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Abstract: This study investigates the influence of meteorology initialization on surface ozone pre-
diction in the Great Lakes region using Canada’s operational air quality model (GEM-MACH) at a
2.5 km horizontal resolution. Two different initialization techniques are compared, and it is found
that the four-dimensional incremental analysis updating (IAU) method yields improved model
performance for surface ozone prediction. The IAU run shows better ozone regression line statistics
(y = 0.7x + 14.9, R2 = 0.2) compared to the non-IAU run (y = 0.6x + 23.1, R2 = 0.1), with improved MB
and NMB values (3.9 ppb and 8.9%, respectively) compared to the non-IAU run (4.1 ppb and 9.3%).
Furthermore, analyzing ozone prediction sensitivity to model initialization time reveals that the 18z
initialization leads to enhanced performance, particularly during high ozone exceedance days, with
an improved regression slope of 0.9 compared to 0.7 for the 00z and 12z runs. The MB also improves
to −0.2 ppb in the 18z run compared to −2.8 ppb and −3.9 ppb for the 00z and 12z runs, respectively.
The analysis of meteorological fields reveals that the improved ozone predictions at 18z are linked to
a more accurate representation of afternoon wind speed. This improvement enhances the transport
of ozone, contributing to the overall improvement in ozone predictions.

Keywords: chemical transport modeling; initialization; Great Lakes region; Michigan Ontario Ozone
Source Experiment (MOOSE); air quality and meteorology interaction

1. Introduction

High concentrations of surface ozone (O3) and the frequent violation of air quality
standards have long been recognized as significant air quality and public health concerns
in the Great Lakes region [1,2]. The unique combination of emissions from human activities
and the meteorological conditions influenced by the presence of the lakes contribute to
the elevated ozone levels observed in both side of the lakes, in Canada and the Unites
States [3–7].

To address the shared concerns in this special border region and gain a better un-
derstanding of the factors contributing to high ozone levels, several field studies have
been conducted aiming to collect meteorological and chemical measurements. Two earlier
examples are the Lake Michigan Ozone Study (LMOS) [8] and the Program for Research
on Oxidants: Photochemistry, Emissions, and Transport (PROPHET) [9], and the most
recent one is the Michigan–Ontario Ozone Source Experiments (MOOSE) field campaign
conducted in summer 2021 [10].

Complementary to field studies, Chemical Transport Models (CTMs) and data-based
machine learning methods [11,12] have been widely used to enhance understanding of
ozone formation and transport processes. Despite significant advancements in models, the
prediction of ozone, especially during high ozone episodes, remains a challenging problem,
particularly in complex coastal regions where local emissions, transport processes, and
meteorological conditions interact in complex ways [13–16].
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Due to the intricate interplay of various processes, accurate air quality forecasts heavily
depend on the output from numerical weather prediction (NWP) models. To achieve precise
predictions of ozone concentrations, it is essential to have a comprehensive understanding
of the meteorological factors that influence ozone formation and transport. Therefore, a
proper representation of these meteorological factors in the models is crucial.

In recent years, advancements in meteorological data assimilation techniques have
shown promise in improving the accuracy of NWP forecasts mainly through correcting
errors in the initial conditions of the model. Among many, the four-dimensional Incremental
Analysis Update (IAU) technique [17], is one of the advanced methods used in model
initialization. This method allows a gradual incremental update of the observation into the
system and thus minimizes the dynamics and thermodynamic imbalances related to the
model initialization in the model. At Environment and Climate Change Canada (ECCC),
Dorval, QC, Canada, the four-dimensional IAU technique was implemented in the global
NWP operational system in fall 2014 [18], replacing the previous initialization method
based on the full-field digital filter [19,20]. Since then, other operational systems, including
the regional and national ones, have also upgraded to this method. Recently in July 2021,
during the MOOSE field study, the operational high-resolution deterministic prediction
system at ECCC upgraded its initialization method to IAU technique as part of the 3rd
official ECCC’s innovations cycle [21].

Several studies showed an improvement in the model performance for meteorolog-
ical prediction by using IAU [22–24]. However, the impact of these improved initializa-
tion techniques on ozone predictions, especially during high ozone episodes, remains to
be understood.

Moreover, while a handful of studies have delved into assessing the sensitivity of
NWP model skills in the context of initialized forecast start cycles [25,26], a significant
gap remains in understanding the potential implications of these sensitivity findings for
ozone prediction.

