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Abstract: Accurate temperature forecasting is critical for various sectors, yet traditional methods
struggle with complex atmospheric dynamics. Deep neural networks (DNNs), especially transformer-
based DNNs, offer potential advantages, but face challenges with domain adaptation across different
geographical regions. We evaluated the effectiveness of DNN-based domain adaptation for daily
maximum temperature forecasting in experimental low-resource settings. We used an attention-based
transformer deep learning architecture as the core forecasting framework and used kernel mean
matching (KMM) for domain adaptation. Domain adaptation significantly improved forecasting
accuracy in most experimental settings, thereby mitigating domain differences between source and
target regions. Specifically, we observed that domain adaptation is more effective than exclusively
training on a small amount of target-domain training data. This study reinforces the potential of
using DNNs for temperature forecasting and underscores the benefits of domain adaptation using
KMM. It also highlights the need for caution when using small amounts of target-domain data to
avoid overfitting. Future research includes investigating strategies to minimize overfitting and to
further probe the effect of various factors on model performance.

Keywords: temperature forecasting; deep neural network (DNN); domain adaptation; Kernel Mean
Matching (KMM); transformer model

1. Introduction

Temperature forecasting has seen significant advancements driven by the necessity
to accurately predict weather patterns for various sectors, including agriculture, energy,
and disaster management. Traditional methods have relied heavily on statistical models
and physical principles, which, while effective, are often unable to capture the complex
non-linear relationships inherent in atmospheric dynamics [1]. Recent advances in machine
learning, especially the development of deep neural networks (DNNs), have opened up
new possibilities for improving the accuracy of temperature forecasting [2].

DNNs have demonstrated remarkable success in various domains, including natural
language processing, computer vision, speech processing, and even weather forecast-
ing [2,3]. This success is attributed to their ability to learn complex patterns from large
datasets. The transformer deep learning architecture [4] is now the state-of-the-art archi-
tecture and core of the most advanced large language models, including those based on
bidirectional encoder representations from transformers (BERTs) and generative pre-trained
transformers (GPTs) [5]. A transformer-based model’s ability to handle sequential data, its
attention mechanism for effectively learning various internal structures, and its potential
for domain adaptation make such models promising for temperature forecasting, especially
in low-resource settings where domain adaptation is needed [6,7].

However, the application of DNNs, including transformer DNNs, to temperature
forecasting is not without challenges. One significant hurdle is domain adaptation, given
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that weather patterns and their underlying dynamics can vary significantly across different
geographical regions. A model trained on data from one region may therefore not perform
optimally when applied to another region. Thus, domain adaptation aims to bridge this
gap by resolving the domain differences between the source and target domains in terms
of data and models [8,9]. This enables bringing more data and better-trained models from
the source domain, especially when the target-domain data are too scarce or unavailable
for training an effective model.

The scarcity of high-quality data for use in machine learning tasks such as tempera-
ture forecasting is a major concern due to several factors. Limited data availability and
quality can hinder model performance and generalization, potentially leading to inaccurate
predictions [9,10]. This is particularly critical in temperature forecasting, where accurate
forecasts are vital for solutions related to agriculture, energy, climate change, etc. [10].
The challenge of limited data has stimulated innovation in machine learning techniques,
especially domain adaptation [9,11]. Thus, the problem of data scarcity is a key area of
interest in the field [9–11].

In one of the most recent studies on domain adaptation for time-series forecasting [11],
the framework used was shown to be effective even when transferring data from a source
domain to a target domain with a different signal frequency, where, in most cases, it was able
to approximately capture the sinusoidal signals even when the input was contaminated
by white noise. Experiments were performed on four datasets: household electricity
consumption, highway traffic, daily sales of grocery stores, and daily Wikipedia visit
counts. The main technique that they used, namely attention sharing via adversarial
training, was inspired by the success of transformer-based DNNs and adversarial training
in domain adaptation.

We have developed a DNN-based domain adaptation method designed to forecast
time series. Our numerical experiments focused on the use of this method to forecast
the daily maximum temperature at a finite number of locations. We are motivated to
tackle the problem of forecasting the daily maximum temperature since it is strongly
related to heatstroke damage mitigation, especially amid the current global climate change
issue, where this heatstroke problem is becoming more severe [12,13]. The idea is to use
domain adaptation to increase the forecasting power of the model in a region for which
only a small amount of data is available. The model is a DNN-based model instead of
a complex physical model such as those generally used by Japan meteorologists (https:
//www.jma.go.jp/jma/en/Activities/nwp.html, accessed on 7 March 2023). We used
a different approach that utilizes DNNs and KMM, presented in the following section.
Experiments were set up with scenarios of limited data for target regions in order to test
our method. We compare our method with a recent advanced domain adaptation method
proposed by Jin et al. (2022) [11] that was not applied to temperature forecasting. Despite
the importance, domain adaptation for temperature forecasting is, unexpectedly, not yet
well explored compared to other research disciplines [9].

