atmosphere

A

Article

Enhancing Solar Radiation Forecasting in Diverse Moroccan
Climate Zones: A Comparative Study of Machine Learning
Models with Sugeno Integral Aggregation

Abderrahmane Mendyl *

check for
updates

Citation: Mendyl, A.; Demir, V.; Omar,
N.; Orhan, O.; Weidinger, T.
Enhancing Solar Radiation
Forecasting in Diverse Moroccan
Climate Zones: A Comparative Study
of Machine Learning Models with
Sugeno Integral Aggregation.
Atmosphere 2024, 15, 103. https://
doi.org/10.3390/atmos15010103

Academic Editors: Abd Al Karim Haj
Ismail, Hannan Younis, Muhammad

Wagqas and Muhammad Ajaz

Received: 6 December 2023
Revised: 10 January 2024
Accepted: 11 January 2024
Published: 14 January 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Vahdettin Demir 27, Najiya Omar 3, Osman Orhan *

and Tamas Weidinger 1-*

Department of Meteorology, Institute of Geography and Earth Sciences, ELTE E6tvos Lorand University,
H-1117 Budapest, Hungary

Department of Civil Engineering, KTO Karatay University, 42020 Konya, Turkey;
vahdettin.demir@karatay.edu.tr

Electrical & Computer Engineering Department, Dalhousie University, Halifax, NS B3H 4R2, Canada;
najiya.omar@dal.ca

Department of Geomatics, Engineering Faculty, Mersin University, 33343 Mersin, Turkey;
osmanorhan@mersin.edu.tr

*  Correspondence: mendyl.abderrahmane@gmail.com or amendyl@student.elte.hu (A.M.);
weidi@staff.elte.hu (T.W.)

Abstract: Hourly solar radiation (SR) forecasting is a vital stage in the efficient deployment of
solar energy management systems. Single and hybrid machine learning (ML) models have been
predominantly applied for precise hourly SR predictions based on the pattern recognition of historical
heterogeneous weather data. However, the integration of ML models has not been fully investigated
in terms of overcoming irregularities in weather data that may degrade the forecasting accuracy.
This study investigated a strategy that highlights interactions that may exist between aggregated
prediction values. In the first investigation stage, a comparative analysis was conducted utilizing three
different ML models including support vector machine (SVM) regression, long short-term memory
(LSTM), and multilayer artificial neural networks (MLANN) to provide insights into their relative
strengths and weaknesses for SR forecasting. The comparison showed the proposed LSTM model had
the greatest contribution to the overall prediction of six different SR profiles from numerous sites in
Morocco. To validate the stability of the proposed LSTM, Taylor diagrams, violin plots, and Kruskal—-
Wallis (KW) tests were also utilized to determine the robustness of the model’s performance. Secondly,
the analysis found coupling the models outputs with aggregation techniques can significantly improve
the forecasting accuracy. Accordingly, a novel aggerated model that integrates the forecasting
outputs of LSTM, SVM, MLANN with Sugeno A-measure and Sugeno integral named (SLSM) was
proposed. The proposed SLSM provides spatially and temporary interactions of information that are
characterized by uncertainty, emphasizing the importance of the aggregation function in mitigating
irregularities associated with SR data and achieving an hourly time scale forecasting accuracy with
improvement of 11.7 W/m?.

Keywords: solar radiation; machine learning; satellite data; remote sensing; SLSM

1. Introduction

Solar radiation (SR), often noted because the energy emitted by the sun and reaching
the Earth’s surface, plays an important role in various natural Earth processes, as noted
by [1,2]. This type of energy finds applications in fields like hydrology, climate science,
irrigation planning, and also the development of crop growth models, as demonstrated by
the works of [3-6]. Moreover, radiation stands as a sustainable energy source, presenting a
viable alternative to fossil fuels, as highlighted by [7-10].

Nonetheless, obtaining direct measurements of (SR) remains a challenge on a world
scale, as acknowledged by [11-13]. Consequently, to handle this limitation, scientists have
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endeavored to predict radiation using various modeling approaches. Among these models,
we will categorize them into three main types:

Empirical Relationships: These models are supported established empirical equations
and relationships. Examples include the works of [14-19]. Artificial Intelligence (ANN)-
Based Models: These models utilize ANN and machine learning (ML) techniques to
estimate radiation. Examples include the research of [20-24]. Satellite-Based Models: These
models depend upon satellite data and remote sensing technology to derive radiation
estimates. They include the works of [25-29]. These diverse approaches offer various
methods for estimating radiation, catering to different data availability, and modeling
preferences.