The main objective of this study is to investigate the sensitivity of surface ozone
to meteorological initialization. To achieve this, we aim to address the following key
questions: (1) What is the impact of changing the meteorological initialization from the non-
IAU (digital filter) method to the four-dimensional IAU technique on ozone concentration?
(2) Does the initialization forecast cycle time of the model have an impact on the predictive
skill for ozone? (3) Is the sensitivity of ozone to initialization time different for high
ozone episodes compared to normal ozone days? (4) Which meteorological parameter
exhibits the highest sensitivity to initialization and has more consequent impact of ozone
response? By addressing these questions, this study aims to enhance our understanding
of the relationship between meteorology and surface ozone, and provide insights for
improving ozone predictions in the future.

In the following sections, we will provide a detailed description of the air quality
model used, including the emissions and observational data employed in our study. We will
then proceed to discuss the results on the impact of initialization with IAU and the influence
of initialization time on ozone prediction. Finally, we will conclude by summarizing the
key findings derived from our analysis.

2. Materials and Methods
2.1. Model Description

The air quality model used in this study was the version 3.0 of the ECCC Global
Environmental Multiscale-Modelling Air-Quality and Chemistry (GEM-MACH) model.
GEM-MACH is an online, one-way coupled chemical transport model that incorporates
a detailed representation of atmospheric chemistry including emissions, dispersion and
removal processes, within the GEM atmospheric model, an ECCC’s operational global
and regional numerical weather prediction model [27–30]. The GEM-MACH model has
been used operationally by ECCC for regional air quality forecasting since 2009 [31–33].
More detailed description of the multi-phase chemistry representations of GEM-MACH
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including the gas-, aqueous-, and particle-phase and an evaluation of its performance for
common air pollutants appears in [32,34–37].

In this study, a high-resolution limited-area model (LAM) configuration of GEM-
MACH with an urban canopy model based on Town Energy Balance (TEB) scheme was
used. More description can be found in [38–42]. The initial surface variables are provided
by a 2.5 km Canadian Land Data Assimilation System (CaLDAS) coupled with GEM NWP
model [43].

The Canadian anthropogenic emissions data are based on the 2015 national Air Pollu-
tant Emissions Inventory (APEI) projected to 2020 [44], accounting for projected changes
in population, economic activity, and the energy use over the 5 years, from 2015 to 2020,
as well as the implementation over this period of already-legislated air pollution control
measures and expected facility openings or closures. The US anthropogenic emissions data
comes from a projected 2023 US National Emissions Inventory (NEI), which is based on the
2016 US NEI. The point sources are based on the 2018 NEI emissions. This emission dataset
is obtained from version 1 of the US Environmental Protection Agency (EPA), Washington,
DC, USA, Air Emissions Modeling Platform for policy development application [45]. The
national emissions inventories were processed using version 3.7 of the Sparse Matrix Oper-
ating Kernel Emissions (SMOKE) tool [46] to generate model-ready hourly emissions. Large
stacks with heights greater than 15 m are considered as major point sources, for which the
plume rise is calculated in the GEM-MACH model. The hourly gridded emissions were
generated for a representative week of each month; thus, they vary by hour of the day, day
of the week, and month of the year.

2.2. Simulations Setup

The forecast domain covers Southern Ontario and a significant portion of the north-
eastern United States, which includes four major urban cities: Toronto, Chicago, New York
City, and Detroit (red box domain in Figure 1). This domain is commonly known as ‘Pan
Am’ as it was initially created for high-resolution air quality modelling purposes during the
2015 Pan American Games in Ontario [47]. The model grid is a rotated latitude–longitude
map projection with 2.5 km horizontal grid spacing and a hybrid sigma-pressure coordinate
with a Charney–Phillips staggered vertical grid, with 62 levels from the surface to 10 hPa.
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Figure 2 presents a flowchart of the main components of the simulations setup used
in this study. Hourly meteorological boundary conditions are from the high-resolution
2.5 km GEM operational meteorological forecasts. Chemical lateral boundary conditions
were piloted using 10 km regional GEM-MACH model simulations. The chemical tracers
are initialized using 10 km simulations only at the beginning of the first cycle. For subse-
quent cycles, the initial chemical fields came from the final forecast fields of the previous
run (i.e., from the end of the 24 h cycle). The meteorological fields are initialized at the
beginning of each integration cycle. Two different initialization methods were employed
for the meteorological fields in the simulations conducted in this study. The first method
is the four-dimensional IAU, where the 4D analysis increments derived from the Ensem-
ble Variational (EnVar) approach are gradually incorporated into the model over a 6 h
window, extending from T − 3 h to T + 3 h. This incremental update ensures a smoother
transition and minimizes the dynamics and thermodynamic imbalances associated with
model initialization. The second method, known as the digital filter (hereafter referred to
as the non-IAU), applies a single full-field analysis at the initial time to adjust the model’s
meteorological variables.
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Figure 2. Overview flowchart of simulation setup outlining the key components of the GEM-MACH
model and their interconnections.

