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Abstract: To solve the problems of the current deep learning radar extrapolation model consuming
many resources and the final prediction result lacking details, a weather radar image super-resolution
weather model based on SR3 (super-resolution via image restoration and recognition) for radar images
is proposed. This model uses a diffusion model to super-resolve weather radar images to generate
high-definition images and optimizes the performance of the U-Net denoising network on the basis of
SR3 to further improve image quality. The model receives high-resolution images with Gaussian noise
added and performs channel splicing with low-resolution images for conditional generation. The
experimental results showed that the introduction of the diffusion model significantly improved the
spatial resolution of weather radar images, providing new technical means for applications in related
fields; when the amplification factor was 8, Radar-SR3, compared with the image super-resolution
model based on the generative adversarial network (SRGAN) and the bicubic interpolation algorithm,
the peak signal-to-noise ratio (PSNR) increased by 146% and 52% on average. According to this
model, it is possible to train radar extrapolation models with limited computing resources with
high-resolution images.

Keywords: weather radar image; super-resolution; diffusion model; attention mechanism; residual
connection; S-band radar

1. Introduction

Weather radar is one of the key tools in the field of meteorology and natural disas-
ter warning and is widely used to monitor and track rain, storms, lightning, and other
weather phenomena in the atmosphere [1]. In meteorology, the role of weather radar
cannot be ignored; it not only provides a wide range of meteorological data but also has
the characteristics of high spatial and temporal resolution of weather radar detection data,
which is of great significance for meteorological operations, such as short-term forecasting
as well as small- and medium-scale weather monitoring, which are also the main tool
for nowcasting. The timely monitoring of weather changes and the effective manage-
ment of disaster risks are crucial for short-term weather forecasting. The performance
and image quality of meteorological radar directly impact the accuracy of predictions.
Current radar echo extrapolation deep learning models, such as PredRNN [2] and Mo-
tionRNN [3], tend to produce blurry images to achieve higher mean squared error (MSE)
scores, thereby affecting the final prediction results. GAN-LSTM [4] and GAN-rcLSTM [1]
have been incorporated as a generative adversarial network (GAN) module based on
recurrent neural networks to generate radar images with clearer details and more accurate
predictions. Currently, extrapolation models take high-resolution radar images as input in
the hope of obtaining better extrapolation results. However, using high-resolution radar
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images as input inevitably increases the model’s parameters, thereby affecting training and
inference efficiency.

Image super-resolution (SR) is a classic problem in computer vision and image pro-
cessing. Its goal is to reconstruct a high-resolution (HR) image from a given low-resolution
(LR) input [5], aiming to enhance the quality and details of the image. Super-resolution
methods include traditional methods and deep learning methods. Among traditional
methods, interpolation-based methods have simple algorithms and fast processing speeds
but may result in a loss of detail in areas with complex textures [6], such as aliasing or color
blocks. Methods based on deep learning can be categorized into those using convolutional
neural networks (CNNs), generative adversarial networks (GANs), and diffusion models
for super-resolution. The CNN-based super-resolution deep learning network SRCNN [7]
was the first to introduce CNNs to the task of image super-resolution. In subsequent
models, such as VDSR [8], residual networks were incorporated into deep learning models
to enhance the model’s receptive field while preserving shallow-layer information. With
the success of generative adversarial networks (GANs) in image generation, SRGAN [9]
was the first to introduce GAN to the field of super-resolution. SRGAN, compared with
traditional CNNs, focuses more on the semantic differences between the original and recon-
structed images rather than the pixel-wise color and brightness differences. In recent years,
there have been studies focusing on super-resolution generation of weather radar images,
all of which use CNNs such as U-Net [10] or RABPN [11]. Although super-resolution
generation based on CNN is fast, the details of radar images are still missing compared
with real observation images. Super-resolution generation methods have been widely
studied and applied in downscaling in recent years. ESRGAN [12] used GAN to achieve
4× resolution downscaling of surface wind speed. The study of [13] also used GAN to
downscale time-evolving atmospheric fields.

