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Abstract: Recent studies on China’s arid and semi-arid regions, particularly the Tarim River Basin
(TRB), have shown an increase in the intensity and frequency of extreme weather events. This research
examines the link between meteorological droughts, as measured by the Standardized Precipitation
Evapotranspiration Index (SPEI), and hydrological droughts, as indicated by the Standardized Runoff
Index (SRI) and the Standardized Terrestrial Water Storage Index (STI), over various time scales.
Historical data indicate that SPEI drought frequency (DF) was 14.3–21.9%, with prevalent events in
the northern oases. SRI DF ranged from 9.0% to 35.8%, concentrated around the Taklamakan and
Kumtag Deserts, while STI DF varied between 4.4% and 32.7%, averaging 15% basin-wide. Future
projections show an increased DF of SPEI in deserts and a decrease in oases; SRI DF decreased in
deserts but increased in oases. STI changes were more moderate. The study also found a higher risk
of drought progression from SPEI to SRI in the southwestern and northeastern oases, exceeding 50%
probability, while central and eastern TRB had lower risks. The western TRB and inner Taklamakan
Desert faced higher risks of SPEI to STI progression, with probabilities over 45%, in contrast to the
lower risks in the eastern and central oases. The concurrence of SRI/STI with moderate to extreme
SPEI droughts led to a higher probability and area of SRI/STI droughts, whereas consistent SPEI
types showed a reduced induced probability and extent of SRI/STI droughts. This study enhances
the understanding of drought propagation from meteorological to hydrological droughts in the TRB
and contributes to the prevention of hydrological drought to a certain extent.

Keywords: drought propagation; SPEI; SRI; STI; CMIP6; conditional probability

1. Introduction

Within the context of evolving climatic patterns, the scope of land affected by droughts
is on a continuous upswing. This trend is characterized not only by its persistence but also
by an escalation in its severity, particularly evidenced by the increasingly frequent mani-
festation of extensive and acute drought incidents [1]. Droughts rank among the foremost
natural catastrophes, distinguished by their broad and enduring detrimental effects on
ecosystems, societal structures, and economic stability [2]. Scholarly investigations into
historical drought patterns have discerned four distinct classifications, delineated by the in-
terplay between water availability and demand: meteorological, hydrological, agricultural,
and socioeconomic droughts [3]. In the realm of these investigations, the criticality of water
resource allocation coupled with the constraints posed by data scarcity in the context of
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socioeconomic evolution, has rendered meteorological and hydrological droughts as focal
points of heightened scholarly intrigue.

Areas classified as arid or semi-arid are those where rainfall does not suffice to balance
out the surface evaporation and vegetation transpiration [4]. These areas cover more than
half of China’s land area [5]. Over the past several decades, an increase in both the occur-
rence and severity of extreme weather events has been observed in these regions of China,
turning the climate anomalies of arid and semi-arid zones into a focal point of scientific
research [6,7]. Notably, the Tarim River Basin (TRB) is located within this arid region of
Northwest China. Presently, research concerning droughts in the TRB primarily revolves
around devising distinct drought indices for various drought types, and evaluating the
spatiotemporal variations of drought [8,9], with scant exploration into the interconnections
among different types of droughts [10]. In reality, a close interrelation exists among varying
drought types, with meteorological droughts often acting as the driver for other forms of
drought. Meteorological droughts, induced by insufficient precipitation, impact the land
surface, exerting varying degrees of effects on soil, vegetation, runoff, and groundwater,
subsequently triggering hydrological drought [11]. Nevertheless, the temporal discrepancy
inherent between meteorological and hydrological drought phases, coupled with the spatial
heterogeneity of the underlying conditions and the climatic factors pertinent to hydrolog-
ical droughts, constrains our understanding of drought progression. In the context of a
warming globe, where climate alteration is predominantly driven by rising temperatures,
it is both imperative and critical to explore the influence of these thermal increments on
hydrological phenomena, particularly those related to meteorological drought-induced
extremities. With a consensus on drought variability under changing phenomena, some
studies have emerged to explore how droughts may evolve under different warming
levels [12–14]. Nevertheless, research focusing on the progression of droughts, ranging
from meteorological droughts of diverse intensities to hydrological droughts with varying
severities, especially under various warming scenarios, is conspicuously lacking in the
Xinjiang area of China. Insights gleaned from the datasets released by the sixth iteration of
the Coupled Model Intercomparison Project (CMIP6) offer valuable data for scrutinizing
the influence of climate change on drought dynamics. Emerging socioeconomic trajecto-
ries, encapsulated within Shared Socioeconomic Pathways (SSPs), are integrally aligned
with Representative Concentration Pathways (RCPs) through unified policy presump-
tions, lending enhanced plausibility to prospective scenarios [15,16]. Five delineated SSP
narratives—ranging from SSP1’s sustainability focus to SSP5’s fossil-fueled development—
chart divergent yet possible trajectories of future societal evolutions, each posing distinct
mitigation and adaptation quandaries.