The simulations conducted in this study utilized the operational configuration of the
GEM-MACH model. It is noteworthy that this configuration was also employed by ECCC
during the MOOSE field campaign to generate real-time simulations. These simulations
were subsequently provided to the field measurement teams as daily briefings, enabling
them to strategically position their mobile equipment for effective capture of ozone plumes.
While the MOOSE study period primarily covered a period from 20 May to the end of June
2021, the simulation period considered for this study started from 19 June and extended to
31 August 2021. This duration was selected primarily due to the availability of IAU data,
which became accessible on 19 June 2021, coinciding with the initiation of parallel runs as
part of the 3rd innovation cycle implemented in the main operational ECCC’s NWP models
in summer 2021.

Two distinct sets of simulations were designed for this study. The first set involves
simulations initialized at 00z, used for comparing the performance of the IAU against the
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non-IAU method. The second set of simulations focus on the IAU initialization technique
with varied initialization times to include runs at 00z, 12z, and 18z. By examining these
different sets of simulations, the study aimed to assess the impact of the initialization
method and time on the accuracy of ozone predictions.

2.3. Observations

Hourly measurements for surface O3 concentrations for Canada were obtained from
provincial and municipal air quality monitoring networks that are part of the larger Na-
tional Air Pollution Surveillance (NAPS) Program [48]. Measurements for the US were
obtained from the EPA Air Quality System (AQS) [49]. The measurements are transmitted
either directly to Environment and Climate Change Canada (ECCC) or indirectly via the
US Environmental Protection Agency’s AirNow system (https://docs.airnowapi.org/)
(accessed on 30 August 2023). Hourly meteorological measurements including the temper-
ature at 2 m above the surface and wind speed and direction at 10 m were obtained from
the National Climate Data and Information Archive (https://climate.weather.gc.ca/) (ac-
cessed on 30 August 2023) for Canada and from the Clean Air Status and Trends Network
(CASNET) for the US (https://www.epa.gov/castnet) (accessed on 30 August 2023).

While the simulation domain encompasses a wide area of southeastern Canada and
northeastern USA, this study focuses only on the measurements within a specific subset
of that domain. Specifically, the analysis concentrates on the Ontario/Michigan border
region and the densely populated Toronto area. The study analysis domain is shown as a
red box in Figure 3. This figure shows the location of measurement monitoring stations
for ozone marked as green triangles and meteorology stations marked as red triangles. A
total number of 63 monitoring stations for ozone and 72 for meteorology are considered in
analysis presented in next sections of this study.
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We calculated the maximum daily 8 h average (referred to as MDA8) from the observed
hourly surface ozone data. For the analysis presented in the next sections, observation
datasets are divided into two separate categories. The first category includes the days
associated with exceedance of the 2024 Canadian Air Quality Standard (CAAQS) which are
the days with MDA8 greater than 60 ppb, (referred to as ‘exceedance days’). The second
category includes the days not associated with the exceedance of the CAAQS (referred to
as ‘non-exceedance days’). This allows us to assess the impact of initialization on the high
ozone episodes.