In recent years, diffusion models have gained widespread attention in the field of
image generation [14–16]. These models use a U-Net architecture in deep learning for
denoising and offer the advantages of lower training complexity and simpler model archi-
tecture compared with adversarial generative networks [17]. Diffusion models have also
been successfully applied to image super-resolution tasks. The SR3 model [18] has achieved
significant accomplishments in various tasks [19]. In contrast to traditional diffusion prob-
ability models, SR3 not only focuses on image reconstruction but also integrates object
recognition information into the reconstruction process, resulting in better performance in
image super-resolution tasks.

Diffusion models have demonstrated significant potential in various domains. For
instance, the Imagen [20] model applies a conditional diffusion model for image super-
resolution, consisting of a text encoder and a series of diffusion models for image super-
resolution [9]. The Dreamix [21] video generation model utilizes a video diffusion model to
combine low-resolution spatiotemporal information from the original video with newly syn-
thesized high-resolution information during inference, ensuring consistency with guiding
textual prompts. In the meteorological domain, SwinRDM [22] builds upon SwinRNN [23]
by incorporating a diffusion model module to predict high-spatial-resolution and high-
quality atmospheric details.

Despite the widespread success of diffusion model-based image super-resolution
models in various fields, their application in weather meteorological radar images remains
a relatively unexplored area, requiring in-depth research. Therefore, this paper leverages
an improved SR3 model named Radar-SR3 to generate high-quality and high-resolution
radar echo images.

This article makes the following contributions:
(1) It explores the application of the SR3 super-resolution model on weather meteoro-

logical radar images and conducts a comparative analysis of the proposed super-resolution
model with commonly used super-resolution models using the Jiangsu radar dataset.

(2) It proposes a new ResNet Block with Attention (RA) module to replace the con-
volutional modules in the U-Net model, thereby improving the denoising network of
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U-Net. The Radar-SR3 super-resolution model, incorporating this novel RA module,
achieved an optimal peak signal-to-noise ratio and structural similarity index on a weather
radar dataset.

2. Problem Description and Materials
2.1. Problem Description

Recently, the application of radar echo extrapolation deep learning models in weather
forecasting has made significant progress [1–3,22,23]. Since the RNN model has memory
units, researchers prefer to use RNN-based models for radar echo extrapolation. How-
ever, the final extrapolation results of the models often suffer from issues of blurring and
distortion. Under complex meteorological conditions, blurred predictions may lead to
misjudgments of potential extreme weather events. As shown in Table 1, with the same
batch size and time length, the size of radar images can significantly impact the parameters
of Recurrent Neural Network (RNN)-based extrapolation models. When the width and
height of radar images increase by a factor of 8, the average growth in model parame-
ters is 15-times. This increase can pose a bottleneck in computational resources, affecting
both training and inference speed. In extreme cases, it may even render training on some
high-resolution weather radar datasets practically infeasible.

Table 1. Number of parameters of radar extrapolation model under different input sizes.

Method
Parameters

Input Size: 1, 20, 1, 128, 128 * Input Size: 1, 20, 1, 16, 16 *

PredRNN 131,714,048 7,851,008
MIM [24] 249,720,192 14,380,416

ConvLSTM [25] 96,379,969 5,547,073
MotionRNN 132,511,361 8,648,321

* From left to right, the input sizes represent: batch size, time length, number of image channels, image height,
image width.

2.2. Materials

The meteorological radar dataset consists of time-series data of radar echo, with its
physical interpretation being the basic reflectivity factor at the 3 km elevation. A higher
water droplet content in the atmosphere results in higher radar reflectivity [26,27]. The
dataset is compiled using a network of multiple S-band meteorological radars in Jiangsu
Province, covering the period from April to September in the years 2019 to 2021, and the
data used are 3 km cappi (constant altitude plan position indicator). The radar echo data
underwent quality control processes such as clutter suppression and discrete noise filtering.
Additionally, data with a low proportion of radar echoes were manually excluded, covering
the entire area of Jiangsu Province.

The data values range from 0 to 70 dBZ, with a horizontal resolution of 1 km × 1 km, a
time resolution of 6 min, and a grid size of 480 × 560 pixels for single-time data. To facilitate
the training of deep learning models while preserving image information, padding on both
sides and center cropping were applied, resulting in images of 512 × 512 pixels.