Each of the models mentioned above has its own strengths and weaknesses. Therefore,
when selecting a model for a study associated with radiation, several key factors acquire
play, as noted by [2]. These factors include the desired level of accuracy, the desired
spatial distribution of information, and therefore the availability of meteorological data.
For instance, when considering satellite-based models, like the one discussed by [26], the
continual data they supply, both in terms of spatial coverage and temporal resolution,
can give researchers a highly accurate and spatially distributed view of radiation across
an outsized geographical region at any given point in time. This could be particularly
valuable in studies where comprehensive coverage and up-to-date information are essential.
There is a big body of research on the ML approach for radiation forecasting. Notably,
a considerable portion of those studies emerged after 2018. These recent investigations
demonstrate a growing interest in several key areas:

Climate Change: Many of those studies have a pronounced target global climate
change. This reflects the broader recognition of the importance of accurate radiation
forecasting in understanding and mitigating the results of global climate change.

Deep Learning (DL): Researchers are increasingly exploring the potential of DL tech-
niques for SR forecasting. Their architectures have shown promise in capturing complex
patterns in radiation data.

New Machine Learning Models: Beyond traditional ML algorithms, like support
vector machine (SVM) and extreme learning machine (ELM), newer and more advanced ML
models are gaining attention. These models may offer improved accuracy and performance
in SR forecasting.

Renewable Energy Development: The connection between radiation forecasting and
also the development of renewable energy generation may be a significant area of inter-
est. Accurate predictions of radiation are crucial for optimizing the efficiency of solar
energy systems.

Several researchers have delved into modeling and forecasting radiation using various
mathematical equations and ML approaches. Kumar et al. (2015) conducted a study com-
paring the performance of regression models with ANN models for SR prediction [30]. This
research likely aimed to assess the effectiveness of ML techniques during this context [31].
This team employed a wavelet transform approach together with various ML techniques, in-
cluding ANN, ELM, and radjial basis function (RBF) networks, yet as their hybrid variations.
This means an investigation into the potential benefits of mixing wavelet analysis with
ML for SR modeling. Sahin (2013) involved a comparison between ANN-based methods
and statistical methodologies to estimate radiation from satellite images [32]. This research
could explore the benefits of using ANN in remote sensing applications. Polo et al. (2014)
investigated the sensitivity of satellite-based approaches to calculate radiation concerning
different aerosol input parameters and model choices [33]. This research likely aimed
to grasp how varying factors affect the accuracy of satellite-derived radiation estimates.
These studies collectively represent the varied approaches and methods employed by
researchers to reinforce our understanding of radiation and its prediction using both tradi-
tional mathematical techniques and modern machine learning methods. In an investigation
conducted by [34], various models for solar radiation (SR) estimation and forecasting were
explored. Their research revealed that, among the models they assessed, the one modified
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by Gueymard from the Collares-Pereira and Rabl model demonstrated the very best level
of accuracy in forecasting average hourly radiation. This means that, for his or her study,
this specific model adaptation proved to be the foremost precise for predicting radiation
under these specific circumstances. Belmahdi et al. (2023) provide five approaches for
forecasting daily global solar radiation (GSR) in two Moroccan cities [35], Tetouan and
Tangier; autoregressive integrated moving average (ARI-MA), autoregressive moving aver-
age (ARMA), feed forward back propagation neural networks (FFBP), hybrid ARIMA-FFBP,
and hybrid ARMA-FFBP were selected to forecast the daily global radiation with different
combinations of meteorological parameters, and the hybrid models improved accuracy
and reduced errors in forecasting. The hybrid k-means and nonlinear autoregressive neural
network models provide better hourly global solar radiation forecasting results than either
method alone [36]. Machine learning techniques slightly improve hourly solar forecasting
performance compared to linear autoregressive and scaled persistence models, with more
pronounced improvements in unstable sky conditions [37].

Based on the literature available in the Web of Sciences database, more than 1000 re-
search papers in the field of SR prediction with ML approaches were identified. These
studies were analyzed bibliometrically using VOSviewer software (version1.6.20) [38,39].
Figure 1 shows the connection between keywords.
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Figure 1. Keywords of SR prediction studies with machine learning approach.

Figure 1 shows the intense use of ML approaches in SR predictions, solar energy, solar
irradiation, renewable energy studies, and in recent years, especially that DL and remote
sensing are among the topics researched by the authors.

SR is extensively researched worldwide, especially in sun-rich areas just like the
Mediterranean and also the Mideast [40,41]. Unfortunately, many locations lack access
to reliable observed radiation data because of the high costs related to acquiring, in-
stalling, and maintaining measurement devices. Challenges associated with calibrating
radiation detection equipment further contribute to the present data gap [31]. Conse-
quently, researchers commonly resort to numerous methods for estimating SR, including
location-based, temperature-based, remote sensing-based, day and month-number-based,
cloudiness-based, sunshine-based models, and hybrid models [42-44]. However, the com-
plex relationships between independent and dependent variables often limit the accuracy
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of those models, especially in humid regions where inclemency significantly affects radia-
tion [42].