3. Results and Discussion
3.1. Impact of IAU Initialization

In order to assess the impact of upgrading the initialization technique in operational
implementation of GEM-MACH from a single-time full-field digital filter to the four-
dimensional IAU, two sets of simulations were performed and compared in this section.
Figure 4a displays the mean observed surface MDA8 ozone concentration (depicted in
green) along with the model predictions for simulations using the IAU initialization em-
ployed (shown in blue) and the non-IAU initialization (shown in gray), both initialized
at 00z. The first set of bar columns in this figure represents the values averaged over the
entire simulation period across all ozone monitoring stations located inside the red box in
Figure 3. Overall, the model overestimates the observed mean MDA8 ozone concentration
(45.1 ppb) in both the IAU (48.6 ppb) and non-IAU (48.7 ppb) runs. The difference between
the two model runs is minimal, with a marginal deviation of only 0.1 ppb when considering
all stations and days collectively.
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Figure 4. (a) Mean observed (green) and modeled maximum daily 8 h average MDA8 Ozone
concentration for simulations with IAU initialization (blue) and for simulations where no IAU
is employed (gray). Scatter plots between observed MDA8 Ozone concentration and the model
predictions for IAU initialization case (b) and the non-IAU run (c). The lighter points show the pair
of stations and days when the MDA8 is below the CAAQS-2024 threshold, while the darker points
display the exceedance cases, when the MDA8 is above this threshold. Black solid line shows the 1:1
line and dotted line shows the regression line. The vertical red dashed line represents the CAAQS
2024 threshold of 60 ppb.
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To further evaluate the impact of IAU, we specifically examined high ozone episodes
in comparison to normal conditions. The average MDA8 is presented separately for
exceedance and non-exceedance cases, shown in the middle and right set of column bars in
Figure 4a. The model values for non-exceedance cases are 47.7 ppb for the IAU run and
47.9 ppb for the non-IAU run, both overestimating the observed MDA8 (43.8 ppb). As
expected, for exceedance cases, the average observed MDA8 is higher compared to the non-
exceedance average, with a substantial margin of 21 ppb. Unlike the non-exceedance cases,
the model tends to underestimate the average MDA8 ozone concentration for both the IAU
run (62 ppb) and the non-IAU run (61.7 ppb). For both exceedance and non-exceedance
cases, the IAU run demonstrated a slight improvement over the non-IAU run.

The scatter plots in Figure 4b,c illustrate the comparison between observed surface
MDA8 ozone concentrations and model predictions for IAU (blue points) and non-IAU
(gray points) runs, respectively. The statistical metrics such as mean bias (MB), normalized
mean bias (NMB) and root mean square error (RMSE) are also presented in this figure.
While MB, NMB and RMSE provide valuable information about the accuracy and bias, the
regression equation and correlation coefficient quantify the relationship between predicted
and observed values. To provide a visual reference, a vertical dashed red line is included in
these figures, representing the 60 ppb CAAQS threshold for observed MDA8 ozone. This
line serves to distinguish non-exceedance cases (shown in lighter points) on the left side of
the line from exceedance cases (shown in darker points) on the right side. Consistent with
the pattern observed in Figure 4a, the regression line, MB, and NMB reveal an overestimated
trend when the observed MDA8 ozone concentration is below the 60 ppb threshold, while
underestimation occurs during ozone exceedance events.

For both cases, the IAU run consistently demonstrated a better overall performance
compared to the non-IAU run, as evidenced by the statistical metrics and the regression
equations. On exceedance days, the IAU run showed improved statistics for the ozone
regression line (y = 0.7x + 14.9, R2 = 0.2) compared to the non-IAU run (y = 0.6x + 23.1,
R2 = 0.1). Additionally, the IAU run exhibited better MB and NMB values (−2.8 ppb and
−4.4%, respectively) compared to the non-IAU run (−3.0 ppb and −4.7%, respectively).
For non-exceedance days, the IAU run also displayed an enhanced slope of the regression
line (0.8) compared to the non-IAU run (0.7). The MB and NMB values further improved
from 4.1 ppb and 9.3% in the non-IAU run to 3.9 ppb and 8.9% in the IAU run. These
consistent improvements in statistical performance highlight the importance of utilizing
the IAU technique to enhance surface ozone predictions.

To explore potential factors contributing to the improved model performance associ-
ated with the IAU initialization, we examined the model performance in key meteorological
parameters. Table 1 presents the statistical indices including the mean values, standard
deviation, MB, NMB and RMSE for daylight temperature at 2 m above the surface, as well
as wind speed and direction at 10 m above the surface, to facilitate comparisons of results
between IAU and non-IAU cases.