The diffusion and evolution of drought from meteorological origins to hydrological
impacts merit close scrutiny within the domain of water resource management. If drought
propagation can be quantified, it becomes feasible to forecast hydrological droughts in a
timely manner, based on known meteorological droughts, which would be significantly
beneficial for water resource managers. Therefore, this research, which focuses on the Tarim
River Basin, employs the Standardized Precipitation Evapotranspiration Index (SPEI) as a
gauge for meteorological droughts. Concurrently, it utilizes the Terrestrial Water Storage
Index (STI) and the Standardized Runoff Index (SRI) to quantify the hydrological deficit.
This study, anchored in an analytical structure derived from three distinct drought indices,
sets out to (1) unveil the characteristics and evolutionary trends of meteorological and hy-
drological droughts; (2) establish the transmission patterns of drought from meteorological
phenomena to hydrological impacts; (3) predict the propagation of drought conditions
within the purview of three CMIP6-informed future scenarios.

2. Study Area and Data
2.1. Study Area

The research focuses on the Tarim River Basin, hereinafter referred to as TRB, which is
located in China’s arid northwest, covering Xinjiang and parts of western Gansu provinces.
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The basin consists of 11 sub-basins [17], with the primary land use being categorized as
barren [18]. Within the basin, two major deserts are situated—the Taklamakan and the
Kumtag Deserts. Surrounding the Taklamakan Desert, oases and farmlands are distributed,
serving as the main areas of human activity. The TRB receives an annual precipitation of
less than 50 mm, starkly contrasted with a potential evaporation rate ranging from 2000 to
3000 mm [19]. Its water resources, sourced predominantly from glacial and snow deposits,
are exceedingly susceptible to the impacts of climate change [7,11]. Additionally, the basin’s
vegetation cover is scant, underscoring the fragility of its ecological milieu. Figure 1 is an
overview map of the TRB study area.

Figure 1. Overview of the study area. (a) The specific geographic location of the Tarim River Basin as
referred to in this study in China; (b) sub-basin divisions of the Tarim River Basin; (c) topography of
the Tarim River Basin; (d) land use and cover change types in the Tarim River Basin; (e) the range of
gridded data used in this study.

2.2. Data

The ERA5-Land dataset is an enhanced global dataset created by the European Centre
for Medium-Range Weather Forecasts (ECMWF) for the land component of the fifth-
generation European Reanalysis (ERA5). This dataset stands out for its high spatial resolu-
tion and hourly temporal resolution [20]. Data pertaining to temperature, precipitation,
wind, and radiation for the period from 1 January 1975 to 31 December 2014, were sourced
from the ERA5-Land hourly data (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
10.24381/cds.e2161bac?tab=form, accessed on 9 August 2023) for SPEI calculation, along
with Runoff data for the same period for SRI calculation. These datasets provide coverage
of the Earth’s surface in a grid of 0.1° × 0.1°.

