were
seen with the statistics with respect to the distance away from the radar were obtained,
and the PoD and FAR showed the nowcast models’ skill changed with the distance. In
particular, the statistics were lower for distances close to the radar and at the edge of the
radar coverage area. While the area between had consistent results on average.

Finally, in regard to evaluation of how the nowcast predict the intensity of the rain
rate, the results were not very favorable. The MAE showed the average error was less
than 5.5 mm/h, the RMSE was above 8 mm/h and the Extrapolation nowcast had smaller
average values than S-PROG. However, the MAE and RMSE values were higher than the
average observed mean rain rate (excluding 0.0 mm/h measurements), although they were
similar to the MAE obtained by [11] and far better than those obtained by [8], whose MAE
was twice as high. Upon comparing the average mean rain rage of the models and the
observed values, the results showed that the models underestimated the rain rate. These
results were not ideal, especially because it was assumed that the spectral decomposition
of spatial scales and autoregression of the S-PROG would result in better RMSE scores, as
observed in [1]. However, when considering all other results, the values obtained were
more consistent with other previous studies [8,11,12], especially for developed events
(approximate 120 min after the defined start of the event). Regardless, the fact that the
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average mean rain rate was underestimated in a consistent manner for both models points
to a possible path for resolving the issue. For this reason, it is crucial to continue studying
these nowcast models for this region, to assess why these models are not performing well
in forecasting the intensity of precipitation and how they could be improved.

5. Conclusions

This study explored the potential of the SWD derived from the GOES-16 satellite data as
a possible indicator of rainfall. It was found that the SWD, on average, had a value of 1.99 K
during rainfall. Furthermore, it was observed that the SWD typically decreased from around
3.8 to 1.99 K 240-min prior to the measurement of rainfall, and from 2.5 to 1.99 K 60 min prior
to the rainfall. These results led to the establishment of the minimum threshold value of
2.5 K, which indicates a possible development of rainfall within the next 60 min.

Using the 2.5 K threshold, the SWD fields were used in two nowcast models provided
by pySTEPS (extrapolation and S-PROG) to evaluate how this variable performed when
used with nowcast models developed to be used with radar data, using the entire SWD
field and only using the large clusters detected when using the pySTEPS DATing module,
to attempt to obtain a forecast prior to the development of rain. The results showed that the
S-PROG and extrapolation models, both of which did not significantly modify the intensity
of the input data, performed well with the SWD data, and the performance improved for
some cases as the start of the rainfall event got closer and thereafter. The 15-min forecast
was 15% more accurate than the 30-min forecast and 30% more accurate than the 60-min
forecast. Additionally, the DATing module algorithm was able to detect and track SWD
clusters, but it did miss several clusters, which made the overall results of the evaluation
with clusters less reliable than when using all SWD data available.

Finally, when the same models were evaluated using radar data, the results showed
less accurate forecast than those obtained with SWD data, although the skill improved as
the precipitation events developed. This was partly caused by the fact that the radar did not
have the same accuracy over all its coverage area, and the SWD fields had more real data
(non-NaN values) throughout the field. A decrease in the amount of real data available led
to more pronounced effects of the errors and outliers on the utilized statistics. Furthermore,
the models’ ability to accurately predict the intensity of rain rate was not high, with the
MAE being as high as the average rain rate in the region, the models underestimating
average rainfall, and Extrapolation models having more skill in predicting intensity than
the S-PROG model.

In conclusion, the extrapolation and S-PROG models exhibit skilled predictions up
to 60-min, for the region of central Mexico. Furthermore, it was noted that the SWD
can be utilized to identify potential areas of future rainfall. However, the SWD alone
was not enough to have high precision in the prediction of rainfall, and the addition of
other measurements such as wind or surface measurements is necessary the improve the
detection areas of possible rainfall. Lastly, the methodologies used in this work can be
used as a foundation to explore the use of other GOES-16 satellite products in the nowcast
models and functions provided by the pySTEPS library. Further research to this study
includes the improvements of the predictions by the nowcast models, for both radar rain
rate and the satellite products.
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and SWD field below 2.5 K from the GOES-16 satellite for 12 events. Images present 1 h before start
of the event, at the start of the event and 1 h after start of the events.
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