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Abstract: Providing thermal comfort in the courtyards of academic buildings is important and
increasing tree canopy coverage (TCC) presents a convenient and feasible method to achieve this;
however, few studies have comprehensively evaluated the cooling effects of TCC, considering both
outdoor thermal comfort and heat dynamics. In this study, we selected two typical academic buildings
at Guangzhou University, each with courtyards having different height-to-width ratios (H/W ratios).
We employed both field measurements and ENVI-met-based numerical models to simulate scenarios
with varying TCCs. The results demonstrated that the cooling effects caused by arranging trees
increase with the TCC values. During the hottest hours of the day, trees arranged in courtyards
with high H/W ratios exhibited a superior cooling effect compared to those in courtyards with low
H/W ratios, with a difference of up to 0.6 ◦C in the PET (physiological equivalent temperature);
however, over the entire daytime, the total sensible heat reduction achieved by trees in courtyards
with low H/W ratios surpassed that of courtyards with high H/W ratios, with a difference of up
to 0.25 × 104 J/m2. Our findings underscore the crucial role of TCC in enhancing cooling in the
courtyard of academic buildings, with important implications for university planning and design.

Keywords: tree canopy coverage; outdoor thermal comfort; sensible heat dynamic; courtyard;
hot-humid regions

1. Introduction

In recent years, rapid urbanization and the impacts of climate change have intensified
the urban heat island (UHI) effect in dense cities. Urban heat islands refer to urban areas
with higher temperatures than the surrounding rural areas, leading to more frequent occur-
rences of extreme weather conditions [1,2]. Exposure to extreme heat environments can pose
severe threats to human health and well-being [3–5]. Consequently, high temperatures en-
courage people to spend more time indoors, relying on artificial air conditioning to achieve
comfort [6,7]; however, this growing trend contributes to a sedentary lifestyle, negatively
impacting human health and significantly increasing building energy consumption [8–10].
Therefore, addressing this issue requires prioritizing the design for urban climate resilience,
a crucial aspect to reduce carbon emissions and enhance urban livability [11,12].

Among the various mitigation strategies aimed at achieving resilient urban design,
the most extensively studied perspectives in the literature include the utilization of urban
geometry [13,14], shading [15,16], greenery [17,18], and reflective technologies [19,20].
Another highly effective strategy for mitigating the UHI effect is the implementation of
courtyards as “Urban Cool Islands” [21]. Courtyards have been widely adopted in different
climatic regions, particularly in hot and arid climates and temperate climate zones, as
well as in cold regions and hot-humid regions. The advantages of courtyards for such
diverse climates are noteworthy; they create more shading in hot climates, enhance natural
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ventilation in humid climates, and provide protection against cold winds in temperate and
cold climates [22].

Buildings and trees play crucial roles in determining the human thermal comfort
of courtyards, as they collectively influence the redistribution of the occupant thermal
sensations in outdoor spaces. Buildings provide shade, effectively preventing the surface
from heating up due to solar radiation [23]. Additionally, the arrangement and form of
buildings impact the air flow, facilitating heat dispersion [24]. Many design measures
have been proposed to enhance the outdoor thermal comfort of courtyards. Eduardo
Diz-Mellado et al. discovered that when the aspect ratio (AR) of a courtyard exceeds three,
the comfort level is achieved for 90–100% of the day’s hours, and when the AR is between
two and three, it reaches approximately 70–80%. Moreover, the cooling requirements of
courtyards vary significantly based on their AR, with differences of up to 18% [25,26].
Similarly, Nazanin Nasrollahi et al. found that courtyards with high height-to-width (H/W)
ratios and a southward orientation offered better shading during summer while permitting
solar radiation in and regulating the wind speed during winter [27]. This finding aligns
with the research of Rodriguez-Algeciras, Jose, et al., which suggests that orienting a
courtyard’s long axis away from the east to west direction results in a lower level of Tmrt
(mean radiant temperature) in the summer [28].