To balance the resources, time, training effectiveness, and recognition performance
required for deep learning model training, a total of 31,122 samples were selected. These
samples were split into training, validation, and test sets in a ratio of 7:2:1, respectively.

Considering training time, the 512 × 512-pixel images are initially downsampled to
images of size 128 × 128 and 16 × 16. The 128 × 128 images are defined as HR images,
while the 16 × 16 images are defined as LR images. An example of data visualization is
shown in Figure 1.
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Figure 1. Sample of data: (a) 128 × 128-pixel HR image; (b) 16 × 16-pixel LR image.

3. Radar Echo Image Super-Resolution Model Based on Improved SR3
3.1. Denoising Diffusion Probability Model

The denoising diffusion probability model (DDPM) is inspired by non-equilibrium
thermodynamics [28]. If you add noise to pixels in a high-dimensional image space, like
ink spreading in water, and then reverse the process, this can generate images from the
noise, resulting in unexpected combinations of images. The denoising diffusion probability
model includes a deep learning denoising network and a diffusion process. The diffusion
process includes a forward diffusion process and a reverse diffusion process.

3.1.1. Denoising Network Based on U-Net Model

The U-Net model [29] was initially designed to address the segmentation of medical
images. It introduces an encoder–decoder [30] architecture, utilizing a U-shaped network
structure to capture contextual information. The encoder part of U-Net is responsible for
extracting image features from low-resolution inputs. Since the goal of the SR3 model is to
reconstruct low-resolution images into high-resolution images, the decoder part of U-Net
in the SR3 model works to gradually increase the resolution of the feature maps through
deconvolution and up-sampling operations. To preserve image details and structural infor-
mation, the U-Net in the SR3 model incorporates skip connections. These connections link
the feature maps between the encoder and decoder, allowing information to be transmitted
across different scales, facilitating feature fusion, and ultimately generating high-resolution
images. The framework of the U-Net model is shown in Figure 2.
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3.1.2. Diffusion Process

The diffusion process includes a forward diffusion process and a reverse diffusion
process, using a parameterized Markov chain trained by variational inference to generate
samples that match the data after a limited time [22].

In the forward diffusion process, a set of data x0∼q(x) obtained by sampling from
the real data distribution, a series of noise-added samples x1, x2, . . . xt−1, xt,xt+1 . . . , xT ,
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are obtained by superimposing Gaussian noise on the samples in T steps. The recursive
formula from the origin HR image x0 to an HR image after adding Gaussian noise at time
step t xt is:

xt =
√

αtαt−1 . . . α1x0 +
√

1 − αtαt−1 . . . α1z (1)

z is the noise that conforms to the standard normal distribution, and αt is the weight,
which decreases as T increases. Let αtαt−1 . . . α2α1 = αt; then, for any T time step:

xT =
√

αTx0 +
√

1 − αTz (2)

The final xT is a noise that conforms to the standard normal distribution, also because
z is the noise that conforms to the standard normal distribution. According to Formula (2):

αT ≈ 0 (3)

Because αtαt−1 . . . α2α1 = αt, then αt can be controlled by αt and time step T.
The reverse diffusion process uses a U-Net model to learn image noise to achieve

denoising. That is, for the noise z̃ and time step t and the image xt at time step t, we obtain:

z̃ = UNet(xt, t) (4)

In the reconstruction stage, xt−1 is found under the premise of knowing xt, which
can be obtained by q(xt−1|xt ). According to Formula (1) and the properties of normal
distribution:

xt =
√

αtxt−1 +
√

1 − αtzt ∼ N(
√

αtxt−1, 1 − αt) (5)

Then, according to the conditional probability formula:

q(xt−1|xt )=
q(xt, xt−1)

q(xt)
∼ N(

1√
αt
(xt −

βt√
1 − αt

z̃), βt.
1 − αt−1

1 − αt
) (6)

xt−1 =
1√
αt
(xt −

βt√
1 − αt

z̃) +

√
βt.

1 − αt−1

1 − αt
z (7)

z̃ = UNet(xt, t) , z∼N(0, 1), 1 − αt = βt, according to Formula (7). The image xt−1 at
time step t−1 can be obtained from the image xt at time t and the noise z̃t.