The Global Land Data Assimilation System (GLDAS) datasets, derived from the
integration of satellite, land surface models, and terrestrial observational data, are ex-
tensively utilized in research domains such as meteorological and climatic forecasting,
hydrological cycle analysis, and water resource management. In this research, data from
1 January 1975 to 31 December 2014, encompassing variables such as surface runoff,
groundwater, snow, and soil moisture, were obtained using the GLDAS_Noah025_M
dataset (https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.0/summary, ac-
cessed on 1 March 2023) [21,22]. This dataset represents an integration of GLDAS with
the Noah model. It was employed for the computation of STI. Relative to other datasets,

https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=form
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.0/summary
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the GLDAS_Noah025_M is characterized by its stable driving fields, advanced modeling
techniques, and an extensive time series. Initially set at a spatial resolution of 0.25◦ × 0.25◦,
the data were subsequently resampled to a finer resolution of 0.1◦ × 0.1◦, to facilitate more
accurate computations and comparisons.

In this study, three SSPs-RCP scenarios, SSP126, SSP245, and SSP585, were selected in
consideration of anthropogenic radiative forcing and socioeconomic scenarios, covering
a spectrum from low to high future emissions scenarios. Five global circulation models
under these scenarios were chosen, focusing on regional applicability and data availability,
to analyze and forecast the evolution and spread of hydrological and meteorological
droughts during projected periods [23,24]. Details of the models are provided in Table 1.
Simulations were exclusively based on the first run (r1i1p1f1) of each model. Data for the
historical period (1 January 1975 to 31 December 2014) and projected periods (1 January
2015 to 31 December 2094) were obtained (https://esgf-node.llnl.gov/search/cmip6/,
accessed on 28 April 2023), with each GCM dataset being resampled to a spatial resolution
of 0.1° × 0.1° using bilinear interpolation. The selection of variables in all model data
corresponded with those chosen in ERA5-Land and GLDAS.

Table 1. Basic information on the five CMIP6 GCMs applied in this study.

Model Institute Horizontal Resolution

ACCESS-ESM1-5
Commonwealth Scientific and

Industrial Organization
(CSIRO)

1.875◦ × 1.25◦

EC-Earth3 EC-Earth-Consortium 0.7◦ × 0.7◦

EC-Earth3-Veg EC-Earth-Consortium 0.7◦ × 0.7◦

GFDL-ESM4 Geophysical Fluid Dynamics
Laboratory (NOAAGFDL) 1.25◦ × 1◦

IPSL-CM6A-LR Institute Pierre Simon Laplace
(IPSL) 2.5◦ × 1.26◦

3. Methodology
3.1. Estimation of Drought Indices and Their Characteristics
3.1.1. Standardized Precipitation Evapotranspiration Index

In the research presented herein, the Standardized Precipitation Evapotranspiration
Index (SPEI) is utilized as the evaluative measure for appraising meteorological drought
conditions, employing the computation method established through the work of Vicente-
Serrano et al. [25]. We determined the monthly potential evapotranspiration (PET) using the
Penman–Monteith method, which is favored for its consideration of data availability [26].
In the majority of studies, the log-logistic distribution has been identified as the optimal
method for calculating the SPEI [27]. The Kolmogorov–Smirnov test was employed to
verify the fitting effectiveness of the cumulative distribution function. The computation is
represented as follows:

Ei
m = Pi

m − PETi
m (1)

where m denotes the timescale (m = 1, 3, 6, 12 months) and i indicates a month within a
year. Consequently, the SPEI for a given timescale m is calculated as follows:

SPEIi
m = ϕ−1(F(Ei

m)) (2)

Here, F represents the cumulative distribution function for the log-logistic distribution,
modeling the time series data for the net difference in cumulative precipitation and PET
over m months, while the function denoted by ϕ−1 corresponds to the reverse computation
of the standard normal cumulative distribution.