Furthermore, trees not only regulate the outdoor microclimate through shading, by
absorbing and reflecting solar radiation, but they also regulate the environmental condi-
tions through transpiration. Previous studies have investigated and generally confirmed
the cooling effects of trees on the city to the neighborhood scales. For instance, Jin et al.
conducted a study demonstrating that increasing the number of trees in an open space by
threefold of the advisory guidelines led to a significant reduction of the average air tem-
perature by 0.9 ◦C, the mean radiant temperature by 11.0 ◦C, the physiological equivalent
temperature by 4.5 ◦C, and the wind speed by 0.30 m/s [29]. In another study, Zhao et al.
found that at 15:00 hours, trees arranged along a street can provide a cooling effect of
1–1.5 ◦C (PET) to the human body at the pedestrian level. Although adjusting the position
of the trees may cause a slight loss in the air temperature cooling effect of 0.05 ◦C, this can
still achieve a Tmrt cooling effect of 0.1 ◦C, which is three times the temperature cooling
effect [30]. Furthermore, Zhang et al. discovered that planting trees in courtyards can
reduce the PET by 20.0 ◦C and decrease the cooling demand by approximately 2.6% [31];
however, these studies primarily focused on microclimatic parameters, including the air
temperature (Ta), relative humidity (RH), globe temperature (Tg), and wind speed (Va).

Heat fluxes of urban landscapes exhibit variation at different times and seasons, and
these energy dynamics significantly affect the thermal comfort of urban residents [32]. For
example, Li et al. found that tree evapotranspiration and enhanced hydrological processes
in different urban land use types in Singapore led to varying increases in the latent heat
flux and reductions in the sensible heat flux [33]. Another study by Heusinger, Jannik et al.
revealed that the difference in the urban excess heat reduction between green roofs and
common roofs can be as high as 3% [34]. Furthermore, the aspect ratio and building height
also exert notable effects on local energy fluxes. For instance, at noon, increasing the aspect
ratio from 0.5 to 10.0 can result in a reduction of 300.0 W/m2 in the sensible heat flux [35,36];
therefore, it is essential to adopt comprehensive methods to evaluate the cooling capacity of
thermal mitigation strategies, including tree arrangements in courtyards. The microclimate
simulation software, ENVI-met, provides the possibility to achieve this goal. ENVI-met is
a three-dimensional microclimate computational fluid dynamics (CFD) software capable
of simulating microscale interactions within built environments. It provides physical
quantities such as the Ta, RH, Va, and Tmrt [37,38]. Moreover, ENVI-met is able to simulate
the effects of detailed vegetation, making it widely used for microclimate simulation in
urban spaces, especially in hot-humid regions [39,40], which aligns well with the objectives
of this research [41,42].

Therefore, in this study, we aim to address the above-mentioned insufficiency by
utilizing the human thermal comfort index and the total sensible heat change to evaluate
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the cooling efficiency provided by TCC in academic building courtyards with different
W/L ratios. The evaluation was conducted under typical summer climate conditions in
hot-humid areas. Furthermore, based on our findings, we propose recommendations for
the construction and renovation of courtyards in academic buildings.

2. Materials and Methods
2.1. Climate Conditions

Guangzhou (23◦12′ N; 113◦20′ E), the capital of Guangdong Province, is located on the
subtropical coast of China. It experiences a monsoon-influenced humid subtropical climate,
characterized by hot and humid summers, abundant rainfall, and relatively temperate
and dry winters. The annual mean temperature and humidity are 22.0 ◦C and 77% [43],
respectively. July is the hottest month, with an average temperature of 28.7 ◦C. The
prevailing wind directions in Guangzhou exhibit seasonality. During the summer, south-
easterly winds dominate due to the influence of subtropical highs and the South China Sea
lows.