3.2. SimAM Attention

The Attention mechanism was first proposed by John K. Tsotsos in 1995 [31] for
the field of visual images. In 2014, Google Mind applied the Attention mechanism to
image classification in Recurrent Convolutional Neural Network (RNN) models [32]. The
Attention mechanism generates weight vectors for each input element, determining which
parts significantly impact the model output by calculating the weights of each feature map.

Traditional attention mechanisms include spatial and channel attention mechanisms [33].
The spatial attention mechanism focuses on the importance of different spatial features
in the image, while the channel Attention mechanism emphasizes the significance of
features between different channels. Adding Attention mechanisms to deep learning
models can often lead to improved performance. However, increased parameters increase
the complexity of deep learning models, resulting in longer training and inference times.

SimAM [34], on the other hand, is an Attention mechanism based on mature neuro-
science theories. It simultaneously infers spatial and channel weights from the current
neurons, achieving performance improvements without affecting model complexity. The
structure of the SimAM Attention mechanism is shown in Figure 3.
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3.3. SR3 Model

The SR3 model describes the super-resolution problem as a conditional generation
problem. Compared with DDPM, which predicts the noise in the image each time through
the U-Net network to generate a denoised image, the SR3 model first passes the original
low-resolution image through up-sampling, which interpolates low-resolution images into
high-resolution images and adds them to the training process. At the same time, the noise-
added image and the interpolated high-resolution image are input. That is, the number
of input channels changes from three channels in DDPM to six channels. The denoising
network U-Net can perform conditional denoising based on the high-resolution image
after low-resolution interpolation. Therefore, compared with DDPM, random denoising
becomes a conditional generative model controlled based on the low-resolution image.
At the same time, the denoising network U-Net in SR3 no longer obtains noise based
on time step t but directly accepts the noise at the current time, thereby achieving faster
inference speed.

Due to the particularity of weather radar images, the original U-Net denoising network
in SR3 struggles to handle the global structure of the image and cross-channel dependencies,
so the U-Net denoising network in SR3 is needed to improve the ability to capture global
information, thus achieving a better denoising effect. This paper introduces an Attention
mechanism to capture global information and channel information based on the original
U-Net denoising network. It introduces residual connections to increase the number of
model parameters and enhance the denoising ability of the U-Net model.

3.4. Radar-SR3 Model

Radar-SR3 replaces the original U-Net denoising network with an improved denoising
U-Net network based on SR3. The overall process is shown in Figure 4.
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3.4.1. Residual Connection with Attention Mechanism

Residual connection was first proposed in ResNet [35] in 2016 and won first place in
the ImageNet Image Recognition Challenge in 2015. Residual connections are implemented
by adding the input to the result of activating a nonlinear activation function. This method
can reduce the problem of a network’s gradient vanish and improve model expression
capabilities. In the residual connection, the input x is mapped to a function f (x), which
is then added to the original input to output y = x + f (x). This can reduce the vanishing
gradient problem because deeper network parameters have less impact on the model
output, thus ensuring stability and convergence speed during the training process. This
article uses the Swish activation function [36] as the activation function in the residual
block. Compared with the Relu activation function, Swish is a smooth and non-monotonic
function, and its performance on multiple-depth models is better than the Relu function.

Based on the residual connection, this article adds different Attention mechanism
modules for the U-Net denoising model to capture noise and features on each channel and
space, named the RA (ResNet Block with Attention) module. The added attention mech-
anisms include the self-attention mechanism [37], the CBAM Attention mechanism [38],
and the SimAM Attention mechanism [28]. The image quality and structural similarity
indicators were compared, and the one with the highest index was selected as an integral
part of the RA module. The RA module is shown in Figure 5.

Atmosphere 2024, 15, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 4. Overall process of Radar-SR3, where �̃� means noise. 

3.4.1. Residual Connection with Attention Mechanism 
Residual connection was first proposed in ResNet [35] in 2016 and won first place in 

the ImageNet Image Recognition Challenge in 2015. Residual connections are imple-
mented by adding the input to the result of activating a nonlinear activation function. This 
method can reduce the problem of a network’s gradient vanish and improve model ex-
pression capabilities. In the residual connection, the input x is mapped to a function 𝑓(𝑥), 
which is then added to the original input to output 𝑦 = 𝑥 + 𝑓(𝑥). This can reduce the van-
ishing gradient problem because deeper network parameters have less impact on the 
model output, thus ensuring stability and convergence speed during the training process. 
This article uses the Swish activation function [36] as the activation function in the residual 
block. Compared with the Relu activation function, Swish is a smooth and non-monotonic 
function, and its performance on multiple-depth models is better than the Relu function. 