https://esgf-node.llnl.gov/search/cmip6/
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3.1.2. Standardized Runoff Index

In our analysis, we utilize the Standardized Runoff Index (SRI), conceptualized by
Shukla and Wood in 2008 [28], as a metric to quantify hydrological drought conditions.
This index extends the conceptual framework of the Standardized Precipitation Index
(SPI), as established by McKee et al. [29], enriching it with river discharge data to more
accurately represent runoff deficits during distinct intervals. The methodology employed
in our study for calculating SRI was informed by a review of previous research, wherein the
gamma function is utilized as the cumulative distribution function for SPI computation [30].
The Kolmogorov–Smirnov test was employed to verify the fitting effectiveness of the
cumulative distribution function. The methodological approach for this calculation is
outlined as follows:

SRIi
m = ϕ−1(F(Ri

m)) (3)

where m denotes the timescale (m = 1, 3, 6, 12 months) represents the temporal scale,
and i specifies a particular month of the year. Here, Ri

m is the cumulative runoff for
the ith month over an m-month period, F is the cumulative distribution function of the
Gamma distribution, used to model the time series of the cumulative runoff Ri

m, and the
function denoted by ϕ−1 corresponds to the reverse computation of the standard normal
cumulative distribution.

3.1.3. Standardized Terrestrial Water Storage Index

Introduced by Cui and colleagues [31], the Standardized Terrestrial Water Storage
Index (STI) offers a quantification of hydrological droughts by assessing the variance
of terrestrial water storage components, which include groundwater, soil moisture, sur-
face waters, and cryospheric elements, from established climatic averages. This index
serves as a metric for hydrological droughts and mirrors the changes in terrestrial hydric
reserves, holding a correlative value with other indicators such as SPEI and SRI. STI is
instrumental in gauging water shortages over diverse duration frameworks, such as 1
to 12 months, thereby providing a basis for comparative analysis with other recognized
standardized drought measures. The cumulative distribution function for calculating the
STI was derived referencing the normal function, as employed by the original proponents
of STI. The Kolmogorov–Smirnov test was employed to verify the fitting effectiveness
of the cumulative distribution function. The calculation of STI is executed as per the
following methodology:

STIi
m = ϕ−1(F(Ti

m)) (4)

where Ti
m is the cumulative terrestrial water storage for the ith month over an m-month

period. The function F denotes the cumulative distribution function of the normal distribu-
tion, employed to fit the time series of Ti

m, while the function denoted by ϕ−1 corresponds
to the reverse computation of the standard normal cumulative distribution.

The severity classification for the three drought indices is presented in Table 2. A lower
value indicates a higher severity of drought. For the purpose of achieving comparability
among various droughts, four uniform drought classification levels were selected: normal
and light droughts, moderate droughts, severe droughts, and extreme droughts. These
classifications adhere to the meteorological drought standards established by the China
Meteorological Administration (GB/T 20481-2017), as well as the STI drought classification
criteria proposed by the originators of the STI index [32,33].

Table 2. Categorization of drought severity by the drought indices.

Categorization SPEI/SRI/STI

Normal and Light ≥−1.00
Moderate −1.50 to −1.00

Severe −2.00 to −1.50
Extreme ≤−2.00
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3.2. Bias Correction

Resampling of all data was executed through the bilinear interpolation method, no-
table for its superior computational efficiency in comparison with more complex inter-
polation methods, thus ideal for rapidly processing voluminous data. Each variable of
the resampled GCMs underwent correction via the non-parametric Quantile Mapping
bias correction approach [34]. This approach, being independent of specific distribution
assumptions, offers flexible applicability to various climate data types. Inherent uncer-
tainties in a singular model, attributable to unique parameterizations, initial conditions,
or model structure choices, are present. The integration of multiple model outputs in the
Multi-Model Ensemble (MME) effectively mitigates these model-specific biases [24,35],
contributing to a reduction in the overall predictive uncertainty. The MME predictions,
formulated post-equal-weight allocation to the amended GCMs models, were subsequently
employed in analyzing drought development and spread under scenarios SSP126, SSP245,
and SSP585.