This paper is composed of four key sections following this introductory section.
Section 2 provides an in-depth presentation of our method, the data gathered, and the
model used. It details the research procedures, specifies the sources and nature of the data
collected, and describes the model’s formulation. Section 3 focuses on the experiments
conducted, the results obtained, and the conclusions drawn from the results. It outlines
the experimental design, the process undertaken, and the findings. Finally, Section 4
recapitulates the research and its key findings, restates the implications of the results, and
proposes areas for future research.

2. Proposed Method
2.1. Time-Series Forecasting Problem

Suppose a set of N time series, each consisting of observations zi,t ∈ R associated
with optional input covariates ξi,t ∈ Rd at time t. In time-series forecasting, given T past
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observations, the aim for the i-th time series {xi,t}t=1,...,T and all the input covariates is to
make multi-horizon future predictions at time t ∈ {T + 1, . . . , T + τ} using model H:

zi,T+1, . . . , zi,T+τ = H(zi,1, . . . , zi,T ; ξi,1, . . . , ξi,T+τ). (1)

In our numerical experiments, we considered the daily maximum temperature of the
i-th location at time t as response variable zi,t. However, the proposed method could be
easily applied to other time-series forecasting problems. The chosen covariates will be
described in Section 3.1.

Here, we are particularly interested in scenarios in which only a small amount of data
are available for the problem of interest while a sufficiently large amount of data is available
for other related sources. Our framework for evaluating the effectiveness of our approach is
illustrated in Figure 1. We denote dataset D = {Xi, Yi}N

i=1, with Xi =
(
{zi,t}T

t=1, {ξi,t}T+τ
t=1

)
and Yi =

(
{zi,t}T+τ

t=T+1

)
.
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Figure 1. Framework.

2.2. Proposed Deep Neural Network

We implemented our transformer-based encoder–decoder architecture [4] in a system
with five main components:

• Primary variable projection: projects low-dimensional inputs into a high-dimensional rep-
resentation; it is used for projecting maximum temperature into a high-dimensional space.

• Secondary variable projection: projects low-dimensional inputs into a high-dimensional
representation with the same projection dimension as the primary variable projection;
it is used for projecting covariates into a high-dimensional space.

• Transformer encoder: learns dependency across time and feature spaces of the primary
and secondary variables and encodes it as a memory state.

• Transformer decoder: produces a high-dimensional representation of the unobserved
maximum temperature from the memory state with given covariates.

• Output layer: maps the high-dimension representation of the unobserved maximum
temperature into single values.

Before describing each of these components of the proposed architecture, we introduce
the principle of variable projection. To use a transformer-based architecture, we map the
inputs into a high-dimensional space with compatible dimensions. For that, we define
a “variable projection” operation to map a low nx-dimensional representation to a high
nh-dimensional representation of a time series of length l, i.e., projection Rnx×l −→ Rnh×l :

Projection(x; θp = {W, b, γ, β}) = GELU(LayerNorm(Linear(x; W, b); γ, β)). (2)

The projection operation uses layer normalization [14] to stabilize the hidden state
dynamics, and the Gaussian error linear unit (GELU) [15] has been shown to be an effective
activation function in a wide range of tasks. These operators are defined as
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Linear(x; W, b) = Wx + b (3)

LayerNorm(x; γ, β) =
x − E[x]√
Var[x] + ε

γ + β (4)

GELU(x) = xP(X ≤ x),X ∼ N (0, 1), (5)

where ε is a small positive number for computational stability, W and b are the weight
and bias parameters of the linear layer, respectively, and (γ, β) are the parameters of layer
normalization (“LayerNorm”).

Next, we describe in detail each component of the proposed architecture, which obtains
an instance i of a given dataset D = {Xi, Yi}N

i=1, with the inputs Xi =
(
{zi,t}T

t=1, {ξi,t}T+τ
t=1

)
,

and predicts the daily maximum temperatures Ŷi =
(
{ẑi,t}T+τ

t=T+1

)
.

Primary variable projection: The variable projection operation is used to map the
maximum temperature variable from a one-dimensional time series to an nh-dimensional
time series, i.e., R1×T −→ Rnh×T :

p1:T = Projection({zi,t}T
t=1; θp), (6)

where θp is the set of parameters of the projection operation on the temperature inputs.
We denote p1:T as a series of column vectors p⊤t ∈ Rnh with t ∈ {1, . . . , T}, i.e., p1:T =
[p⊤1 p⊤2 . . . p⊤T ]. Later in this section, we also use notations for a series of vectors similar to
p1:T .