The model demonstrates good performance in predicting the mean daylight temper-
ature, as evidenced by the close agreement between the predicted values for both IAU
(21.99 ◦C) and non-IAU (22.01 ◦C) and the observed value of 21.96 ◦C. The minimal mean
biases (0.03 ◦C for the IAU and 0.06 ◦C for the non-IAU run), combined with NMB values
below 1%, indicate a high level of accuracy for both cases. Additionally, considering the
mean and standard deviation, the model predictions exhibit precision as they fall within
one standard deviation of the observed values. Comparatively, the IAU run exhibits better
accuracy for temperature as indicated by MB and NMB values lower than those of the
non-IAU run.
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Table 1. Statistical indices for daylight (7:00 A.M.–8:00 P.M.) 2 m temperature and 10 m wind speed
and direction predicted by the model versus observations.

Mean
Standard
Deviation

(SD)
Mean Bias NMB (%) RMSE

Temperature
(◦C)

Obs 21.96 4.46
IAU 21.99 4.45 0.03 0.16 2.10

Non-IAU 22.01 4.43 0.06 0.27 2.10

Wind
speed
(m/s)

Obs 3.16 1.89
IAU 3.09 1.69 −0.11 −3.46 2.06

Non-IAU 3.07 1.68 −0.12 −3.91 2.05

Wind
direction
(degree)

Obs 207.50 96.32
IAU 204.96 95.26 −1.50 −0.72 130.19

Non-IAU 204.62 95.35 −1.82 −0.88 130.31

In terms of wind speed, the observed daylight mean value is a moderate 3.16 m/s.
The model predicted values for both the IAU (3.09 m/s) and non-IAU (3.07 m/s) runs
closely correspond to the observed value. There is an overall minor underestimation, with
mean biases of −0.11 m/s and −0.12 m/s for the IAU and non-IAU runs, respectively.
However, there is a slight improvement in statistics observed in the IAU run compared to
the non-IAU run, with NMBs of −3.5% and −4%, respectively.

Both runs predict a wind direction of West-Southwest (approximately 205 degrees),
whereas the observed wind direction is closer to South-Southwest (approx. 207 degrees).
Despite relatively high standard deviations (96 degrees), signifying notable variability
in wind direction, the model’s mean value remains within one standard deviation of
the observed values. This alignment, along with a low NMB (below −1%), suggests a
commendable performance by the model. Similar to the wind speed, there are slightly
improved biases for the IAU run compared to the non-IAU.

Overall, the statistical evaluations of the temperature and wind fields, which are the
two main meteorological factors influencing ozone, demonstrate a modest yet notewor-
thy improvement when the IAU technique is employed for model initialization. These
improvements could contribute to better ozone concentration prediction performance that
is obtained when this technique is used.

3.2. Impact of Initialization Time

To assess the influence of initialization time on the performance of the model, we
conducted a comparative analysis of three simulations that are initialized at different
times of the day. These simulations employed the IAU technique for initialization and
used identical model configurations, with the sole distinction being the starting time of
the model. It is important to note that during the initialization phase, only the surface
meteorology fields were assimilated, while the chemistry fields at initial time were copied
from the last hour of the previous run cycle.

Figure 5 presents scatter plots of observed surface MDA8 ozone concentrations plotted
against the corresponding model-predicted values for three different simulations initialized
at 00z (Figure 5a), 12z (Figure 5b), and 18z (Figure 5c). Similar to Figure 4, a vertical
line indicating the CAAQS threshold is included to differentiate non-exceedance cases
(depicted in lighter points) on the left side of the line from exceedance cases (depicted in
darker points). In all three cases, the scatter plots exhibit a trend line positioned above
the 1:1 line for non-exceedance cases, indicating an overestimation of the model compared
to the observed surface MDA8 ozone. Conversely, in exceedance cases, the trend line is
situated below the 1:1 line, suggesting an underestimation of the model. When evaluating
the statistics for cases when the observed ozone concentration falls within the CAAQS
limit (non-exceedance represented by lighter points), we observed consistent regression
equations and correlations among all three runs. However, the 18z run shows higher
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overestimation of ozone for non-exceedance cases, as evidenced by increased MB, NMB,
and RMSE values. However, the 18z run demonstrates a superior performance in predicting
exceedance cases compared to the other two runs, with a greater slope of 0.9, compared to
0.7 for the 00z and 12z runs. Notably, there is also a significant improvement in MB and
NMB for the 18z run. The MB is −0.2 in the 18z run, which is better than −2.8 and −3.9 in
the 00z and 12z runs, respectively. Similarly, the NMB of −0.3% in the 18z run is superior
to the −4.4% and −6% in the 00z and 12z runs, respectively. These findings suggest that
initializing the model later in the afternoon (at 18z, 2:00 P.M. local time) enhances the
model’s ability to predict surface ozone and, in particular, high ozone episodes.
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In order to explore a possible connection with meteorology, the meteorological fields,
including temperature and wind speed are examined for three initialization times. As
the monitoring stations for meteorology and ozone may not be collocated, a simplified
pairing approach was employed to establish a relationship for exceedance ozone cases.
By matching the meteorology and ozone stations based on their proximity, the associated
meteorology station was identified as an exceedance station for days when the ozone levels
surpassed the CAAQS threshold. In the statistical meteorological analysis in this section,
we focused only on the hours from 1 P.M. to 8 P.M., referred to as the ‘afternoon period’,
which typically corresponds to the time when peak ozone concentrations typically occur
during the summer.
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Figures 6 and 7 illustrate the scatter plots between the observed and model-predicted
2 m temperatures and 10 m wind speeds during the afternoon for three different initializa-
tion times. The top panels represent non-exceedance cases (light colors), while the bottom
panels depict exceedance cases (dark colors).
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line shows the 1:1 line and dotted line shows the regression line.