3.3. Conditional Probability

The probability of hydrological drought occurrences with differing intensities un-
der various meteorological drought conditions was calculated in this study, facilitating
an analysis of the transition likelihood from meteorological to hydrological droughts.
A straightforward Bayesian network, a form of probabilistic graphical model (PGM), was
employed for the computation of these conditional probabilities. In PGMs, the conditional
dependency structures among random variables are graphically represented, enabling the
deduction of inter-variable relationships [36]. Figure 2 illustrates the PGM relationships
utilized herein. It is imperative to acknowledge the high sensitivity of this model to the
chosen drought index thresholds. The model considered four drought scenarios: normal
and light droughts, moderate, severe, and extreme conditions. The Bayesian framework
was parameterized using a method of statistical inference known as Maximum Likelihood
Estimation (MLE). The construction of this network was facilitated by the application
of a Python-based algorithmic implementation. The general expression for conditional
probability is given as:

P(H ∈ Cm|M ∈ Cm) =
P(Hm, Mm)

P(M)
(5)

Here, P(H|M) is defined as the probability of occurrence of a specific hydrological
drought given a particular meteorological drought condition, representing the propagation
likelihood. Cm categorizes drought intensity into four classes: C1 for normal and light
droughts, C2 for moderate droughts, C3 for severe droughts, and C4 for extreme drought
conditions. Additionally, P(M, H) indicates the joint probability of concurrent meteoro-
logical and hydrological drought events, whereas P(M) denotes the probability of the
occurrence of meteorological droughts.

Figure 2. Schematic diagram of a probabilistic graphical model.
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4. Results and Discussion
4.1. Spatiotemporal Patterns of Drought Changes under Climate Change

In this study, we performed a spatial analysis to evaluate the drought frequency (DF)
of meteorological, hydrological, and agricultural droughts, as indicated by the SPEI, SRI,
and SRI, respectively [37]. This analysis spanned historical (1975–2014) and projected
periods (2015–2094) under the SSP126, SSP245, and SSP585 scenarios. Drought events were
identified when index values dipped below −1.00, with DF representing the proportion of
total observations classified as droughts [38]. For the purposes of this paper, SPEI will refer
to meteorological droughts, SRI to hydrological droughts, and STI to agricultural droughts.

As illustrated in Figure 3, the monthly timescale analysis reveals that the DF of SPEI
was recorded between 14.3% and 21.9% during the historical baseline period, with predom-
inant drought events in the northern oasis areas, notably in the Mainstream of the Tarim
River, Aksu River, and Weigan River basins. In the projected period, however, there was an
apparent escalation in DF within the Taklamakan and Kumtag Deserts and their adjacent
river basins, while a decrease in DF was observed in the oasis regions.

Figure 3. DF on a one-month timescale for SPEI, SRI, and STI during the historical baseline period.
Variations in DF during the projected periods as compared to the historical period, with negative
values indicating a decrease and positive values indicating an increase.

In the historical baseline interval, the SRI showed DF oscillating between 9.0% and
35.8%, reflecting relatively infrequent drought conditions. The majority of high-frequency
droughts were geographically localized to the eastern regions surrounding the Taklamakan
and Kumtag Deserts. In comparison, the projected periods indicate a trend towards
more acute hydrological drought conditions, predominantly affecting oases. Concurrently,
a reduction in hydrological drought DF is projected for the areas encircling the eastern
Taklamakan and Kumtag Deserts.