Based on the residual connection, this article adds different Attention mechanism 
modules for the U-Net denoising model to capture noise and features on each channel 
and space, named the RA (ResNet Block with Attention) module. The added attention 
mechanisms include the self-attention mechanism [37], the CBAM Attention mechanism 
[38], and the SimAM Attention mechanism [28]. The image quality and structural similar-
ity indicators were compared, and the one with the highest index was selected as an inte-
gral part of the RA module. The RA module is shown in Figure 5. 

 
Figure 5. Sample of RA Module. 

3.4.2. Improved U-Net Denoising Network 
This paper modifies the original U-Net model by replacing its convolutional modules 

with residual connection modules, enhancing its effectiveness and depth. In the down-
sampling and up-sampling layers, the residual connection blocks are replaced with RA  
modules better to capture noise and features from the original image. The architecture of 

+

input identity

input
ResNet
Blocks

Attention
Module output

Figure 5. Sample of RA Module.

3.4.2. Improved U-Net Denoising Network

This paper modifies the original U-Net model by replacing its convolutional modules
with residual connection modules, enhancing its effectiveness and depth. In the down-
sampling and up-sampling layers, the residual connection blocks are replaced with RA
modules better to capture noise and features from the original image. The architecture
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of the U-Net network is illustrated in Figure 6, consisting of an encoding segment and a
decoding segment. The encoding segment employs three layers of residual blocks to extract
shallow semantic information from the image. Two RA modules are utilized to capture
deeper image correlations. The decoding component uses two RA modules to reconstruct
the deep semantic features of the decoded image and three layers of residual blocks to
restore shallow semantic information.
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As depicted in Figure 7, the residual block includes a Group Normalization, a Swish
activation function, and a 3 × 3 convolutional kernel with a stride of 1 in two-dimensional
convolution. The down-sampling layer involves a 3 × 3 convolutional kernel, while the
up-sampling layer utilizes a 2 × 2 convolutional kernel.
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4. Experiments and Results
4.1. Experimental Setup

The experimental environment is as follows: The CPU is an Intel® Core™ i9-13900K
processor with a frequency of 5.0 GHz, and the memory is 32 GB. The GPU is an NVIDIA
GeForce RTX 4090. The software environment includes PyTorch 2.0.1 and CUDA 11.8. The
batch size is set to 24, and the Adam optimizer [39] is used for optimization with an initial
learning rate of 1 × 10−4. The L1 loss function is employed as the loss function.

4.2. Evaluation Metrics

This paper uses the peak signal-to-noise ratio (PSNR) and the structural similarity
index measurement (SSIM) [40] as quantitative metrics to evaluate the super-resolution
performance of the algorithm. PSNR is employed to assess the consistency between
generated images and ground truth, while SSIM is used to evaluate the structural similarity
between generated images and ground truth. The definitions of SSIM and PSNR are given
in Formulas (9) and (10).

For an image x and y with a size of m × n, the mean squared error (MSE) between x
and y is defined as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[
x(i, j)− y(i, j)]2 (8)

PSNR = 20 · log10(
MAXx√

MSE
) (9)
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SSIM(x, y) =

(
2µxµy + c1

)(
σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (10)

µx and µy represent the average of x and y. σ2
x and σ2

y represent the variance of x and
y. σxy is the covariance of x and y.

c1 =
(
k1L)2, c2 =

(
k2L)2, c3 = c2/2 , k1 = 0.01, k2 = 0.03, L is the range of pixel values.

If the number of image channels is three, the range of L is 0~255. SSIM is a number between
0 and 1. The larger it is, the smaller the difference between the output image and the
image-free image is; that is, the image quality is very good. When the two images are the
same, SSIM = 1.