The statistical metrics (MB and NMB) for temperature predictions (Figure 6) indicate
a slight positive bias, with a maximum error of 0.7 ◦C (2.6%), suggesting a tendency
to overestimate afternoon temperature across all three runs. Among them, the 12z run
demonstrates a relatively better performance under during non-exceedance and exceedance
days, as indicated by lower MB and NMB values, compared to the other two runs. The
slope of the regression line is improved to 0.9 for the 12z run for exceedance days. Overall,
the 12z run consistently outperforms the other two runs in terms of temperature prediction.
However, it is important to note that, as illustrated in the previous figures, the 18z run
consistently demonstrates superior performance in predicting ozone levels. This intriguing
finding implies that the model’s enhanced ability to predict ozone in the 18z run may not
be directly attributed to the accuracy of temperature predictions.

Regarding the wind speed (Figure 7), the model tends to underestimate, as indicated by
the negative MB and NMB values across all data points. The underestimation is relatively
lower for the 18z run compared to the 00z and 12z runs, as reflected in improved MB and
NMB values for both non-exceedance and exceedance days in this run. The NMB of −10%
in the 18z run was better than the −16% in the 00z run on exceedance days. Consistently,
the 18z run shows a slightly stronger regression slope (0.5) when compared to the 00z and
the 12z runs (0.4). This consistent pattern aligns with the superior performance of the 18z
model run in ozone prediction, particularly for high exceedance values. These findings
suggest a potential link between the improved representation of wind speed in the 18z run
and its enhanced ability to predict ozone, especially during periods of high exceedance.
The more accurate depiction of wind speed in the 18z run likely contributes to a better
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reflection of ozone transport and dispersion, thus leading to improved ozone predictions
during critical episodes.
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To further analyze the impact of initialization time on the diurnal variation of ozone
and meteorology, the average diurnal time series were compared for two cases in Figure 8.
The observed diurnal time-series for surface ozone concentrations (Figure 8a) show dis-
tinct differences between days of exceedance and non-exceedance, especially regarding
the peak times. During the non-exceedance days, the peak ozone concentration occurs
during the midday, around 3–4 P.M. However, for exceedance days, a bimodal diurnal
pattern is evident, with one maximum during the midday hours and an additional higher
peak in early evening, around 8 P.M. As expected, ozone concentrations are generally
higher throughout the entire day for exceedance days. Interestingly, the minimum ozone
concentration observed in the early morning, around 7 A.M, is higher for exceedance
days, suggesting a potential accumulation of ozone from prior afternoon ozone produc-
tion and light circulating winds overnight, a phenomenon previously addressed by other
studies [50].