Secondary variable projection: Similarly, a projection operation is used to map the
other known d covariates from the d-dimensional representation to a similar nh-dimensional
representation, i.e., Rd×(T+τ) −→ Rnh×(T+τ), by using

q1:T+τ = Projection({ξi,t}T+τ
t=1 ; θq), (7)

where θq is the set of parameters of the projection operation on the covariates inputs.
Transformer encoder: After performing the mapping to a high-dimensional space, the

features representing the maximum temperatures and the known covariates are aggregated
by using concatenation and projection:

h1:T = Projection
([

p1:T
q1:T

]
; θa

)
, (8)

where θa is the set of projection operation parameters used for aggregating the projected
temperature and covariate features obtained from Equations (6) and (7). The combined
representation is then fed into the transformer encoder (Rnh×T −→ Rnh×T):

henc
1:T = Transformer-Encoder(h1:T ; θe), (9)

where θe is the set of parameters of the transformer encoder module. The outputs repre-
sent the memory of the inputs. The temporal relationship in both directions in the time
series, past to present (T) and present to past, is captured using the transformer attention
mechanism, resulting in contextualized temporal representation henc

1:T .
Transformer decoder: This module receives the outputs of the transformer encoder

together with the high-dimensional representation of the covariates. The predicted state of
the maximum temperature is obtained by mapping Rnh×τ+nh×T −→ Rnh×τ :

hdec
T+1:T+τ = Transformer-Decoder(qT+1:T+τ , henc

1:T ; θd), (10)
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where θd is the set of parameters of the transformer decoder module. The uni-directional
past-to-present (T + 1 to T + τ) temporal relationship is captured using the attention mecha-
nism and contextualized with the bi-directional relationship captured in the encoding step.

Output layer: After the state of the maximum temperature in a high-dimensional
space is obtained, it is mapped back to the actual values representing temperature. This is
performed by mapping Rnh×τ −→ R1×τ :

{ẑi,t}T+τ
t=T+1 = Linear(hdec

T+1:T+τ ; θo = {Wo, bo}), (11)

where θo = {Wo, bo} is the set of parameters of the linear layer as formulated in Equation (3),
which is used for outputting the final maximum temperature values. In addition to pre-
dicting the future maximum temperatures at time t = T + 1, . . . , T + τ, the model also
learns about the past maximum temperatures by reconstruction, i.e., by predicting the
input maximum temperatures at time t = 1, . . . , T. For this reconstruction purpose, it uses
the transformer decoder and output layer described below.

Transformer decoder used for reconstruction: Rnh×T+nh×T −→ Rnh×T ,

hdec
1:T = Transformer-Decoder(q1:T , henc

1:T ; θd), (12)

where θd is the same set of parameters as for Equation (10).
Output layer used for reconstruction: Rnh×τ −→ R1×τ ,

{ẑi,t}T
t=1 = Linear(hdec

1:T ; θo) (13)

where θo is the same set of parameters as for Equation (11).
Training: The optimal values for the joint set of defined parameters θ = {θp, θq, θa, θe,

θd, θo} are obtained by minimizing

Loss(θ|Dtrain) =
1

2N

N

∑
i=1

(
1
T

T

∑
j=1

||zi,j − ẑi,j||2 +
1
τ

T+τ

∑
k=T+1

||zi,k − ẑi,k||2
)

, (14)

in which the mean squared error values of both the reconstructed and forecasted time series
related to the N samples of training data Dtrain are considered.

2.3. Domain Adaptation

In our proposed method for adapting the temperature forecasting for one region to
another region, data from one region are used for the source domain, and data from the
other region are used for the target domain.

Domain Adaptation Strategies

We start by defining a general loss function for integrating the source domain S and
target domain T :

Loss = (1 − α)× LossS + α × LossT . (15)

Different values of α are used for learning parameters θ of the model in numerical analysis,
i.e., α ∈ {0, 0.5, 1}, which correspond to source-domain data only, domain data mixed with
equal weighting, and target-domain data only (no domain adaptation).

Additionally, we modify LossS by applying sample selection using kernel mean match-
ing (KMM) [16], which corrects sample selection bias due to the distribution difference
between the source and target domains; thus, the risk of learning from instances of data
that differ greatly from the target-domain distribution is reduced by placing lower weights
on these instances. Instance weights β̂ are obtained using optimization:
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β̂ = argminβi∈[0,B]

∥∥∥∥∥ 1
NS

NS

∑
i=1

βiϕ(zSi )−
1

NT

NT

∑
j=1

ϕ(zTj )

∥∥∥∥∥
2

H

s.t.