4.3. Results
4.3.1. Comparative Experiment

Figure 8 shows the super-resolution results of Radar-SR3 at different training stages.
Figure 9 shows the relationship between the number of training epochs and PNSR. As the
number of training epochs increases, the images generated by the Radar-SR3 model become
closer to the actual value. Figure 10 selects five time steps to show the super-resolution
process of Radar-SR3. Table 2 shows different models’ PSNR and SSIM indicators when
the amplification factor is 8. Compared with the SR3 model, Radar-SR3 improves PSNR by
0.44 while keeping SSIM unchanged.
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Table 2. Comparison of super-resolution performance of different models.

Method
16 ××× 16 →→→ 128 ××× 128

PSNR/dB ↑↑↑ SSIM ↑↑↑
SR3 21.33 0.885

Bicubic 14.28 0.582
SRGAN 8.82 0.063

Radar-SR3 21.77 0.885

Figure 11 selects an example. First, the LR image is interpolated into an HR image
through the Bicubic algorithm, from 16 × 16 to 128 × 128. Then, the interpolated image is
compared with SR3, SRGAN, and Radar-SR3 for details. Compared with SR3, the super-
resolution reconstruction effect of Radar-SR3 in high-echo areas is closer to the real value,
and the details in some discontinuous echo areas are richer. A comparison can be obtained,
and Radar-SR3 super-resolution model imaging is more precise and more detailed than
Bicubic algorithm imaging; although the SRGAN model can restore high-echo areas well,
it generates severely gridded images during the generation process, and overall imaging
is not available. But the Radar-SR3 model can restore the details more clearly based on
generating clear images, generating smoother and continuous effects, and the generated
images are closer to the authentic images.
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Figure 12 shows the super-resolution effects of different models. The pictures gener-
ated by the Radar-SR3 model are closer to the real values.
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4.3.2. Module Selection

To assess the denoising capability of the U-Net network combined with different
Attention mechanisms, an 8-fold magnification module selection experiment was conducted
on the Jiangsu radar dataset for the self-attention mechanism, CBAM Attention mechanism,
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and SimAM Attention mechanism. Initially, the U-Net denoising network was used as the
baseline model without adding any attention mechanism. Subsequently, the self-attention,
CBAM, and SimAM Attention mechanisms were individually incorporated into the U-Net
residual block. A comparative analysis was performed to examine the effects of each
module on the U-Net denoising network. Evaluation metrics such as PSNR and SSIM were
employed. The experimental results are presented in Table 3.

Table 3. Comparison of indicators and parameter quantities of different models.

Method PSNR ↑↑↑ SSIM ↑↑↑ Parameters

Baseline 21.33 0.885 91,506,819
Self-Attention 21.38 0.892 97,807,491

CBAM 20.75 0.878 91,704,015
SimAM 21.77 0.885 91,506,819

SimAM + CBAM 21.04 0.880 91,704,015
Bold values represent optimal indicators.

Table 3 shows that the denoising capability, as measured by the PSNR indicator, is
superior when the RA module combines the SimAM attention block with the residual block
compared to other combinations. The SSIM is only 0.007 lower than using the self-attention
module. Moreover, SimAM can enhance model performance without increasing training
time or complexity due to its parameter-free nature. While the self-attention mechanism
has the highest SSIM score, the improvement in PSNR compared to the baseline is not
significant, and it has the highest number of parameters, meaning that it is not the optimal
choice. Although the CBAM Attention mechanism can capture features from different
channels and spatial dimensions, experimental results and the PSNR/SSIM metrics indicate
suboptimal performance when applied to the U-Net denoising network. Attempting to
concatenate the CBAM and SimAM Attention results in a slight improvement in both PSNR
and SSIM compared to using CBAM alone. Consequently, the SimAM Attention is selected
as the Attention module within the RA module.