Throughout the historical baseline interval, the DF for the STI was observed to be
between 4.4% and 32.7%, with the Weigan River, Kaidu River, Kumtag Desert, and the
Cherchen River regions consistently presenting high drought event occurrences. The DF
in other areas hovered around 15%. When examining the projected periods, a reduc-
tion in drought severity was noted in regions that historically experienced high drought
frequencies. Despite this relief, the aggregate frequency of droughts has escalated.

4.2. Propagation Time from Meteorological to Hydrological Drought

The impact and variation of drought conditions across various time durations are
represented by drought indices on distinct cumulative time scales. It has been widely
demonstrated by previous research that a lag in the hydrological drought’s response to
meteorological droughts exists, as evidenced by correlations calculated between drought
indices at different time scales or through the establishment of artificially delayed sequences
of drought indices [39–42]. Evidence suggests that the robustness of the association across
different drought classifications is reflected in the magnitude of the correlational coefficient.
The designated response time scale—or accumulation period—mirrors the interval required
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for the cumulative shortfall of type B drought to align with that of type A drought [43].
In this context, the present study computed the Spearman correlation coefficients for
SPEI at 1, 3, 6, and 12-month intervals against the hydrological drought indices SRI and
STI, both assessed at a 1-month scale. The utilization of diverse time scales is intended
to depict meteorological droughts across short, seasonal, intermediate, and extended
durations. The time scale m that exhibits peak correlation serves as the response time scale,
delineating the lag between the onset of meteorological and the subsequent manifestation
of hydrological droughts.

The correlation analysis conducted using Spearman’s method at various temporal
scales—1, 3, 6, and 12 months—has identified that, historically, the TRB exhibits a six-month
lag in the propagation from meteorological to hydrological drought conditions. However,
projections under SSP126, SSP245, and SSP585 scenarios indicate a reduction in this lag to
approximately three months.

For the STI and SPEI comparison, the historical baseline and SSP585 scenarios suggest
a consistent twelve-month lag, while the SSP126 and SSP245 scenarios project the lag to be
just three months.

To elucidate the dynamics between meteorological and hydrological droughts fur-
ther, forthcoming studies will concentrate on specific pairings: historical_SPEI6-SRI1,
SSP126_SPEI3-SRI1, SSP245_SPEI3-SRI1, SSP585_SPEI3-SRI1, and historical_SPEI12-STI1,
SSP126_SPEI3-STI1, SSP245_SPEI3-STI1, alongside SSP585_SPEI12-STI1.

4.3. Drought Propagation Probability

The categorization of drought types into meteorological and hydrological distinctions
yields four classifications: normal and light drought where the drought index is ≥−1.0,
moderate drought at −1.50 ≤ drought index < −1.0, severe drought within the range of
−2.00 ≤ drought index < −1.50, and extreme drought when the drought index is ≤−2.00.
For the projected periods, the likelihood of meteorological drought propagation, contingent
on the occurrence of hydrological droughts, was ascertained through the application of
conditional probability estimates.

In the analysis of historical_SPEI6-SRI1 propagation probabilities, it was observed
that under SPEI normal and light drought conditions, the occurrence of normal and light
drought in SRI approaches a probability of nearly 100%. As SPEI drought severity inten-
sifies, the probability of experiencing normal and light drought in SRI correspondingly
diminishes, a trend more evident within oasis regions. As depicted in Figure 4’s P(NL|E),
in scenarios of extreme SPEI droughts, the likelihood of encountering normal and light
drought in SRI is virtually zero in the southwestern oases and southern Kaidu River areas.
In contrast, in the two desert regions, the probability of observing normal and light drought
in SRI remains over 50%.

Under conditions where the SRI corresponds to a consistent drought type, an escalation
from moderate to extreme drought conditions as indicated by the SPEI is associated with a
progressive increase in both the likelihood and spatial extent of droughts as identified by the
SRI. Conversely, for a uniform drought classification according to the SPEI, the SRI reveals
a gradual decline in the probability and coverage of droughts across varying intensities.