∣∣∣∣∣ 1
NS

NS

∑
i

βi − 1

∣∣∣∣∣ ≤ ϵ

(16)

where zSi = [zSi,1, . . . , zSi,T ]
T corresponds to the vector of observations (daily maximum

temperature) for the i-th instance of the dataset obtained from the source domain, B = 1,
ϵ = 1 − 1/

√
NS , ϕ(.) is the canonical feature map under the reproducing kernel Hilbert

space, NS is the number of source-domain data instances, and NT is the number of
target-domain data instances. Optimization is carried out to minimize the kernel mean
discrepancy of the two domains under the reproducing kernel Hilbert H.

We use the Gaussian radial basis function (RBF) kernel for the kernel trick:

⟨ϕ(x), ϕ(x′)⟩ = K(x, x′) = exp
(
−γ∥x − x′∥2

)
. (17)

The source-domain loss LossS is consequently

LossS (θ|DS
train) =

1
2NS ∑

zi,·∈DS
train

(
1
T

T

∑
j=1

β̂zi,j ||zi,j − ẑi,j||2 +
1
τ

T+τ

∑
k=T+1

β̂zi,k ||zi,k − ẑi,k||2
)

. (18)

3. Numerical Experiments
3.1. Choice of Covariates and Data Pre-Processing

We used the maximum daily temperatures recorded by stations in three regions in Japan
(Tokyo, Osaka, and Kyushu) between 2003 and 2022 (see Figure 2). Tokyo and Osaka are
major metropolitan areas whereas Kyushu is a southern island that is less developed and
mountainous at the center. The 2003-2020 data were used as training dataset Dtrain, the 2021
data were used as validation dataset Dvalid, and the 2022 data were used as test dataset Dtest.

We set observation period T ∈ {1, 2, . . . , 21} differently in each experiment and set
the non-observation period to τ = 7. Therefore, each data instance contained data for up
to 28 days, including the observation period for inputs and the non-observation period
for prediction, which depends on T. We only used the data on the first 28 days of each
month and discarded the rest. The non-observation period was always from the 22nd to
the 28th to ensure the same test data in all comparable scenarios. The observation period
corresponded to the T days preceding the non-observation period. Data instances with
missing values were excluded. Thus, the number of instances N in D was the number of
years times 12 (months) times the number of stations minus the number of data instances
with missing values. Our data preparation method ensures that no overlapping occurs
among data instances, so our experimental DNN-based models cannot remember future
data leaking through the inputs of other data instances. The data are summarized in Table 1,
and their mapping is shown in Figure 2.

Table 1. Data statistics.

Tokyo Osaka Kyushu

No. of data instances 14,869 11,678 20,095
No. of stations 75 59 102
Longitude 138.4–140.9 134.3–136.4 128.7–132.0
Latitude 34.9–37.2 33.4–35.8 27.4–34.7
Elevation (m) 2–1292 2–795 2–678
Average maximum temperature (°C) 19.2 19.9 21.5
Median maximum temperature (°C) 19.5 20.5 22.2
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Figure 2. Study regions and mean of maximum temperatures by monitoring station between 2003
and 2022.

The dataset contains the response variable of interest (maximum daily temperature)
and several known covariates. More precisely, we used spatial information (longitude,
latitude, and elevation of stations) and temporal information (recording dates) as predictors
(Some predictors had large values, so we performed “numerical stability scaling” to avoid
numerical overflow). The i-th sample for the t-th day was therefore composed of

• zi,t: Maximum daily temperature;
• ξi,t(1): Longitude;
• ξi,t(2): Latitude;
• ξi,t(3): Station elevation;
• ξi,t(4): Record year;
• ξi,t(5): Solar declination angle [17] estimated from recording date using

δ = 23.45◦ × sin(360◦ × nth-day-of-the-year + 284
365

); (19)

• ξi,t(6): Solar noon angle = latitude − solar declination angle.

From Figure 3, we can see that, over the long term (Figure 3a), the patterns of the
daily maximum temperatures among the three regions are similar (a pairwise correlation
greater than 0.9), but when considering short periods, differences among regions emerge
as shown in the monthly correlation analysis (Figure 3d). For example, in January 2022
(Figure 3b), the temperature range of Kyushu appears to differ greatly to Tokyo and Osaka:
the Tokyo–Kyushu correlation is approximately 0.4 and the Tokyo–Osaka correlation is
approximately 0.75. In July 2022 (Figure 3c), even though the temperature range appears
to differ less between the Tokyo and Kyushu regions, the correlation analysis still shows
that Tokyo and Kyushu differ even more, with their correlation being less than 0.4. Similar
differences are also evident in several other months (Figure 3d). This is where we expect
our system utilizing KMM to reduce the effect of the difference due to model training.