The aim of this study is to investigate SR forecasting using long short-term memory,
support vector machine regression, and multilayer artificial neural networks approaches.
For SR estimation and to propose a novel aggerated model that integrates the forecasting
outputs of LSTM, SVM, and MLANN with Sugeno A-measure and Sugeno integral named
(SLSM), 10 hydro-meteorological parameters and various reflectance values obtained by
remote sensing techniques from 6 stations located in Morocco (Tantan, Fes, Agadir, Mar-
rakech, Ouarzazate, and Tangier) were used as the main contributions to the present
research, which are:

(1) Combining information from remote sensing parameters and hydro-meteorological
data to improve hourly SR forecast accuracy using input data from hourly timesteps.

(2) Capturing a wider variety of environmental variables and incorporating spatial com-
ponents into the study by using the reflectance data from remote sensing.

(38) Long short-term memory (LSTM), support vector machine (SVM) regression, and mul-
tilayer artificial neural networks (MLANN) are being investigated as ML approaches
to perform a comprehensive comparison of SR prediction models and provide valu-
able insights into their relative strengths and weaknesses.

(4) Using various weather dataset profiles, and comparing different ML techniques to
assess the stability of the offered approaches.

(5) Evaluating the efficacy of the proposed methodologies under various geographi-
cal and meteorological variables to validate the generalizability and reliability of
SR prediction.

(6) Conducting statistical analysis using the Kruskal-Wallis test to see whether the fore-
casts and observations data points have the same underlying distributions.

(7) Improving the forecasting accuracy by applying fuzzy measure of that combines the
accurate prediction information of the three models.

2. Materials and Methods
2.1. Data Profiles

The sites are located in Morocco, North Africa, namely: Tantan, Fes, Agadir, Marrakech,
Ouarzazate, and Tangier, as shown in Figure 2 and Table 1. The country encompasses a
population of 37 million people and an expanse of 710,850 square kilometers. Northern
and southern Morocco have very different climates. Both rainfall and temperature are
greatly impacted by the Atlantic, Mediterranean Sea, and desert. The period from October
to May sees the most rainfall. Southern and south-eastern dry and semi-arid regions have
high temperatures. Average monthly temperatures range from 9.4 °C (December, January)
to 26 °C (July, August). The wettest months are from October to April, and therefore the
driest are from June to August [17]. Recently, the National Centre of Meteorology and the
Moroccan Agency for Energy Efficiency (AMEE) worked together to form a replacement
climatic zoning map for Morocco [45,46]. All the new climate zones in Morocco share the
similar sun irradiation, height, and other key climatic characteristics. A key city is the
indicator for every zone (Figure 2).

As can be seen, Table 1 distributes these sites from Morocco’s south to its north. Each
site corresponds to a distinct climate zone, with variables such as latitude, longitude,
altitude, and climate type.
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Figure 2. Sites and SR zones modified from [17].

Table 1. A table showing study area: Latitude, longitude, altitude, climate region, or climate type.

Station WMO  Latitude Longitude Altitude Koppen
Code (°N) °W) (m) Climate Type
Marrakech 60230 31617  —8.033 466~ Midatitude steppe and desert
climate (Bsh)
Fes 60141 33.933 —4.983 579 Mediterranean climate (Csa)
Agadir 60252 30383  —9.567 23 Mid-latitude steppe and desert
climate (Bsh)
Tangier 60100 35.733 —5.803 21 Mediterranean climate (Csa)
Ouarzazate ~ 60262  30.933 —6.910 1140 ~ Tropical and subtropical desert
climate (Bwh)
Tantan 60285 28.437 11103 45 Tropical and subtropical desert

climate (Bwh)

2.2. Data Collection

The data employed in this study are sourced from SOLCAST, a poster enterprise [47-49]
renowned for its solar irradiance estimation methods, leverages satellite technology to
determine solar irradiance by effectively discerning cloud coverage. The combination of
satellite data, clear sky models, and reanalysis data allows for a more accurate estimation of
solar energy reaching the Earth’s surface, considering the impact of clouds [50]. Temporal
granularity varies, encompassing basic hourly averages, as well as more finely grained
options like 5-min, 10-min, 15-min, and 30-min intervals. For those requiring even more
precise data, 1-min intervals may be obtained upon request. These datasets have been
accessible since January 2007, with a seven-day delay, and may be accessed through the
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SOLCAST website. SOLCAST extends its data coverage globally, except for oceanic and
polar regions. The spatial resolution of their data stands at a powerful 1 to 2 km [47-49].
The National Aeronautics and Space Administration (NASA) has been providing
data at 0.5° spatial resolution worldwide since 1981 to support the renewable energy and
agriculture sectors, and recently launched the Projection of Worldwide Energy Resources
(POWER) project to produce long-term climate variables [51]. The user-friendly data access
interface is the main focus of NASA POWER, and every dataset is available at four temporal
levels: hourly, daily, monthly, and climatologically [52] Numerous studies are conducted to
validate the performance of NASA POWER data in various locations around the world; i.e.,
Jordan [53], Iran [54], Africa [55], Brazil [56], Iraq [57], and Malaysia [58]. In northern Penin-
sular Malaysia, Bandira et al. (2022) reported that NASA POWER performed statistically
satisfactorily for radiation and maximum and minimum temperatures, but less successfully
for precipitation, wind speed, and mixing ratio [59]. Additionally, Rodrigues and Braga
(2021) demonstrated that NASA POWER data are in good agreement with observed data,
with a coefficient of determination (RZ) more than 0.82 for radiation data [60]. However,
only a few studies have evaluated NASA POWER within the tropics like in Morocco.