Analysis of the probability maps for drought propagation from SPEI across all drought
categories to SRI droughts reveals that the oasis regions situated in both the southwestern
and northeastern parts of the TRB are characterized by a heightened risk of drought
propagation, including areas where the probability exceeds 50%. Areas with a lower risk of
drought propagation are primarily located in the central and eastern sections of the basin.

Examining the propagation of historical SPEI12-STI1, as shown in Figure 5, it is ob-
served that in scenarios where the SPEI indicates normal and light drought conditions,
the likelihood of STI also exhibiting normal and light drought surpasses 60%. This prob-
ability diminishes as the SPEI’s severity escalates. In instances of extreme drought as
indicated by SPEI, the incidence of normal and light drought conditions in southern oases
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and certain northern periphery oasis zones is almost negligible, while the desert regions
remain largely unaffected.

Figure 4. Probability of different classes of SRI1 under different classes of SPEI6 during the historical
baseline period. Average probability of different classes of SRI1 under different classes of SPEI6 in
each sub-basin of TRB.

Where SRI maintains a uniform drought classification, as shown in Figure 6, an es-
calation in drought severity from moderate to extreme, as projected by SPEI, correlates
with a rise in both the occurrence probability and area of these droughts. In parallel, for a
consistent drought type as per SPEI, the chances and spatial coverage of different levels
of SRI droughts progressively diminish. These observations mirror the results seen in the
historical_SPEI6-SRI1 study.

Analysis of the probability maps for drought propagation from diverse SPEI categories
to SRI indicates that both the western region of the TRB and the core areas of the Taklamakan
Desert are at increased risk of drought propagation, with sections exhibiting propagation
probabilities surpassing 45%. In contrast, areas with a diminished likelihood of drought
propagation are concentrated in the oasis zones of the basin’s eastern and central regions.

Relative to the historical baseline, as shown in Figure 7, the probability of SPEI
propagation to STI shows a general decline across three projected future scenarios. Despite
this decrease, the pattern of propagation in each scenario mirrors that of the historical
period. This trend may be attributable to the cumulative time scale associated with SPEI.
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Under SSP126_SPEI12-STI1 and SSP585_SPEI12-STI1 scenarios, when STI corresponds
to a uniform drought type, the propagation mechanism of SPEI to STI, transitioning
from moderate to extreme droughts, aligns with the historical baseline. However, this
propagation exhibits stark spatial discrepancies in oasis regions and the central area of
the TRB.

Figure 5. Probability of different classes of STI1 under different classes of SPEI12 during the historical
baseline period. Average probability of different classes of STI1 under different classes of SPEI12 in
each sub-basin of TRB.
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Figure 6. Propagation probability of different classes of SPEI into SRI under all scenarios: (a) historical
baseline period, (b) SSP126 projected period, (c) SSP245 projected period, (d) SSP585 projected period.

Figure 7. Propagation probability of different classes of SPEI into STI under all scenarios: (a) historical
baseline period, (b) SSP126 projected period, (c) SSP245 projected period, (d) SSP585 projected period.

5. Conclusions

As early as the late 19th century, scientists began investigating the theory that the
elevation of carbon dioxide levels in the atmosphere might precipitate a global temperature
increase. A notable instance is the proposition of the greenhouse effect’s fundamental
principles by Swedish chemist Svante Arrhenius in 1896. As for the future occurrence of
climate change, the extant scientific consensus affirms its likelihood. Through exhaustive
scientific inquiries and data scrutiny, international climate research bodies have consistently
concurred that the Earth’s climate is exhibiting changes, predominantly evidenced by a
rise in the global mean temperature, a surge in extreme meteorological phenomena, glacial
recession, and an ascent of sea levels. These alterations are predominantly ascribed to
anthropogenic activities [44].