(a)

Figure 3. Cont.
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Figure 3. Daily maximum temperature over all stations spatially averaged for each region (a–c) and
correlation between each region pair (d). Sub-figures: (a) daily maximum temperature from 2003
to 2022, (b) daily maximum temperature in January 2022, (c) daily maximum temperature in July
2022, (d) correlation between each region pair of monthly data. The patterns of the daily maximum
temperatures among the three regions look similar over the long term (a) but look different over short
periods (b,c), which is also depicted in the correlation analysis (d).

3.2. Model Settings

We created two low-resource data settings by sampling a small portion of the data in
the target domain.

• Sample 250 data setting: We randomly sampled 250 instances from the full set of
training data along with 50% (e.g., approximately 300 instances for Tokyo–Osaka)
of the full set of validation data for the target domain. Thirty such samples were
prepared.

• Single Station data setting: We separately evaluated each station in the target domain.
In each single-station experiment, the target-domain train/validation/test datasets
were for that station alone while the source-domain data were for all stations in the
source-domain region.
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The parameter settings for the proposed DNN-based domain adaptation model are as
follows:

• High-dimensional representation size nh: 32, 64, or 128.
• Number of layers in transformer encoder and transformer decoder modules: 2.
• Optimization algorithm: Adam [18] with a learning rate of 0.001, training with a batch

size of 50, and a maximum of 1000 iterations.
• The best set of model parameters was selected using validation dataset Dvalid.
• The RBF kernel coefficient in Equation (17) was γ = 0.1.

Restriction on access to target-domain’s test data: While it appears productive to use
the test inputs to estimate β̂ since the test inputs provide the most recent and potentially
highest-quality information about the test data, it is impractical in our experimental settings.
Therefore, we do not use any information from the test data to estimate β̂. Even if the
inputs to the model are known for the test set, it is impractical to use all test instances in
the application of KMM due to the temporal order; that is, we cannot use future data to
estimate β̂ for past data instances. Moreover, in the single-station scenario, we can only
access one test data instance at a time, which makes it impractical to apply KMM. In order
to use the same KMM setting across all experiments, instead of the target-domain test data
instances, we used the training and validation data, for which a more reasonable number
of data instances is generally available.

3.3. Evaluation

To assess the robustness of our DNN-based domain adaptation model, we compared
and aggregated results for various sets of data settings, model hyper-parameters, parameter
settings, and loss-function composition as follows:

• Domain: Two source–target-domain pairs were considered: Tokyo–Osaka and Tokyo–
Kyushu.

• Data: Two low-resource data settings (Sample 250 and Single Station) were used.
• Model: Three values of a high-dimensional representation size (nh ∈ {32, 64, 128})

were used. The evaluation results reported later are the averaged evaluation metric
values of all models with all three different representation sizes.

• Input Length T ∈ {1, 2, . . . , 21}: T = 7 was used as the representative input length for
comparing our system with three baseline systems; the version of our system with the
best performance was analyzed for different input lengths.

• Loss:

– Domain weighting: Three values of α ∈ {0, 0.5, 1} were used for Equation (15).
– KMM: KMM was both used and not used. β̂ in Equation (18) was set, respectively,

by solving Equation (16) when using KMM or manually setting β̂ = 1 when not
using KMM.

• Baseline systems:

– VT: Our (vanilla) transformer-based architecture in a non-domain adaptation
setting, which is equivalent to setting α = 1.

– DAF [11]: An advanced domain adaptation method for time-series forecasting
that uses attention sharing in combination with domain discrimination. It was
not evaluated for this particular temperature forecasting problem.

– AttF [11]: The non-domain adaptation part of DAF (i.e., without shared attention
and domain discrimination) and trained on only the target-domain data.

– ARIMA [19]: A commonly used baseline for time-series forecasting in non-
domain adaptation settings. The parameters were obtained using the same
training data as those for the other evaluated systems.

Evaluation metrics: We used two evaluation metrics: the mean squared error (MSE)
and mean absolute error (MAE). The Wilcoxon signed-rank test [20] was used to assess the
significance of the results.
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3.4. Results and Discussion

Effectiveness of domain adaptation: As shown in Table 2, domain adaptation yielded
significantly better performance (p-value < 0.001) in terms of both MSE and MAE for all
four sets of experiments {Sample 250, Single Station} × {Tokyo–Osaka, Tokyo–Kyushu}.
This indicates that domain adaptation is feasible and promising for daily maximum tem-
perature forecasting for regions for which there are small amounts of data and that have
characteristics different from those of regions for which there are abundant data. In ad-
dition, our proposed architecture yields a better performance than the baseline systems
even in the most basic setting of exclusively using the small target-domain data for training.
Furthermore, with domain adaptation, we can further boost our prediction performance.