2.2. Study Area and Field Measurement

As shown in Figure 1, we selected two adjacent academic buildings of Guangzhou
University as the research object, of which the academic building on the east side was
named DZXX, and the academic building on the west side was named LX. These academic
buildings are similar in size, with both having a height of 24 m and a total of 7 floors, with
the ground floors serving as overhead spaces. Their difference is the H/W ratio of their
respective courtyards. Among them, the courtyard of DZXX has a height of 24 m and a
width of 27 m, while the courtyard of LX has a height of 24 m and a width of 33 m; therefore,
their H/W are defined as 0.9 and 0.7, respectively. To evaluate the thermal environment
and verify the accuracy of the simulation model, we conducted field measurements on
21 July 2022. Previous studies have shown that low airflow velocity and high radiation
load conditions may have a significant impact on the accuracy of some measurement
instruments’ results [44,45]; therefore, in this study, a total of 5 measurement points were
distributed in the overhead space of two academic buildings, avoiding direct sunlight
measurement instruments. The overhead space refers to the bottom floor of a building,
which is completely open and has no walls or windows [46]. Each measurement point was
set at 1.5 m above ground. The measurement instruments and their respective parameters
used for the field measurements are listed in Table 1. Among them, the globe thermometer
(JTR 04) used was 150 mm in diameter with an emissivity equal to 0.95.
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Table 1. Measuring instruments for the numerical model validation.

Instrument Parameter Measuring Range Accuracy

HOBO Pro Air temperature –40.0 to 70.0 ◦C ±0.5 ◦C
HOBO Pro Relative humidity 0 to 100% ±2.5%
Kestrel5500 Wind speed 0 to 5 m·s−1 ±0.05 m·s−1

JTR04 Black bulb temperature 10.0 to 85.0 ◦C ±0.5 ◦C

2.3. Model Validation

The validation of the ENVI-met model is vital to ensure reliable simulation outputs [47].
In many previous studies, the reliability of the ENVI-met model output was assessed by
comparing it with the measured Ta and RH [48–50]; therefore, the air temperature and RH
of each point were measured on-site and compared with the simulated values of the ENVI-
met model. Subsequently, the model reliability was assessed. The correlation coefficients
(R2), mean absolute error (MAE), and root mean square error (RMSE) were used to test the
model accuracy [51], as calculated using Equations (1)–(3):

RMSE =

√
∑n

i=1(Xobs,i − Xmodel,i)
2

n
(1)

MAE =
∑n

i=1
∣∣Xobs,i − Xmodel,i

∣∣
n

(2)

R2 = 1− ∑n
i=1(Xobs,i − Xmodel,i)

2

∑n
i=1

(
Xobs,i − Xobs

)2 (3)

where Xobs is the measured value, Xmodel is the simulated value, and n is the number of
data values.

2.4. Case Studies

In this study, two models were constructed according to the current situation. In
both models, the height of the building was 24 m tall, with ordinary concrete vertical
walls and a flat roof. The underlying surface was mainly composed of asphalt and red
bricks. In addition, trees surrounding the buildings have also been established. The
main difference between the two models was the H/W ratio of the academic building,
which was 0.9 (DZXX) and 0.7 (LX), respectively. The input parameter settings for the
ENVI-met model are presented in Table 2. The geographical location coordinates were
set to 113.20 ◦E and 23.12 ◦N, and the time zone was set to UTC/GMT + 08:00. This
model accurately reproduced the building where the test site was located as well as the
surrounding greenery. The wind speed, hourly temperature and humidity data were
derived from data recorded by meteorological stations. The weather station used in this
study was the HOBO meteorological station, which was shielded by ventilated boxes to
avoid direct sunlight. The meteorological station was located on the roof of the academic
building on the north side of the DZXX, with a distance of approximately 100 m. Solar
radiation data were calculated using the geographic location data system input into the
ENVI-met model, and the solar radiation correction ratio input was 1.0 [50].
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Table 2. ENVI-met input parameters for the simulations.