5. Discussion

Weather radar is significant for nowcasting, and radar image super-resolution tech-
nology based on the conditional generation diffusion model can significantly alleviate the
problem of poor imaging of the extrapolation model caused by various factors. Based on
the SR3 super-resolution model, this paper first explores the feasibility of the SR3 model
in weather radar super-resolution. Secondly, by improving the U-Net denoising network,
the convolution block is replaced by a residual connection, and for the problem of diffi-
culty in fusing multi-dimensional features, a residual module incorporating an attention
mechanism is proposed, which includes a SimAM Attention module and multiple residual
blocks. Using radar observation data in Jiangsu in the past three years and comparing
experimental results, it was found that Radar-SR3 using the improved U-Net denoising
model has better image generation capabilities than the SR3 model and is in the same
dataset as commonly used image super-resolution algorithms; comparisons were made
and excellent results were obtained. But Radar-SR3 still has flaws: the training time is too
long. In the experiments in this paper, 1 epoch takes about 30 min, but it takes 500 epochs to
achieve stable super-resolution generation results. If Denoising Diffusion Implicit Models
(DDIMs) are used, the inference time can be reduced.

6. Conclusions

In a follow-up work, without introducing a new radar echo extrapolation model, radar
echo prediction can be carried out through low-resolution radar echo images, and then the
super-resolution generation of the extrapolated images can be performed through the Radar-
SR3 model, obtaining a radar echo extrapolation image with clearer and richer details. Because
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the radar echo extrapolation model accepts low-resolution sequence data, model training on
high-resolution datasets becomes possible under limited computing resources.

Author Contributions: Conceptualization, Z.S.; methodology, Z.S.; software, Z.S.; validation, Z.S.;
formal analysis, Z.S.; investigation, Z.S., F.W., L.G. and X.Z.; resources, H.G. and X.Z.; data curation,
F.W. and L.G.; writing—original draft preparation, Z.S.; writing—review and editing, H.G.; visualiza-
tion, Z.S.; supervision, H.G.; project administration, H.G.; funding acquisition, H.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 42375145; The Open Grants of China Meteorological Administration Radar Meteorology
Key Laboratory, grant number 2023LRM-A02; China Meteorological Administration Innovation and
Development Program, grant number CXFZ2023J008; China Meteorological Administration Key
Innovation Team, grant number CMA2022ZD04.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the confidentiality policy of Jiangsu
Meteorological Observatory.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Geng, H.; Wang, T.; Zhuang, X.; Xi, D.; Hu, Z.; Geng, L. GAN-rcLSTM: A Deep Learning Model for Radar Echo Extrapolation.

Atmosphere 2022, 13, 684. [CrossRef]
2. Wang, Y.; Wu, H.; Zhang, J.; Gao, Z.; Wang, J.; Yu, P.S.; Long, M. PredRNN: A Recurrent Neural Network for Spatiotemporal

Predictive Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 2208–2225. [CrossRef] [PubMed]
3. Wu, H.; Yao, Z.; Wang, J.; Long, M. MotionRNN: A Flexible Model for Video Prediction with Spacetime-Varying Motions. In

Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25
June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 15430–15439.

4. Xu, Z.; Du, J.; Wang, J.; Jiang, C.; Ren, Y. Satellite Image Prediction Relying on GAN and LSTM Neural Networks. In Proceedings
of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 1–6.

5. Chen, X.; Wang, X.; Zhou, J.; Qiao, Y.; Dong, C. Activating More Pixels in Image Super-Resolution Transformer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, 17–24 June 2023;
IEEE: Piscataway, NJ, USA, 2023; pp. 22367–22377.

6. Chen, B.; Lin, M.; Sheng, K.; Zhang, M.; Chen, P.; Li, K.; Cao, L.; Ji, R. ARM: Any-Time Super-Resolution Method. In Computer
Vision—ECCV 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Lecture Notes in Computer Science;
Springer Nature: Cham, Switzerland, 2022; Volume 13679, pp. 254–270. ISBN 978-3-031-19799-4.

7. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In Computer Vision—
ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer International
Publishing: Cham, Switzerland, 2014; Volume 8692, pp. 184–199. ISBN 978-3-319-10592-5.

8. Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 1646–1654.

9. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp.
105–114.

10. Geiss, A.; Hardin, J.C. Radar Super Resolution Using a Deep Convolutional Neural Network. J. Atmos. Ocean. Technol. 2020, 37,
2197–2207. [CrossRef]

11. Yu, Q.; Zhu, M.; Zeng, Q.; Wang, H.; Chen, Q.; Fu, X.; Qing, Z. Weather Radar Super-Resolution Reconstruction Based on Residual
Attention Back-Projection Network. Remote Sens. 2023, 15, 1999. [CrossRef]

12. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced Super-Resolution Generative Adversarial
Networks. In Computer Vision—ECCV 2018 Workshops; Leal-Taixé, L., Roth, S., Eds.; Lecture Notes in Computer Science; Springer
International Publishing: Cham, Switzerland, 2019; Volume 11133, pp. 63–79. ISBN 978-3-030-11020-8.