Table 2. Evaluation results for the baseline systems and our original proposed system with T = 7
(‘-’ means ‘not applicable’ and ‘bold’ means best value).

Evaluation Metric: MSE
Sample 250 Sample 250 Single Station Single Station

System Tokyo–Osaka Tokyo–Kyushu Tokyo–Osaka Tokyo–Kyushu

ARIMA - - 10.51 9.13
AttF 10.02 10.10 9.92 9.75
DAF 10.43 10.28 10.49 10.32
Ours, α = 1 (VT) 8.66 8.58 8.40 8.58
Ours, α = 0.5 8.46 8.28 8.16 8.16
Ours, α = 0 8.22 8.36 8.22 8.15
Ours, α = 0.5 & KMM 8.38 8.37 8.14 8.16
Ours, α = 0 & KMM 8.15 8.11 8.19 7.87

Evaluation Metric: MAE
Sample 250 Sample 250 Single Station Single Station

System Tokyo–Osaka Tokyo–Kyushu Tokyo–Osaka Tokyo–Kyushu

ARIMA - - 2.66 2.41
AttF 2.52 2.44 2.49 2.42
DAF 2.60 2.51 2.61 2.54
Ours, α = 1 (VT) 2.42 2.32 2.37 2.33
Ours, α = 0.5 2.34 2.29 2.33 2.26
Ours, α = 0 2.33 2.30 2.34 2.25
Ours, α = 0.5 & KMM 2.35 2.29 2.31 2.28
Ours, α = 0 & KMM 2.35 2.23 2.33 2.22

Effect of applying KMM: As shown in Table 2, the application of KMM yielded the
best performance for three out of four sets of experiments {Sample 250, Single Station} ×
{Tokyo–Osaka, Tokyo–Kyushu}. The observed results are significant. For Tokyo–Kyushu,
the p-values are <0.001 for both MSE and MAE. For Tokyo–Osaka, in terms of MSE, the
p-values are <0.001 and 0.022, respectively, for the Sample 250 and Single Station data
settings. For Tokyo–Osaka, in terms of MAE, the performance of applying KMM is better
for the Single Station data setting but worse for the Sample 250 data setting, both with
p-values of <0.001. Recalling that KMM is aimed at mitigating the domain difference
between the source and target domains, the significance test shows that KMM is effective
in improving temperature forecasting performance. This suggests that KMM should be
effective in mitigating the difference between the source and target domains.

As shown in Figure 4, in an analysis of monthly prediction performance for all four
sets of experiments, our domain adaptation approach (α = 0 & KMM ) consistently performs
the best or competitively in the majority of situations in different seasons. In particular, our
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approach performs relatively more effectively than other approaches, e.g., ARIMA, AttF,
and DAF, from May to July in the seasonal transition from cold to hot.
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Figure 4. Experimental results in different seasons represented as different months. “Ours”: our
system for domain adaptation with α = 0 and KMM. Input length: T = 7. Note: ARIMA is not
suitable for Sample 250 since the data are not suitable for auto-regression learning. Our approach
performs the best or competitively in the majority of situations in different seasons. The effectiveness
is especially visible from May to July when compared to ARIMA, AttF, and DAF.
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As shown in Figure 5, given different sets of training data over the 30 random samples
in the Sample 250 data settings, our approach (α = 0 & KMM) to mitigating the domain
difference by using KMM yields more stable predictions than DAF, which resolves domain
difference by using domain discrimination. This is because our system with “α = 0 &
KMM” adjusts the source-domain sample weights gradually and is not directly or greatly
affected by the randomly sampled target-domain data, which direct affect DAF’s train-
ing mechanism.

Figure 5. Visualization of predictions for test dataset of Sample 250 data for Tokyo–Osaka pair with
our proposed system (α = 0 and KMM) and DAF. Green lines indicate average predictions, red bars
indicate fluctuation in prediction over 30 sampled datasets, and blue dots indicate ground-truth
observations. X-axes indicate day of year; y-axes indicate temperature (◦C). Our system had less
prediction fluctuation (smaller red area) than DAF over different target data samples.

Performance with different high-dimensional representation sizes: As shown in
Table 3, for our approach (α = 0 & KMM), the models with representation sizes of 32
and 64 perform better than those with a representation size of 128, though the differences
are minimal in many cases. In addition, the models with a representation size of 128
still perform better than the non-adaptation models, whose results (shown in Table 2) are
averaged over three representation sizes.