Variable Settings

Size and resolution
51 × 48 × 20

x = 3 m, Y = 3 m, and Z = 3 m
Date 21 July 2022

Duration 7:00 a.m.–18:00 p.m.
Solar radiation correction ratio 1.0

Initial Ta and RH 29.3 ◦C/79.1%
Wind velocity and wind direction at 10 m 1.1 m/s, 135◦

Specific humidity at 2500 m 10.76 g/kg

Soil initial temperature 31.5 ◦C (0–20 cm)/33.9 ◦C (20–50 cm)/32.9 ◦C
(<50 cm)

Soil initial humidity 30% (0–20 cm)/40% (20–50 cm)/50% (<50 cm)

Albedo

Wall: 0.30
Roof: 0.45

Asphalt: 0.20
Brick road: 0.30

During the field investigation, the surrounding vegetation type was determined to be
Michelia able. To ensure a more precise prediction of the tree canopy coverage’s impact on
the thermal environments of courtyards with different H/W ratios, a specific ENVI-met
model of Michelia able was established for subsequent simulations. The model parameters
of Michelia able were set as follows: a tree height of 10.46 m, crown diameter of 6 m, under-
branch height of 3 m, and leaf area index (LAI) value of 2.46 m2/m2 [52]. The trees were
planted 6 m away from the academic buildings. Considering the uniform distribution of
tress in each courtyard, six TCC scenarios were implemented for each courtyard, with
percentages of 21%, 26%, 31%, 36%, 47%, and 68%, respectively. Additionally, a 0% scenario
was included, representing the absence of greenery inside each courtyard, serving as a
control.

2.5. Thermal Comfort Assessment Indices

Many thermal comfort indices derived from the human energy balance have been
developed to evaluate the outdoor environment, such as the wet-bulb globe temperature
(WBGT), physiological equivalent temperature (PET), and the universal thermal climate
index (UTCI) [53,54]. Among them, the PET is determined using the Munich energy balance
model for individuals (MEMI) [55]. It represents the equivalent air temperature in a typical
indoor condition and approximates the human body’s thermal perceptions in an outdoor
setting [56]. Meanwhile, independent physiological parameters, such as height, age, and
the human metabolic rate of activity, were considered for calculating the PET index [57].
Furthermore, the PET is one of the most widely used thermal indices for assessing thermal
comfort in degrees Celsius (◦C) and it has been adopted in numerous studies and practical
applications [40,58–60]; therefore, we selected the PET as the evaluation index to measure
the thermal environments of the courtyards in the academic buildings. It is worth noting
that the thermal comfort perception can vary across different regions. For instance, Lai et al.
pointed out that residents in the north are more receptive to cold environments compared
to in Europe and Taiwan [61]. Additionally, Lin and Matzarakis reported diverse grades
of thermal perception in a subtropical area, highlighting the adaptive comfort effect on
human thermal perception across various climatic settings [62]. Thus, as shown in Table 3,
the thermal sensations for different stress categories and PET values specific to Guangzhou
were selected for this study. In this study, the PET output was obtained through the BIO-
met module of ENVI-met. Considering that the main activity group comprised students,
the characteristics of a standard person were set as a 19-year-old male, 1.71 m tall and
60.14 kg in weight [57,63], with a basic clothing insulation value of 0.4 clo. In addition,
students mostly walk slowly in the outdoor spaces of the academic buildings; therefore,
the metabolic rate was set to 2.0 met.
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Table 3. Range for PET assessment in Guangzhou [57].