The diurnal time-series of temperature (Figure 8b) and wind speed (Figure 8c) are
positively correlated with the ozone diurnal variations. On exceedance days, higher
temperatures and increased wind speeds are commonly observed, indicating favorable
meteorological conditions that facilitate ozone formation and transport. The model tends
to overestimate ozone concentrations during the afternoon hours (1:00 to 7:00 P.M.) across
all three model runs, especially on non-exceedance days. This can be partially attributed
to the model’s tendency to predict higher temperature and lower wind speed during this
time period, which creates favorable conditions for ozone production and accumulation
(i.e., slower transport). This behavior of the model has improved in the ozone plots for ex-
ceedance days, where the 18z run outperforms the other two runs in detecting the observed
early evening peak ozone and continues to show superior performance during nighttime.
This improvement is primarily associated with the 18z run’s improved representation of
wind speed (Figure 8c), as temperature still exhibits overestimation during the afternoon for
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exceedance cases. It is interesting to note that the three model runs exhibit similar behaviors
for non-exceedance days, suggesting a limited impact of initialization time on meteorology
variables and ozone concentrations under such conditions. However, significant differences
emerge among the model runs during exceedance days, with the 18z run demonstrating
superior performance, particularly in capturing wind speed and ozone concentration. This
highlights the heightened sensitivity of high ozone episode predictions to changes in the
model’s initialization time, primarily attributed to the improved representation of wind
speed in the 18z run.
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Figure 8. Per-hour average time-series of observed (black points) and model-predicted data for
three different initialization times at 00z (dashed blue line), 12z (dashed orange line), and 18z
(solid green line) for surface ozone concentration (top panel), temperature at 2-m above the surface
(middle panel) and wind speed at 10 m (bottom panel). The left-side panel shows the cases
when observed ozone is below CAAQS threshold, while the right-side panel displays the ozone
exceedance cases.

A case study of a high ozone day observed in Sarnia, Ontario, on 24 August 2021 was
selected for analysis. Sarnia is situated in southwestern Ontario, positioned directly on
the Canadian border with the United States and adjacent to Port Huron, Michigan. The
time series for surface ozone, temperature, and wind speed for this particular day in Sarnia
is shown in Figure 9. The observed surface ozone concentration for this particular day
(Figure 9a) exhibited an upward trend from the early morning hours, reaching its first peak
of 73 ppb at 1 P.M. After a slight decrease, it continued to rise, reaching a second maximum
value of 97 ppb at around 5 P.M. This late afternoon peak ozone can mainly attributed
to the time needed to accumulate ozone during the day, as supported by findings from
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other previous studies [51,52]. The three model runs displayed distinct patterns during the
daytime and in terms of the peak ozone times. The 12z run performs better in capturing
the observed main peak at 5 P.M. However, it tends to consistently underestimate ozone
concentrations in the preceding hours, particularly missing the first maximum. The peak
times for ozone in the three model runs occurred at different times, which aligns with the
wind speed patterns. Specifically, the 00z run predicted lower wind speed, resulting in
slower transport rates compared to the other two runs and the observed data.
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Figure 10 displays the spatial distribution of the surface ozone field over the
Michigan–Ontario border region on 24 August 2021, at various hours of the afternoon (14,
18, 20, and 21 UTC), allowing comparison among the results from three different initializa-
tion times. At 14 UTC, all three runs show a plume of ozone traveling from north Detroit
toward Lake St.Clair. At 18 UTC, a lake breeze forms to the west of the lake, converging
with southwesterly wind, resulting in maximum ozone concentration predicted at the
convergence front. This ozone-rich air mass then moves toward the north and northeast,
reaching Sarnia at 20 UTC and 21 UTC.
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Figure 10. Spatial distribution of hourly surface ozone (ppb) and wind barbs predicted by the
model for (a) 00z, (b) 12z, and (c) 18z initialization times, on 24 August 2021 at 14 UTC (top panel),
18 UTC (second panel), 20 UTC (third panel), and 21 UTC (bottom panel). Colored areas represent
the observed O3 concentrations at each monitoring station.
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The movement speed of the air mass varies among the three model runs, with the 18z
run showing a faster movement of the plume and the 00z run being the slowest. Notably,
the 18z run accurately captures the high ozone levels observed in Sarnia, at 20 UTC and
21 UTC, outperforming the other two runs. Additionally, the 18z run demonstrates better
prediction of high ozone values observed in Grand Bend, at 21 UTC. It is interesting to
note the overestimation of ozone at 20 and 21 UTC in the back of the plume for the 00z
and 12z runs at the New Haven station, located northwest of Lake St. Clair in Michigan.
This overestimation can be attributed to the slower movement of the ozone plume in the
00z and 12z runs, in contrast to the 18z run, which accurately captures the observed ozone
values throughout the plume’s trajectory. The 18z run demonstrates superior performance
in reproducing ozone levels both near the leading edge and at the trailing end of the plume,
leading to more precise representation of ozone concentrations along its entire path.