Bias in small target-domain training data: The additional use of source-domain data
is more effective than the exclusive use of a small amount of target-domain training data.
As shown in Table 2, exclusive training with small target-domain data without source-
domain training data did not yield good performance. One reason for this is that the
model is overfitted with bias patterns when only a small amount of target-domain data
are exclusively used for training. When presenting with additional data from the source-
domain, we start to observe an improvement in the prediction performance. Even with an α
value of 0.5 equalizing the contribution of the small amount of target-domain training data
and the larger amount of source-domain training data, we can still observe improvement.
For α = 0 and KMM, even though a small amount of target-domain training data were used
by KMM to estimate source-domain data weights β̂, the loss was optimized in accordance
with the patterns in the source-domain data and not with those in the target-domain
training data, which prevented direct learning of the bias patterns.
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Table 3. Evaluation results of our original proposed system with “α = 0 & KMM”, T = 7, and different
values of our high-dimensional model representation sizes (‘bold’ means best value). The models
with representation sizes of 32 and 64 perform better than those with a representation size of 128.

Evaluation Metric: MSE
Sample 250 Sample 250 Single Station Single Station

System Tokyo–Osaka Tokyo–Kyushu Tokyo–Osaka Tokyo–Kyushu

32 8.25 7.85 8.18 7.67
64 7.79 8.00 8.09 7.82
128 8.40 8.49 8.29 8.12

Evaluation Metric: MAE
Sample 250 Sample 250 Single Station Single Station

System Tokyo–Osaka Tokyo–Kyushu Tokyo–Osaka Tokyo–Kyushu

32 2.36 2.20 2.31 2.21
64 2.34 2.20 2.31 2.23
128 2.36 2.28 2.35 2.24

Effect of input length: As shown in Figure 6, our system achieved the best performance
with input length T ∈ {5, 6}. The performance worsened as the input length increased. This
could be due to the increasing input length also increasing the complexity of inputs when
the number of data samples is limited by the increasing number of model weights needed
to learn more input data. Additionally, this could be because our system is based on the
transformer DNN, which is a more complex neural network architecture, making it more
susceptible to overfitting than, for instance, ARIMA or DAF, which use a convolutional
neural network [21]. Compared with ARIMA and DAF, our system achieved a considerably
better performance when the input length was small (T < 10) and a similar performance
when it was larger (T ≥ 10). In other words, our system is also advantageous when there is
a limited amount of input data. Notably, our system when using small values of T ∈ {5, 6}
performed better than DAF at its best with T = 12.

In cases where there is access to more historical data or a longer input length, it
is possible to consider long-term analysis techniques, including (auto-)correlation and
seasonal trend analyses, which are incorporated into Autoformer [22], a transformer-
based architecture that replaces attention with auto-correlation for long-term time-series
forecasting. We conducted a preliminary experiment of our domain adaptation approach
by replacing our simpler transformer model with Autoformer. The preliminary experiment
showed that its performance increases with the input length. However, with short input
lengths as in our experiments, it did not achieve a better performance than simply using
the transformer model with its original attention mechanism. For example, the MSE with
Autoformer for Tokyo–Osaka × Sample 250 was 9.4 (vs. 8.15 with our system) and, for
Tokyo–Kyushu × Sample 250, it was 8.8 (vs. 8.11 with our system).

Small prediction variances: We observed that our system’s predictions had small
variances for each 7-day period. As shown in Figure 5, the daily maximum temperature
frequently fluctuated with a high variance. We suspect that, given the lack of information
due to the limitations in our settings, our system attempted to avoid overfitting to the
high-frequency fluctuation during training by learning to predict the average values. One
method for preventing this is to separate the predictions for each day in a seven-day period
by modifying the transformer inputs:

henc′
1:T = Transformer-Encoder

(
Projection

(
{zi,t}T

t=1, {ξi,t}T
t=1; θa′

)
; θe′
)

(20)

hdec′
T+j = Transformer-Decoder(h′T+1:T+j, henc′

1:T ; θd′) : j ∈ {1, . . . , τ}, (21)

where
h′T+1:T+j = Projection

(
zi,T , {ẑi,t}

T+j−1
t=T+1, {ξi,t}

T+j
t=T+1; θa′

)
(22)



Atmosphere 2024, 15, 90 14 of 17

and by enforcing the prediction of the trend by substituting the predicted values {ẑt}T+j−1
t=T+1

with {zt}T+j−1
t=T+1 for Equation (22) during training. During prediction, previously predicted

values {ẑt}T+t
t=T+1 are used for recursively predicting the next time step value ẑT+t+1. In a

preliminary experiment (Table 4), we analyzed such a system and observed that it tried to
make fluctuating predictions (as shown in Figure 7) but yielded a worse performance than
the system predicting average values.
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Figure 6. Experimental results for different input length settings (T ∈ {1, 2, . . . , 21}). “Ours”: our
system for domain adaptation with α = 0 and KMM. Note: ARIMA is not suitable for Sample 250
since the data are not suitable for auto-regression learning. Our approach performs the best or very
competitively when compared to ARIMA, AttF, and DAF.
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Table 4. Evaluation results for our original proposed system and its modified system when predictions
for each day in a seven-day period were separated with T = 7. The evaluation metric is MSE. ‘Bold’
means best value.