PET Value Thermal Sensation Grade of Physiological Stress

- Very cold Extreme cold stress
- Cold Strong cold stress

<11.3 ◦C Cool Moderate cold stress
11.3–19.2 ◦C Slightly cool Slight cold stress
19.2–24.6 ◦C Comfortable No thermal stress
24.6–29.1 ◦C Slightly warm Slight heat stress
29.1–36.3 ◦C Warm Moderate heat stress
36.3–53.6 ◦C Hot Strong heat stress

>53.6 ◦C Very hot Extreme heat stress

2.6. Estimation of the Sensible Heat Dynamic

An increase in sensible heat contributes to the warming of the atmosphere, which is
the main cause of UHIs [64,65]. Evapotranspiration from vegetation, in combination with
shading effects, can lower the ambient air temperature by a reduction in the sensible heat
fluxes into the atmosphere. The energy savings from the cooling effect of green spaces can
be estimated by measuring the sensible heat reduction; therefore, in this study, the sensible
heat reduction of different tree species with different TCC scenarios was calculated using
Equation (4) [66]:

∆E = Cp·∆T·ρ·V (4)

where ∆E is the energy variation (J), Cp is the specific heat of the air, which was set as
1.0 × 103 J/kg ◦C, ρ is the air density, which was set as 1.29 kg/m3, ∆T is the air tempera-
ture difference between the two scenarios, and V is the air volume of different atmospheric
layers.

Previous research on the thermal environment of courtyards has predominantly fo-
cused on the pedestrian-level thermal environment, which directly influences human
thermal comfort [67–69]; however, the cooling effects of vegetation affect not only the
near-surface thermal environmental layer but also extend to the higher atmospheric lay-
ers [66,70]. Therefore, to predict the effects of different TCCs on sensible heat reduction
at various heights, the space was cut into seven layers according to the grid size in the
Z-direction of the ENVI-met model, including 1.5 m, 2.1 m, 2.7 m, 4.5 m, 7.5 m, 11 m, and
14.5 m layers. In this study, the lower layers of the tree crown were situated at heights of
1.5 m, 2.1 m, and 2.7 m, while the upper layer of the tree crown was at a height of 14.5 m.

3. Results
3.1. Statistical Summary of the Thermal Environment and Model Accuracy Assessment

Table 4 shows the variation of Ta, Tg, RH and Va at each measurement point. The
average values of Ta and Tg at each measurement point were found to be greater than
32.6 ◦C. The RH ranged from 56.4% to 77.0%, and the average wind speed ranged from
0.3 m/s to 0.7 m/s. Thus, these climate conditions on the measurement days represent a
typical summer climate in hot-humid areas.

Figure 2 displays the comparison between the simulated and measured air tempera-
tures and RH values at each measured point. The R2 between the measured and simulated
values for Ta and RH were 0.88 and 0.94, respectively. The corresponding RMSE values
ranged from 1.62 to 2.11 for the Ta and 2.62 to 3.73 for the RH, while the MAE ranged from
0.33 to 0.48 for the Ta and 0.41 to 0.63 for the RH. These values fall within the acceptable
range based on previous studies, where RMSE values between 0.52 and 4.30 and MAE
values between 0.27 and 3.67 have been considered acceptable [71,72]; therefore, the R2,
RMSE and MAE values obtained in this research indicate that the ENVI-met predictions in
the context of this study were accurate enough. Regarding the air velocity, the software
output value generally underestimated the air velocity level of the overhead layer [73].
Because the transitional space was ventilated on all sides, the actual wind field was subject
to a large change in the wind speed and direction in real time. In addition to natural wind,
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the wind speed experienced by pedestrians in dynamic situations also includes the distur-
bance wind speed caused by walking [50]. Regarding the mean radiant temperature, wind
speed is one of the main factors affecting the calculation of the mean radiant temperature,
and the simulated differences in air velocity will lead to a difference in the mean radiant
temperature. Although there are certain differences between the simulated and measured
values, the changing trends in air velocity and mean radiant temperature can still reflect
the impact of tree canopy coverage on the outdoor thermal environment.

Table 4. Statistical results of microclimate parameters.