2.3. Morocco’s Solar Energy Potential

According to the Moroccan Agency for Solar Energy (MASEN), Morocco is known
for its abundant solar energy, with an average of 5.3 kilowatt-hours per square meter
of solar radiation annually. Sunshine durations vary across the country, ranging from
approximately 2700 h per year in the northern regions to approximately 3500 h per year
in the south [61]. Morocco has recently unveiled an ambitious plan for the development
of integrated solar projects in combination with combined cycle units (Integrated Solar
Energy Generation Project, Kingdom of Morocco. Available online at (www.one.org.ma,
accessed on 14 October 2023) [62]. This initiative is expected to result in significant benefits,
including the annual savings of 1 million tons of oil equivalent (Toe) and the reduction of
3.7 million tons of carbon dioxide (CO;) emissions. The primary objectives were to establish
2000 megawatts (MW) of solar capacity across five specific sites (Ouarzazate—500 MW,
Ain Beni Mathar—400 MW, Foum Al Ouad—500 MW, Boujdour—100 MW, and Sebkhat
Tah—500 MW) by the year 2020 [63] provides a brief overview of these sites, including their
location, grid connection, water availability, and approximate coordinates. These projects
were planned to utilize two main solar technologies, concentrated solar power (CSP) and
photovoltaic (PV).

2.4. ALLSKY_SFC_SW_DWN

A parameter called ALLSKY_SFC_SW_DWN represents the entire amount of short-
wave radiation that reaches the layer in all sky circumstances, including overcast and clear
skies [64]. To comprehend the Earth’s energy balance, temperature, and other environ-
mental processes, it measures the quantity of additional energy that enters the shortwave
spectrum and reaches the planet’s surface. This metric is used in environmental research,
climate modeling, and prediction. It is typically measured or calculated in measures such
as watts per unit of measurement (W/ m?) [65]. Because it offers vital information about the
solar energy that reaches the surface under different sky conditions, the entire shortwave
radiation received at the surface under all sky situations is incredibly essential. These
data are essential for a fair number of applications, including environmental management,
renewable energy planning, forecasting, and climate modeling [66,67].

3. Forecasting Models

The requirements of the specific application, the level of precision needed, and the
resources available all influence the approach and instrument selection. To obtain extensive
and precise data on shortwave radiation, a variety of techniques, such as satellite data
collection and ground-based observations, are frequently utilized.
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3.1. Long Short-Term Memory (LSTM)

Artificial neural networks that can learn from sequential input and forecast the future
using historical data are known as recurrent neural networks (RNNs) [68]. However, when
trained with back-propagation, RNNs suffer from vanishing or exploding gradients and
forget long-term dependencies [69]. To solve this issue, the LSTM model—a variation on
the RNN—was presented. Its hidden layers contain unique units known as memory cells,
which have the ability to store and retrieve data for extended periods of time [70,71]. The
architecture of the LSTM is displayed in Figure 3 [72]. The LSTM equations are as follows:

iy = o(Wix; + Uiht—1 + b;) 1)
fr= U(fot + Ught—1 + bf) 2)
or = o(Woxt + Uoht—1 + bo) (©)
(NZt = tanh(Wexy + Uchy 1 + be) (4)
CG=fivC1+ip1® Et )
he = oy ® tanh(Cy_q) (6)

>

&)

Figure 3. The LSTM structure.

Three gates serve as the foundation for the LSTM equations: the input gate (i¢), the
forget gate (f;), and the output gate (0;). The amount of information that enters, exits, and
stays inside the memory cell is managed by these gates. The weights (W;, Wy, W,) and
biases (b;, by, b,) that link the gates to the input (x;) and the preceding hidden state (h;1)
are their parameters. Both the current state (C;) and the prior state (C;_1) of the memory
cell exist. The current state and the output gate determine the cell’s output (/).

3.2. Support Vector Machine (SVM)

Developed by Vapnik, the SVM is a class of machine learning techniques that can
handle both classification and regression tasks [73]. Regression using SVMs is referred to
in the literature as support vector regression (SVR) [74,75]. Finding a function that can
roughly represent the relationship between the input x and the output y(x) is the aim of
SVR. Figure 4 shows the SVR architecture.
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Loss
Nonlinear SVM

[0 Support vector ]

Weighted points close to e-tube
tend to be support vectors points

Sflx)=w.D(x)+b

Figure 4. Setting up the configuration for support vector regression.

In this study, the input vectors (x) are the historical SR values, while the output values
(y) are the forecast values. The input-output data set for SVR is represented by (x,y), where
x is the input vector and y is the output value. The function that SVR tries to estimate has
the following form:

y(x) =w-¢(x) +b )

where ¢ is a nonlinear function, w is the weight vector and b is the deviation.