Sample 250 Sample 250 Single Station Single Station
System Tokyo–Osaka Tokyo–Kyushu Tokyo–Osaka Tokyo–Kyushu

Ours, α = 0 & KMM 8.15 8.11 8.19 7.87
Ours, α = 0 & KMM, modified 9.66 7.94 9.75 8.42

Need for additional parameters: In this study, we only considered a scenario in which
we have access to a very limited amount of data (recorded temperatures) and already
known spatial–temporal information along with the derivable sun-declination angle. There
are, however, several other parameters that greatly affect temperature. As shown above,
given a limited input for a limited time span, attempting to predict short-term trends results
in poor performance, i.e., it is challenging to capture and predict short-term trends. Future
studies thus include expanding the number of parameters; including other types of weather
data, e.g., rainfall, wind speed, and sunlight hours, as well as satellite data; and using a
sophisticated framework that can perform domain adaptation across multiple covariates.
However, the complexity of such a framework is drastically increased since it is much more
difficult to assess the domain differences when there is more than one parameter. Such a
framework with a complicated system of dependency differs from our approach in this
study, which is to assess domain differences straightforwardly with a single parameter of
interest, i.e., the daily maximum temperature. A further limitation of our current study is
the use of only one year of data for validation (2021) and testing (2022). Unique weather
patterns in these years (e.g., an unusual heatwave or cold spell) could have impacted the
model tuning, or might have resulted in a higher test error than could be expected in a
more typical year. Future studies, therefore, need to address the risk of unique weather
patterns caused by such unusual weather-related events by, for example, including these
events as potential parameters.

Our System, T = 7, Sample 250, Tokyo–Osaka

Our System (modified), T = 7, Sample 250, Tokyo–Osaka

Figure 7. Visualization of predictions for test dataset of Sample 250 data for Tokyo–Osaka pair with
our original proposed system (α = 0 and KMM) and its modified system. Green lines indicate
average predictions, red bars indicate fluctuation in prediction over 30 sampled datasets, and blue
dots indicate ground-truth observations. X-axes indicate day of year; y-axes indicate temperature
(◦C). Results exhibit a clear trend.
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4. Conclusions

The research undertaken in this study illuminates the potential and challenges of using
deep neural networks (DNNs), specifically transformer DNNs, for domain adaptation in
daily maximum temperature forecasting, particularly in regions lacking sufficient data and
supporting covariates.

The experimental results affirm the effectiveness of domain adaptation techniques,
especially when applied to geographical areas for which there are small amounts of data
and that exhibit characteristics dissimilar from regions for which there are abundant
data. Application of our domain adaptation strategy resulted in significant performance
improvements as demonstrated by two metrics: the mean squared error and mean absolute
error. Furthermore, kernel mean matching (KMM) was shown to be a potent tool, facilitating
performance enhancement for a majority of the experimental settings. KMM effectively
helped in bridging the domain differences between the source and target regions, thus
underscoring its potential utility in forecasting tasks across different geographical regions.

As we observed that domain adaptation is more effective than training exclusively
on a small amount of target-domain training data, we can mitigate model overfitting
to bias patterns inherent in the small amount of training data by leveraging additional
data from a different source domain. We also observed that the effect of input length
varies for each source–target pair, possibly due to the differences among regions. This
suggests the need for future studies to expand domain adaptation to take this into account.
Furthermore, we observed that a short-term trend is difficult to capture with short-term
inputs, so it is necessary to investigate domain adaptation with additional parameters that
affect temperature; for instance, wind speed and rainfall. However, it should be noted that
the complexity of a system with more parameters could make utilizing domain adaptation
much more challenging than what was approached in this study.

In summary, this study advances our understanding of the practical application of
DNNs in temperature forecasting, particularly for regions that lack ample data. While
the results reinforce the benefits of domain adaptation with the utility of KMM, they also
point to the need for careful consideration when using target-domain data to avoid model
overfitting. The results also underscore the importance of tailoring the input length to
specific source–target pairs for optimal forecasting performance. Future research should
delve deeper into methods for avoiding overfitting while harnessing target-domain data
and should further investigate how different factors, such as input length, affect model
performance across various geographical regions.
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