4. Summary and Conclusions

This study aimed to investigate the influence of meteorology initialization on surface
ozone prediction in the Great Lakes region using the operational GEM-MACH model at
a horizontal resolution of 2.5 km. The simulations were performed over a period from
19 June to 31 August 2021, corresponding to the extended MOOSE field campaign con-
ducted in the summer of 2021. The analysis was conducted separately for two types of days:
exceedance days, representing days in which observed ozone levels exceeded Canada’s
CAAQS 2024 threshold (60 ppb), and non-exceedance days. The evaluation of the model’s
performance against observations for these two types of days revealed distinct patterns.
During normal non-exceedance ozone days, the model tended to overestimate surface
ozone concentrations, while on exceedance days, it showed underestimation.

The first part of the analysis focused on comparing the ozone predictions between
two different meteorology initialization techniques implemented in consecutive versions of
the operational high-resolution NWP model at ECCC: the four-dimensional IAU method
and the conventional single-time, full-field digital filter. The comparison of statistical
indices (MB, NMB, and RMSE) and regression equations showed improved model per-
formance for surface O3 for both exceedance and non-exceedance days when the IAU
technique was employed compared to when it was not used. Consistent with this, the sta-
tistical evaluation of key meteorological parameters, such as daylight 2 m temperature and
10 m wind field, also demonstrated enhanced model predictions for meteorology when the
IAU approach was employed for model initialization. These findings underscore the impor-
tance of employing advanced meteorology initialization techniques to enhance the overall
forecasting capabilities of NWP models for applications in air quality and meteorology.

Moreover, this study highlights the link between the accuracy of meteorological param-
eters achieved through the IAU initialization technique and the subsequent performance of
the model in predicting surface ozone concentrations.

In the second part of this study, we focused on investigating the sensitivity of ozone
prediction to the initialization time of the simulation cycles. We compared simulations
conducted at three different initialization times: 00z, 12z, and 18z, with the aim of assessing
how the choice of initialization time influences the accuracy and reliability of surface ozone
predictions. Our analysis revealed variations in the predicted ozone concentrations when
the initialization time differed. Specifically, the simulation initialized at 18z demonstrated
superior performance, especially during days with high ozone exceedance, where we
observed a steeper regression line and lower error values compared to the 00z and 12z runs.
Furthermore, through statistical and regression analysis of the afternoon period’s meteo-
rology, we found that temperature is relatively less sensitive to the choice of initialization
time, showing only minor improvements in the 12z run. However, wind speed, especially
on days with high ozone levels, displayed a more pronounced response to the initialization
time, with the 18z run outperforming the other two.

Further in-depth analyses, based on domain-wide, average diurnal time-series data
and spatiotemporal analysis of a high-ozone case study observed on 24 August 2021 in
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Sarnia, unveiled the key factors contributing to the improved ozone predictions in the 18z
run. It was found that the superior representation of wind speed during the peak hours of
ozone played a pivotal role. The 18z run exhibited enhanced performance in replicating
ozone levels at both near the leading edge and at the trailing end of the plume with greater
accuracy, resulting in a more precise representation of ozone concentrations along the
entire path.

Overall, this study emphasizes the critical role of meteorology initialization in en-
hancing surface ozone prediction. It underscores the importance of selecting the optimal
time of the day for model initialization, with the 18z initialization showing improved
performance for ozone prediction. This study sheds light on the crucial impact of wind
speed representation on surface ozone prediction quality.

These findings contribute to our understanding of the factors influencing ozone pre-
diction and provide valuable insights for optimizing the initialization process in future
modeling efforts. By considering the sensitivity to initialization time, we can enhance the
accuracy of ozone forecasts, thus, improving our ability to address air quality concerns and
protect public health.

It is important to note that while our analysis focused on the Great Lakes region,
the optimum initialization time may differ across various locations due to their unique
meteorological and geographical characteristics. Thus, a region-specific approach is crucial
when determining the optimal initialization time for accurate ozone prediction in different
areas. Furthermore, as a potential avenue for future research, the incorporation of chemical
initialization in the model warrants exploration. Currently, the operational setup of GEM-
MACH used in our simulations only initializes meteorological fields, while the chemistry
is recycled. The inclusion of chemical initialization could offer valuable insights into the
interplay between atmospheric chemistry and meteorology, potentially leading to more
accurate and comprehensive ozone forecasts.
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