Monitoring
Points Parameters Minimum Maximum Mean Standard

Deviations

Point 1

Ta (◦C) 29.3 33.9 32.7 1.19
Tg (◦C) 30.5 34.3 32.9 1.21
RH (%) 58.7 76.0 65.5 5.39

Va (m/s) 0 1.5 0.4 0.39

Point 2

Ta (◦C) 30.1 33.9 32.6 1.17
Tg (◦C) 30.4 34.1 32.8 1.10
RH (%) 58.2 75.8 64.5 5.33

Va (m/s) 0 0.8 0.3 0.27

Point 3

Ta (◦C) 30.0 33.9 32.6 1.25
Tg (◦C) 30.2 34.3 32.9 1.34
RH (%) 57.9 77.0 64.8 5.68

Va (m/s) 0 2.2 0.6 0.47

Point 4

Ta (◦C) 30.3 34.4 33.0 1.30
Tg (◦C) 28.8 34.5 32.9 1.68
RH (%) 57.4 76.4 64.4 5.59

Va (m/s) 0 2.8 0.5 0.64

Point 5

Ta (◦C) 30.1 34.3 32.8 1.34
Tg (◦C) 29.2 34.8 33.1 1.74
RH (%) 56.4 76.3 63.9 5.80

Va (m/s) 0 1.7 0.7 0.55Atmosphere 2023, 14, 1389 8 of 16 
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3.2. Variation in Ta

Figure 3 illustrates the average Ta at a 1.5 m height of each courtyard with TCC from
0% to 68% at different times of the day. In the scenarios without trees (0% TCC), the Ta was



Atmosphere 2023, 14, 1389 8 of 16

higher in the DZXX between 8:00 a.m. and 13:00 p.m., and in the LX between 14:00 p.m. to
18:00 p.m., with the maximum Ta difference being 0.2 ◦C. This indicates that during the
daytime, the Ta increased more slowly in the courtyards with higher H/W ratios than in
those with lower H/W ratios. As the TCC increased, the Ta in each courtyard decreased,
and scenarios with different TCCs simulated various cooling effects in courtyards with
different H/W ratios. During the time period from 10:00 AM to 13:00 PM, the trees in the
courtyard with a higher H/W ratio (LX) exhibited better cooling effects compared to the
courtyard with a lower H/W ratio (DZXX). For example, when the TCC was 21%, there was
essentially no reduction in the Ta in the DZXX; however, after 13:00 p.m., the temperature
drop in the two courtyards became almost the same at the same TCC, with a difference of
not more than 0.1 ◦C. When the TCC was 68%, the difference in the Ta between the two
courtyards was 0.2 ◦C.
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3.3. Variation in Tmrt

Figure 4 shows the average Tmrt at a 1.5 m height of each courtyard with TCC from
0% to 68% at different times of the day. From 11:00 a.m. to 17:00 p.m., the average Tmrt
values at a 1.5 m height in the LX were significantly higher than those in the DZXX, with
the maximum difference in Tmrt between the two courtyards reaching up to 2.4 ◦C. As
shown in Figure 5, the direct sun hours in the courtyards of the two academic buildings
under typical summer conditions in hot-humid areas were simulated by using a Rhino’s
ladybug plugin (0% TCC). It is evident that the LX courtyard received more solar radiation
than the DZXX under treeless conditions. As the TCC increased, the Tmrt values of each
courtyard decreased substantially. The Tmrt values for each courtyard decreased the most
when the TCC was 68%, by 10.6 ◦C and 10.7 ◦C, respectively. Furthermore, the maximum
difference in the Tmrt between the two courtyards was reduced to 1.7 ◦C. This indicates that
arranging trees can effectively reduce the differences in solar radiation between courtyards
with different H/W ratios.
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3.4. Thermal Comfort Assessment