3.3. Multilayer Artificial Neural Networks (MLANN)

In hydraulic and hydrological engineering, artificial neural network modeling is a
comparatively well-known and often utilized technique. It is essentially a “black box”
technique that uses a particular collection of nonlinear basis functions to connect input
and output data. Because artificial neural networks (ANNSs) are nonlinear statistical tech-
niques, they can be applied to solve issues that are not amenable to standard statistical and
mathematical techniques [76-78]. Figure 5 displays the structure of the MLANN model.
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Figure 5. The MLANN structure.

3.4. Aggregation Model Based on Sugeno A-Measure and Sugeno Integral (SLSM)

Combining multiple forecasting models through aggregation can mitigate the vari-
ability in forecasting errors and improve the overall forecasting accuracy. In this context,
Sugeno integral is implemented to amalgamate the different sources of information while
reducing the level of uncertainty in the decision-making stage. The proposed Sugeno
integral is applied to fuse the outputs of individual modes within a ML model designed for
irradiance prediction. To achieve this, the Sugeno integral will be used as an aggregation
operator to combine the output of each model as shown in Figure 6. This will enable the
interaction between the forecasting outputs aggregated via a fuzzy measure. This aggrega-
tion function can identify the highest level of agreement within the different forecasting
outcomes, making the most of the strengths of each individual model.

Base Models

Weather Data . .
................. Single Forecasting
Stage Ensemble Learning
Stage
FT. =777 =====" :

Final Forecasting

F2 Aggregation

F

Figure 6. The SLSM structure.

Sugeno A-Measure

In this work, Sugeno A-measure applies to measure the worth of each model accuracy.
X represents the proposed individual predictive model, so let X = {x1,...,x,} where
n = 3. The fuzzy measure is represented by the function p : 2* — [0,1] for each x, and
the possible combination of subsets of the universe of discourse X. The properties of the
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aforementioned fuzzy measure are stated in as following [79]: u(¢) = 0, and p(X) =1
represents the measures of an empty set and a combination of the all sets A, B € 2Xif A C
B C X, then u(A) < u(B) represents monotonicity property.

if A,BC Xwith ANB = ¢, then u(AUB) = u(A) + u(B) + Au(A)u(B) (8)

represents the possible subsets and the combined subsets.

n

Given u(X) =1, then A +1 = J(1 + Au({x;}) )
i=1

represents the values of fuzzy measures where A > —1.

The process of obtaining the fuzzy measure starts with calculating A Equestion (9) by
arbitrarily selecting fuzzy densities that associated with each subset/model. This can be
followed by calculating the combined subsets fuzzy measures Equation (8).

The Sugeno integral covers the ideas of weighted minimum and maximum, allowing
for the evaluation of the importance of each model via the utilization of fuzzy measures.
The fuzzy integral involves determining the highest level of similarity between the target
and the predicted values.

f(x) is a function in the universe of discourse X, and the Sugeno integral (S) of f:X —
[0, 1] with respect to the fuzzy measure ji(X) is represented by:

| f = maxmin (x5, 1(Ag) (10)

where Ay;) is reorder the model accuracy. The information will be permuted where the high
model accuracy has the most significant influence on the final model, gradually moving to
less impact with the lowest model accuracy.

4. Metrics for Performance Evaluation of Models

This section explains the statistical metrics that were used to evaluate the models’
performance for SR prediction. The coefficient of determination (R?), root mean square
error (RMSE), and mean absolute error (MAE) are the metrics [80]. These measures show
how well the models fit the observed data, as well as how accurate and reliable their
forecasts are. High R? values near to 1, as well as low RMSE and MAE values, indicate
high model performance. The metrics’ formulas are as follows:

1 n 2
RMSE = EZ (SRpredicted - SRmeasured) (11)
i=1
1 n
MAE = EZ SRpredicted - SRmeusured (12)

i=1
n 2 ?
) i=1 (SRi measured M) '(SRz‘ predicted ~ SRpredicted )
R? = (13)
2 2
Z?:l (SRi measured — SR[ measured) ' Z?:l <5Ri predicted — SRpredicted )

The following symbols are used in the formulas for the statistical metrics: SRensured 15
the observed SR values from the data; SRy egicreq is the predicted SR values from the models;
SR, easured 1S the mean of the observed SR values; 7 is the number of data points. To compare
the models, this study also used a Taylor diagram and Violin plot [81]. These plots show
the correlation, bias, and standard deviation of the models relative to the observations.
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5. Modeling Development Procedure
5.1. Model Implementation