13. Leinonen, J.; Nerini, D.; Berne, A. Stochastic Super-Resolution for Downscaling Time-Evolving Atmospheric Fields With a
Generative Adversarial Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7211–7223. [CrossRef]

https://doi.org/10.3390/atmos13050684
https://doi.org/10.1109/TPAMI.2022.3165153
https://www.ncbi.nlm.nih.gov/pubmed/35380958
https://doi.org/10.1175/JTECH-D-20-0074.1
https://doi.org/10.3390/rs15081999
https://doi.org/10.1109/TGRS.2020.3032790


Atmosphere 2024, 15, 40 13 of 14

14. Sasaki, H.; Willcocks, C.G.; Breckon, T.P. UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic
Models. arXiv 2021, arXiv:2104.05358.

15. Li, H.; Yang, Y.; Chang, M.; Chen, S.; Feng, H.; Xu, Z.; Li, Q.; Chen, Y. SRDiff: Single Image Super-Resolution with Diffusion
Probabilistic Models. Neurocomputing 2022, 479, 47–59. [CrossRef]

16. Wu, Q.; Yang, C.; Zhao, W.; He, Y.; Wipf, D.; Yan, J. DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion. In Proceedings of the The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
1–5 May 2023.

17. Dhariwal, P.; Nichol, A.Q. Diffusion Models Beat GANs on Image Synthesis. In Proceedings of the Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, Virtual,
6–14 December 2021; Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W., Eds.; pp. 8780–8794.

18. Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image Super-Resolution Via Iterative Refinement. IEEE Trans.
Pattern Anal. Mach. Intell. 2022, 45, 4713–4726. [CrossRef] [PubMed]

19. Tang, Y. Hybrid Improved Models Combined SR3 Module for Animal Recognition in Electric Car’s Actual Vision. In Proceedings
of the 2022 International Conference on Big Data, Information and Computer Network (BDICN), Sanya, China, 20–22 January
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 758–761.

20. Saharia, C.; Chan, W.; Saxena, S.; Li, L.; Whang, J.; Denton, E.L.; Ghasemipour, S.K.S.; Lopes, R.G.; Ayan, B.K.; Salimans, T.; et al.
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. In Proceedings of the NeurIPS, New Orleans,
LA, USA, 28 November 2022.

21. Molad, E.; Horwitz, E.; Valevski, D.; Rav-Acha, A.; Matias, Y.; Pritch, Y.; Leviathan, Y.; Hoshen, Y. Dreamix: Video Diffusion
Models Are General Video Editors. arXiv 2023, arXiv:2302.01329. [CrossRef]

22. Chen, L.; Du, F.; Hu, Y.; Wang, Z.; Wang, F. SwinRDM: Integrate SwinRNN with Diffusion Model towards High-Resolution and
High-Quality Weather Forecasting. Proc. AAAI Conf. Artif. Intell. 2023, 37, 322–330. [CrossRef]

23. Hu, Y.; Chen, L.; Wang, Z.; Li, H. SwinVRNN: A Data-Driven Ensemble Forecasting Model via Learned Distribution Perturbation.
J. Adv. Model Earth Syst. 2023, 15, e2022MS003211. [CrossRef]

24. Wang, Y.; Zhang, J.; Zhu, H.; Long, M.; Wang, J.; Yu, P.S. Memory in Memory: A Predictive Neural Network for Learning
Higher-Order Non-Stationarity From Spatiotemporal Dynamics. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; Computer Vision Foundation/IEEE: Piscataway, NJ,
USA, 2019; pp. 9154–9162.

25. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach
for Precipitation Nowcasting. In Proceedings of the Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, Montreal, QC, Canada, 7–12 December 2015; Cortes, C., Lawrence, N.D., Lee,
D.D., Sugiyama, M., Garnett, R., Eds.; pp. 802–810.
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