The effects of different TCCs on the PET in different courtyards at each time period
is shown in Figure 6. Based on the PET scale applied to Guangzhou, both courtyards
made people feel “hot” at all times of the day under the treeless scenario. Compared to
the courtyard of DZXX, the courtyard of LX had higher PET values, with a maximum
difference of 0.7 ◦C at 16:00 p.m. Although arranging trees in each courtyard can reduce
the PET values, the PET values in both courtyards remained at the “hot” level during
each time period; however, as the TCC continued to rise to 68%, the PET values in each
courtyard decreased by up to 5.4 ◦C (DZXX) and 5.5 ◦C (LX) at 9 a.m., respectively. This
indicates that although planting trees can improve the outdoor thermal environment, it
may be challenging to reduce the level of outdoor thermal comfort to a “warm” or lower
category. Furthermore, at 14:00 p.m., which is the hottest time of the day, the difference in
the PET between the two courtyards was only 0.2 ◦C (0% TCC); however, when the TCC
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was 68%, the PET difference between the two courtyards was 0.6 ◦C. This suggests that
courtyards with a high H/W ratio combined with trees have a greater cooling effect than
courtyards with a low H/W ratio.
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3.5. Sensible Heat Reduction

The results of a total sensible heat reduction for both courtyards, including all layers
and time periods, are presented in Figure 7a,b. The total sensible heat reduction showed a
significant and continuous increase with increasing the TCC in each courtyard. In the DZXX
courtyard, the total sensible heat reductions for each TCC were 2.98 × 104 J/m2 (21%),
3.64 × 104 J/m2 (26%), 4.42 × 104 J/m2 (31%), 4.98 × 104 J/m2 (36%), 5.87 × 104 J/m2

(47%), and 6.63 × 104 J/m2 (68%), respectively. Similarly, in the courtyard of LX, the total
sensible heat reductions for each TCC were 3.24 × 104 J/m2 (21%), 3.92 × 104 J/m2 (26%),
4.66 × 104 J/m2 (31%), 5.30 × 104 J/m2 (36%), 6.12 × 104 J/m2 (47%), and 6.85 × 104 J/m2

(68%), respectively. It is evident that when the TCC increased from 31% to 36%, the increase
in the total sensible heat reduction in both courtyards decreased. Furthermore, Figure 7c,d
show the percentage of the sensible heat reduction at different TCCs in the DZXX and
LX courtyards for each height. As the TCC increased, the percentage of sensible heat
reduction gradually increased at the lower levels (1.5–4.5 m) and decreased at the higher
levels (11.0–14.5 m). This is because with the increase in the TCC, more trees were arranged
in the center of the courtyard exposed to direct sunlight, resulting in a stronger cooling
effect. However, due to the high level layer being more distance from the tree crown, the
cooling ability of the tree canopy to that height is limited; therefore, the percentage of
sensible heat reduction gradually decreased. In addition, the change in the percentage
of sensible heat reduction in each level of the courtyards with low H/W ratios was more
pronounced compared to that of the high H/W ratios.
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4. Discussion

The influence of coverage of urban green spaces on mitigating the thermal environment
has been widely recognized at the city to the neighborhood scale; however, few studies
have focused on the cooling effects of vegetation at the courtyard scale [74–76]. In the
present study, we analyzed the cooling effects of different TCCs in relation to courtyards
with different H/W ratios. Consequently, trees planted in courtyards with high H/W ratios
had a larger cooling effect during the hottest period of the day compared to courtyards with
low H/W ratios. The results of this study were similar to the finding of Randa Mohamed
Ahmed Mahmoud and Amr Sayed Hassan Abdallah, who investigated the effect of outdoor
shading strategies on the thermal environment. They reported a higher influence of trees
in shading a narrow courtyard with a H/W ratio of 0.7 compared to a wide courtyard
with a H/W ratio of 0.4 [77]; however, it is worth noting that the academic buildings they
surveyed were only 10 m high and enclosed on three sides, which could lead to different
shadowing effects due to varying building heights and enclosure forms [41,78].