The proposed methodology follows these steps: (i) data collection; analysis and prepro-
cessing of data, (ii) training network of neural networks. The latter involves the selection
of architecture, training functions, training algorithms, and network hyperparameters,
(iii) testing the trained network; and using the trained neural network for simulation and
prediction [82]. In this study, three different models, LSTM, MLANN, and SVM, were
used for SR forecasting. The proposed forecasting models were developed using MAT-
LAB (R2021a), Statistics and Machine Learning Toolbox, and Deep Learning Toolbox. The
models were run using a laptop computer with a 12th Generation Intel (R) Core (TM),
i7-12700H, 2.30 GHz, 64 GB RAM, and a 6 GB graphics card. The data were collected
from various meteorological parameters, including air temperature, cloud opacity, direct
horizontal irradiance (DHI), direct normal irradiance (DNI), global horizontal irradiance
(GHI), precipitable water, relative humidity, surface pressure, wind direction at 10 m, wind
speed at 10 m, and daily albedo. The data for these parameters were provided hourly be-
tween 2013 and 2020 from NASA POWER and SOLCAST [49,52]. The dataset was divided
into a training set comprising 80% of the data (57,253 data) and a test set with 20% of the
data (14,313 data). Statistical information about the data is given in Table 2. The ultimate
goal is to predict a critical parameter, ALLSKY_SFC_SW_DWN (all-sky surface shortwave
downward irradiance), which plays a crucial role in solar energy system performance
and planning.

Table 2. Statistical information of data, W/m?.

Stations Data Min Mean Max Std CS Ck
Acadir Training 0.00 2412 1038.1 314.7 095  —057
& Testing 0.00 229.9 1040.9 305.7 099  —0.49
. Training 0.00 225.6 1044.4 302.9 107  —025
©s Testing 0.00 211.8 1046.4 290.2 112 —011
Marraked, | THAINING 0.00 2425 1053.2 318.8 098  —0.48
arrakec Testing 0.00 228.6 1042.6 306.9 1.04  —035
o . Training 0.00 2524 1065.2 328.9 094  —0.62
uarzazate  Testing 0.00 2329 1059.0 311.4 101 —0.44
Taned Training 0.00 2105 10185 285.2 112 —0.06
angier .
Testing 0.00 199.29 1012.1 2755 117 0.09
Tant Training 0.00 205.3 1025.1 276.8 107 —0.25
antan Testing 0.00 194.7 1003.7 267.0 111 —0.12

5.2. Model Architecture

SR is estimated using input data from hourly timesteps and the prediction results
are compared with the actual hourly data. The hyper parameters of the LSTM model
are; ‘GradientThreshold”: 1, ‘InitialLearnRate’: 0.05, ‘Learn Rate Schedule”: “piecewise’,
‘Learn Rate Drop Period”: 125 and ‘Learn Rate Drop Factor”: 0.2. The proposed LSTM is
implemented by MATLAB-written scripts, and trained using adaptive moment estimation
(Adam) with 300 epochs and a maximum of 10 hidden layers are designed. The proposed
SVM is designed by using Lagrangian multipliers and polynomial kernel function to find
the optimal decision boundary. The polynomial Kernel function transforms the input data
into a higher-dimensional spaces a way to enhance the forecasting decision capabilities
and handle the high variability of the irradiance. The proposed MLANN is designed
by adaptive learning rates to enhance the learning task during the training phase. Log-
sigmoid transfer function and the Levenberg-Marquardt training algorithm were used
in training the model. This is because this technique is more powerful than traditional
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gradient descent techniques [78]. Additionally, the data were normalized between 0.2 and
0.8, inspired by [83]. Single ML model flowchart diagram of the study is shown in Figure 7.
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Figure 7. Study flowchart diagram.

6. Results and Discussion

The performance of the three proposed models was evaluated by statistical indictors
which are listed in this section. The RMSE and MAE values along with R? are utilized
for evaluating the designed models that belong to irradiance and meteorological data
for different locations in Morocco. The results indicate that the LSTM model has good
forecasting performance where errors measuring between predicted and actual values are
generally small as shown in Table 3. For instance, LSTM model achieves RMSE values
ranges between 25.38 W/m? and 41.09 W/m? for the data of the six sites. However,
the proposed SVM and MLANN yield higher forecasting error with RMSE value ranges
between 57.04 W/m? to 70.10 W/m?2, and 75.85 W/m? to 80.64 W/m?, respectively, with
the data of the same sites. Further, the mean values of LSTM model for the six sites were
calculated and compared to those in the other two forecasting models. The comparison
shows the LSTM’s superiority in predicting hourly irradiances. Comparing LSTM model
to conventional ANN (i.e., MLANN) and ML techniques (i.e., SVM) in the solar irradiance
forecasting showed the capability of LSTM model to learn from nonlinearity patterns in high
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variability irradiance data by capturing a long range of temporal sequence dependencies.
Further, as shown in Table 3 and the scatter plots in Figures 8-10, which are the results
under all training and testing phases, the proposed LSTM model outperformed the SVM
and MLANN, performing better generalization capability and less overfitting behavior, and
accurately predicting irradiance data showing strong correlations between the predicted
and actual data points.

Table 3. Model results of the training and testing phase W/ m?2.