Under future climate change scenarios, the analysis of climate change impacts on
average drought characteristics reveals a decline in meteorological drought frequency in
the TRB’s oasis regions, while an increase is noted in the central and eastern desert areas of
the TRB. This trend may be attributed to an amplified regional water cycle with elevated
temperatures, resulting in enhanced actual evapotranspiration and an augmented supply
of atmospheric water vapor, alongside a boost in precipitation conversion rates [45,46].
Additionally, warming escalates transpiration from surface vegetation and soil moisture
evaporation [47]. The desert regions, potentially receiving less precipitation than the
oases, are expected to experience a rise in meteorological drought occurrences. In terms
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of hydrological droughts, as indicated by changes in SRI and STI, a notable increment is
anticipated in the TRB for projected periods, potentially driven by the intensified melting of
glaciers due to global warming [48]. This process may temporarily heighten river discharge
and terrestrial water reserves. However, the resultant expansion of water bodies and the
consequent increase in actual evapotranspiration will speed up the basin’s hydrological
cycle and enhance atmospheric water vapor contribution. Consequently, this leads to a
probable increase in the frequency of hydrological droughts.

In the context of SSP126, SSP245, and SSP585 scenarios, our research deployed a
range of drought indices and MME forecasting methods to investigate the influence of
climate change on drought attributes. A distinctive aspect of this study is the use of
conditional probabilities to analyze the relationships between disparate meteorological and
hydrological drought scenarios within the TRB basin, a focus relatively underexamined in
prior studies. Our analysis indicates that, maintaining a consistent hydrological drought
category, the evolution of meteorological droughts from moderate to extreme intensifies
both the occurrence probability and spatial extent of hydrological droughts. On the other
hand, under a steady meteorological drought condition, the propensity and scope for
triggering hydrological droughts of various severities gradually lessen. Notably, these
outcomes are consistent across various propagation time scales.

Our study also reveals that the oasis areas in the southwest and northeast of the
TRB are more susceptible to the propagation of meteorological droughts into hydrological
droughts triggered by insufficient runoff, compared to the central and eastern parts of
the TRB where such risk is relatively lower. Moreover, in the western parts of the TRB
and the core areas of the Taklamakan Desert, there is a heightened risk of meteorological
droughts transitioning into hydrological droughts caused by depleted terrestrial water
reserves. Meanwhile, this risk of propagation is substantially lower in the oasis zones
of the eastern and central TRB. These findings can serve as valuable references for the
future control and management of water resources in the basin, aiding in the prevention of
hydrological droughts to a certain degree.

Our study omits the determination of the ideal cumulative distribution functions for
SPEI, SRI, and STI, opting instead to employ computational methods previously established
by others in analogous studies [49–51]. The inclusion of this determination step in the data
preprocessing phase could markedly bolster the data accuracy and meticulousness [52–55].
Furthermore, the lack of prolonged observational data precludes the possibility of rectifying
reanalysis data, which may partly account for certain discrepancies in our results. Our study
has not yet investigated the influence of human activities on the trends in drought variability
and the propagation of drought conditions. Notably, with the implementation of China’s
two-child policy in 2014, the resultant population increase has escalated the demand for
water resources [56], potentially accelerating the consumption of runoff and groundwater,
and aggravating hydrological drought conditions [57]. However, human efforts to modify
the natural environment, such as through the construction of water storage systems, can
alleviate some regional water imbalances and lower the risk of hydrological droughts in
certain areas, thereby indirectly delaying the transition from meteorological to hydrological
droughts. Additional research is necessary to determine the impact of anthropogenic
actions on the development and spread of hydrological droughts. The study’s scope
includes areas with a high prevalence of barren land use, such as deserts, where human
activity is minimal or non-existent. It may be beneficial for subsequent research to omit
such regions to concentrate on areas where human activity is prevalent. Furthermore,
examining the process by which meteorological droughts evolve into other drought forms
is critical for a more comprehensive understanding of drought risks amidst climate change.
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