Moreover, Li et al. found that in residential areas with a building height of 33 m, a total
sensible heat reduction of 7.08 × 104 J/m2 was achieved with a 45% canopy coverage [70];
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however, one of the findings of the present study is that the total sensible heat reduction
for 47% TCC in courtyards with a high H/W ratio (0.9) was 5.87 × 104 J/m2, while the
total sensible heat reduction in courtyards with a low H/W ratio (0.7) was 6.12 × 104 J/m2.
This indicates that the lower the H/W ratio of a courtyard, the greater the sensible heat
reduction achieved by planting trees. Additionally, when compared to outdoor open
spaces, an increase in TCC in semi-outdoor spaces results in smaller cooling effects. This
can be attributed to the higher percentage of building shadows in courtyards with higher
H/W ratios. Furthermore, previous studies have also shown that trees located in building
shadows have weaker cooling effects than those exposed to direct solar radiation [79–81]. In
addition, It is essential to consider tree height as a significant factor affecting the reduction
in sensible heat at different height layers; therefore, when planning green spaces in the
built environment, the selection of tree species should take into account not only the leaf
area index (LAI) value but also the tree height to optimize the cooling benefits.

This research does have certain limitations that should be acknowledged to better
interpret the results. Firstly, the study assumed a uniform arrangement of trees in each
courtyard, which may not represent the real-world diversity of tree distribution in court-
yards. Future studies could consider more realistic scenarios with varied tree arrangements
to better reflect the actual urban greenery patterns. Secondly, this study focused solely on
the impact of tree canopy coverage on the thermal environment and sensible heat reduction
during the summer season. As climate conditions and vegetation responses vary across
different seasons, it would be beneficial to conduct further research exploring the cooling
effects of different TCCs and tree species in various seasons throughout the year. Finally,
from the perspective of site selection, our study only focused on two typical courtyards
in Guangzhou. The cooling effect of trees also varies in cities located in different climates
because the surface thermal fluxes are related to solar radiation [82]. Other types of court-
yards should also be considered, because different dominant courtyard forms are found in
different cities [83,84].

Despite these limitations, the study provides valuable insights into the cooling poten-
tial of the tree canopy coverage in academic building courtyards with different H/W ratios
under hot-humid climate conditions. The findings contribute to the understanding of how
urban green spaces can play a role in enhancing thermal comfort and mitigating urban heat
island effects at the courtyard scale, which has been less explored in previous research.

5. Conclusions

This study presents the findings of an investigation into the impact of varying tree
canopy coverage on the cooling of courtyards with different height-to-width (H/W) ratios,
achieved by combining modeling with on-site measurements. The research was conducted
in two similar academic buildings and their courtyard H/W ratios were 0.9 and 0.7. The
results showed: (1) Arranging trees in courtyards with different H/W ratios has different
effects, which produces variations in the microclimate. During the hottest period of the day,
the PET value of courtyards with high H/W ratios decreases by up to 0.6 ◦C compared to
courtyards with low H/W ratios. (2) Arranging trees in courtyards with different H/W
ratios has different effects for sensible heat reduction. The maximum difference between the
courtyards in this study with low H/W ratios and courtyards with high H/W ratios was
0.25 × 104 J/m2. Some suggestions for good thermal environment in the local climate are:

1. Incorporate trees strategically: consider the strategic placement of trees in courtyards,
particularly in courtyards with high H/W ratios, as they significantly contribute to
cooling and improving microclimatic conditions.

2. Optimize tree canopy coverage: carefully select an appropriate percentage of tree
canopy coverage to achieve the desired cooling effect, taking into account the specific
conditions of each courtyard.

3. Select suitable tree species: in addition to considering the leaf area index (LAI) values,
carefully choose tree species based on their height, as it significantly influences the
sensible heat reduction at different height layers.
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This study offers valuable insights into the distinct effects of trees on human thermal
comfort and heat dynamics in courtyards of academic buildings with varying H/W ratios.
These findings can be instrumental for university planners and designers in formulating
comprehensive guidelines for courtyard design in academic buildings.
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