Models Stations Training Testing
RMSE MAE R? RMSE  MAE R?
Agadir 25.39 13.97 0.99 39.12 23.48 0.98
Fes 36.47 19.87 0.98 41.32 21.19 0.98
Marrakech 29.19 17.33 0.99 30.45 16.30 0.99
LSTM Ouarzazate 28.95 15.59 0.99 37.75 20.15 0.98
Tangier 30.25 16.88 0.98 49.96 25.18 0.97
Tantan 41.09 22.00 0.97 47.72 25.63 0.96
Mean 31.89 17.61 0.98 41.05 21.99 0.98
Agadir 57.04 38.58 0.96 105.01 76.27 0.89
Fes 41.92 24.06 0.98 49.38 27.12 0.97
Marrakech 56.23 38.16 0.96 81.82 55.87 0.94
SVM Ouarzazate 33.20 20.04 0.98 48.77 29.36 0.97
Tangier 32.36 19.24 0.98 53.53 31.45 0.96
Tantan 70.10 44.35 0.93 94.20 70.93 0.88
Mean 48.47 30.74 0.97 72.12 48.50 0.93
Agadir 75.85 47.23 0.94 81.64 50.94 0.92
Fes 49.56 27.20 0.97 62.99 36.86 0.95
Marrakech 81.12 55.33 0.93 89.92 61.25 0.92
MLANN Ouarzazate 35.85 16.42 0.98 40.25 19.93 0.98
Tangier 50.86 32.43 0.96 75.55 52.39 0.93
Tantan 80.64 49.09 0.91 101.21 62.26 0.85
Mean 62.31 37.95 0.95 75.26 47.27 0.93

The findings regarding the performance evaluation of the models are included in
Table 3 for all stations. The models used in the study are an example of the advancement of
artificial intelligence techniques. The first ANN models were replaced by machine learning
methods such as SVM, followed by deep learning methods such as LSTM architectures.
When the results obtained are examined; considering the average values, the highest R?
values are in the LSTM model, followed by SVM and ANN. Similarly, RMSE and MAE
values are compatible with this ranking. The scatter plots of the models are shown in
Figures 8-10.

As a way of validation, advanced statistical analyses were considered to the proposed
LSTM by applying the violin plot, Taylor diagram, and Kruskal-Wallis (KW) test for
predictive accuracy. As can be seen in the violin plot in Figure 11, the correspondence
distribution of predicted data with actual data were examined. The comparison of predicted
and actual data distributions showed that effectiveness of the proposed LSTM to mimic the
peaks, valleys, and tails of the density curve of the actual data. The proposed LSTM model
is also validated by the Taylor diagram in Figure 11 that represented the correlation between
the predicted and actual data. Figure 11 showed a way of graphically summarizing how
closely the patterns of the proposed LSTM predicted data (the blue cross sign) match the
actual data (the red circle sign) with correlation confections of 98% to 99% for the six sites.
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Figure 10. Scatter plots of the MLANN model.

Violin diagrams are essentially based on the formal description of statistical quantities.
In the study, normalization was made to see the change between shapes. From this
perspective, the best fit to the observed data is observed in the LSTM model at all stations,
while the average and median values are larger than the data observed in the SVM model.
According to the correlation and RMSD relationship between the observation and models,
the results were also examined using the Taylor diagram (Figure 12).
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Figure 11. Violin graphs; for Agadir (a), Fes (b), Marrakech (c), Ouarzazate (d), Tangier (e), and

Tantan (f).

In Figure 12, Taylor diagrams are positioned at a point on the standard deviation
axes according to correlation and RMSD values, and comparisons are made by taking
into account the proximity of this point to the observed data. The graphs show that the
models give very close results at the Fes, Ouarzazate, and Tangier stations, but LSTM
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is more successful than SVM and MLANN in terms of closeness to the data observed at
other stations.
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Figure 12. Taylor diagrams; for Agadir (a), Fes (b), Marrakech (c), Ouarzazate (d), Tangier (e), and
Tantan (f).

To further validate the model, the proposed LSTM was examined by statistical indica-
tors to receive a proper evaluation of the model’s performance. The Kruskal-Wallis (KW)
test is a nonparametric test that was employed to compare the distributions of the predicted
and actual data, the work hypothesis was formulated as follows [84].

Hy: the two distributions are different; Hy: the two distributions are identical.
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The statistic value is calculated as follows:
12 E R
H=_——"_"yY Lt _-3(N+1 14
N(N + 1) i—1 n; ( ) ( )

where C: the sample number, n;: the observation number in ith sample, R;: the ranks sum
in ith sample, and N: observations number.

As shown in Table 4, The KW test was performed at 95% confidence interval where
the p-values indicate that Hy is significantly rejected, and distribution of the predicted and
actual models is identical. Likewise, the p-values of the KW test indicate that we reject Hy
and accept the alternative hypothesis for the six sites while showing the generalization
capability of the proposed LSTM model.

Table 4. KW test results for LSTM model.

Site Sample Sizes% H-Statistic p-Value
20 2.86 0.03
Agadir 50 4.01 0.02
70 7.29 0.01
20 3.94 0.04
Fes 50 5.20 0.01
70 8.63 0.01
20 3.42 0.04
Marrakech 50 4.79 0.02
70 8.03 0.01
20 3.02 0.03
OQuarzazate 50 4.63 0.02
70 7.80 0.01
20 3.70 0.04
Tangier 50 4.97 0.02
70 8.20 0.01
20 429 0.04
Tantan 50 5.69 0.03
70 9.05 0.02

The implementation of the proposed aggregation-based model (SLSM) developed
with the fuzzy Sugeno integral-built MATLAB function. The obtained RMSE measures
of the proposed SLSM are shown in Table 5 for the six different solar irradiance profiles.
The RMSE values range between 16.09 W/m? and 22.67 W/m? for forecasting the highly
fluctuating irradiance. Comparing the performance of the proposed SLSM with the pro-
posed individual models for all sites, the proposed SLSM performed the best of all the
models (e.g., LSTM, SVM, MLANN), achieving a high accuracy with an average RMSE of
20.16 W/m?.

To visualize the performance of the four proposed prediction models, Figure 13
shows the comparison of the predicted SR obtained by the proposed models with the real
measurements of SR for the six sites for January 2014. The results show that the SLSM
performance is significantly stable and superior for the different SR profiles. Most of the
night-time irradiance measurements were zero or ideally close to zero; however, errors may
occur, which are associated with the noise or failure in the sensor readings. Dealing with
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errors caused by noise or sensor failures in night-time irradiance measurements requires
careful analysis and appropriate techniques.

Table 5. The RMSE results for the SLSM model W/m?.

Site SLSM
Agadir 16.09
Fes 22.01
Marrakech 19.82
OQOuarzazate 19.11
Tangier 21.29
Tantan 22.67
Mean 20.16
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Figure 13. The performance of the four proposed prediction models for the six sites, January 2014.
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Additionally, the proposed model was further tested with data covering different
months. The predicted hourly SR for the month of April 2016 is shown in Figure 14. The
months of January and April can convey data and climate information for different seasons
and cities in Morocco. The results showed that the proposed SLSM is superior compared
to the other models. It also displayed good generalization and satiability capabilities
when interaction with different data. This indicates that, in addition to aggerating data,
SLSM also had a comprehension capture of the patterning within different data and lower
prediction errors when faced with data from a variety of seasons. The proposed SLSM
demonstrated an effective strategy for reliable forecasting by capturing the high variability
and seasonality patterns in the irradiance dataset. The SLSM model’s superior performance
is likely due to the idea of combining multiple forecasting models and aggregating the
interaction between the predicted values of these individual models. This is also clearly
shown when the model was validated by data across various seasons and exhibited lower
prediction errors.
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Figure 14. The performance of the four proposed prediction models for the six sites, April 2016.
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7. Conclusions

In this study, the SR estimation was carried out using LSTM, SVM, and MLANN
approaches. For SR estimation, 10 hydro-meteorological parameters and various reflectance
values obtained by remote sensing techniques from six stations in Morocco (Tantan, Fes,
Agadir, Marrakesh, Ouarzazate, and Tangier) were used, and the main findings of the
current research are as follows:

e  The results were evaluated using the Taylor diagrams, violin plots, and the error
criteria of RMSE, MAE, and R?, and it was determined that the method that best
predicted the observed values was LSTM (mean, RMSE: 41.05, MAE: 21.99, R?: 0.98).
SVM and ANN come after LSTM. While the advantage of the LSTM model is that
it makes predictions with less error due to its integration with the learn-and-forget
structure and optimization techniques. It is also more complex than other methods
due to its structure consisting of hyper parameters.

e  The robustness of the model’s performance was also assessed using Kruskal-Wallis
(KW) tests, which were used to confirm the stability of the suggested LSTM. The KW
test confirmed at 95% confidence level that the distribution of the predicted and actual
models were the same.

e  The investigation discovered that predicting accuracy can be greatly increased by
connecting the model outputs with aggregation techniques. The hybrid model was
used by integrating the prediction outputs of LSTM, SVM, and MLANN with the
Sugeno A-measure and the Sugeno integral named (SLSM). SLSM improved prediction
accuracy with an improvement of 11.7 w/m? in reducing irregularities associated with
SR data.

e  Finally, these results proved that the LSTM model is applicable, valid, and an al-
ternative for SR prediction in Morocco, which has tropical and subtropical desert
climate zones.

The six main limitations of this study can be listed as follows: (i) use of data obtained
for six stations to represent Morocco, (ii) use of daily data from 2013 to 2020, (iii) use of
correlation analysis in input selection, (iv) use of three different machine learning methods,
(v) use of visual comparison criteria (Violin, Taylor) as well as performance metrics, and
(vi) that KW testing was used to compare the distributions of predicted and actual data.
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