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Abstract: Many issues pioneered by Jackson Herring deal with how nonlinear interactions shape
atmospheric dynamics. In this context, we analyze new direct numerical simulations of rotating
stratified flows with a large-scale forcing, which is either random or quasi-geostrophic (QG). Runs
were performed at a moderate Reynolds number Re and up to 1646 turn-over times in one case. We
found intermittent fluctuations of the vertical velocity w and temperature θ in a narrow domain of
parameters as for decaying flows. Preliminary results indicate that parabolic relations between nor-
malized third- and fourth-order moments of the buoyancy flux ∝ 〈wθ〉 and of the energy dissipation
emerge in this domain, including for passive and active scalars, with or without rotation. These are
reminiscent of (but not identical to) previous findings for other variables and systems such as oceanic
and atmospheric flows, climate re-analysis data, fusion plasmas, the Solar Wind, or galaxies. For QG
forcing, sharp scaling transitions take place once the Ozmidov length scale `Oz is resolved—`Oz being
the scale after which a turbulent Kolmogorov energy spectrum likely recovers at high Re.

Keywords: rotating stratified turbulence; intermittency; dissipation; buoyancy flux; kurtosis

1. Introduction

Much progress has been made in our understanding of turbulence, developing and
analyzing experiments, observations, direct numerical simulations (DNSs), as well as
numerous theoretical and modeling techniques, among them the direct interaction approxi-
mation (DIA) stemming from a renormalization-group (RG) procedure [1], the test-field
model (TFM), and related second-order closures, often Markovianized such as the Eddy-
Damped Quasi-Normal Markovian (EDQNM), or the quasi-normal scale elimination [2]
(see [3–5] for recent reviews, and this volume). These flows are complex, due to the large
number of eddies interacting non-linearly, as in homogeneous isotropic fully developed
turbulence (FDT), and due to their inherent lack of predictability [6–8]. Flow structures
change in the presence of waves, stemming for example from imposed gravity, rotation,
or a strong uniform magnetic field and, specifically, their behaviors differ according to
how fast the waves are relative to the eddy turn-over time τNL = Lint/Urms with Urms, Lint
the r.m.s. velocity and the integral length scale. One of the governing parameters of the
resulting dynamics, beyond the Reynolds number, is the ratio G = τP/τNL with τP the
characteristic period of the waves; G is the Rossby number in the presence of an imposed
rotation, or it is the Froude number in the presence of stratification.
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Accurate direct numerical simulations with pseudo-spectral methods were devel-
oped in particular at MIT and NCAR in the early 70s and were immediately put to use
by Jack Herring to study turbulence, as e.g., in the context of the growth of errors in
numerical modeling of the atmosphere [8], of two-dimensional (2D), axisymmetric or
QG turbulence [9–11], for comparing closures to DNS [12,13], including for non-Gaussian
statistics and intermittency in the far dissipation range [14,15]. Jack Herring was central to
this introduction of models and DNS to complement experimental and theoretical studies
of FDT, and he then moved on to study stratified turbulence [16,17].

Characteristic of turbulence is the presence of localized extreme dissipation in many
settings [18,19]. In the ocean, satellite altimetry allows to study the interactions of large-
scale planetary or (sub-)synoptic-scale waves with shear structures, as observed for example
in the Gulf Stream and the Kuroshio Current [20,21]. Turbulence leads to filamentation, as
seen in phytoplankton dynamics forced by hurricanes [22], as well as to energy transfer
and dissipative events (e.g., [23,24]). There is also recent radar data indicative of extreme
vertical drafts in the (strongly stratified) polar summer mesosphere [25]. Furthermore,
waves can change the energy spectra, as demonstrated in weak turbulence [3], detected in
the atmosphere [26] and in DNS [27], and as shown in magnetohydrodynamic (MHD) as
well [28,29]. Atmospheric data can be related to numerical results for strongly stratified
flows showing quantitatively that turbulence interacting with fast waves can be more
intermittent than FDT [30,31] in a narrow domain of parameters (see [32] for Solar Wind
observations, and [33] for energy dissipation in reconnection events leading also to particle
acceleration in the magnetotail).

In this context, we present preliminary results using DNS on relationships between nor-
malized third and fourth order moments taken as proxies to characterize the intermittency
and dissipative properties of rotating strongly stratified turbulence, contrasting behav-
iors for high vs. low kurtosis of the vertical velocity with varying Froude and Reynolds
numbers (see next Section for definitions). Similar relationships have been found in the
turbulent atmosphere and ocean [34–38], climate data re-analysis and glaciology [39,40],
and in fusion plasmas [41–43], the magnetosheath, the interplanetary magnetic field or the
cosmos [44–48]. Equations, definitions and our numerical methodology are given in the
next section. Some of these properties for several field variables for the new runs performed
herein are presented in Section 3 for Navier–Stokes and stratified flows. Rotating stratified
turbulence is analyzed in somewhat more detail in Section 4. An overview is given in
Section 5, and Section 6 presents a discussion and conclusions.

2. Numerical Set-Up
2.1. Equations and Definitions

We perform several sets of numerical simulations for an incompressible (∇ · u = 0)
velocity field u = (u, v, w) = (u⊥, w) with rotation and stratification. The active scalar
θ (called in the following temperature) is in velocity units; strictly speaking, θ and the
temperature have opposite signs, but they are linearly related through a thermal expansion
coefficient. With ν, κ the kinematic viscosity and thermal diffusivity, taken equal, p the
pressure, N = [−g∂z θ̄/θ0]

1/2 the Brunt-Väisälä frequency, and f0 = 2Ω, Ω = Ωz? an
imposed rotation in the vertical direction of unit vector z?, the Boussinesq equations are:

∂tu + (u · ∇)u = −∇p− Nθz? + 2u×Ω + ν∇2u + Fu , (1)

∂tθ + (u · ∇)θ = Nw + κ∇2θ + Fθ . (2)

Two types of forcing for Fu, Fθ have been implemented, both set in the large scales at a
wavenumber kF ≈ 2.5. The first one has random phases and is white noise in time. The
second forcing, for the rotating stratified turbulence (RST) case, ensures a quasi-geostrophic
balance at all times in the forcing modes (see [11]), following the procedure described in
detail in [49] for QG initial conditions with zero vertical velocity. Pressure balance with the
Coriolis force in the horizontal is enforced, as well as hydrostatic momentum balance due
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to gravity (see [50] for a different implementation in a study of balanced dynamics). One
might note that the time-scale associated with the forcing, in particular in the case of white
noise, may matter in the interactions between waves and eddies, with more waves for short
correlation times, in particular at low Froude number for which N becomes comparable to
1/∆t, where ∆t is the time-step [27]. The buoyancy flux B f , the kinetic energy dissipation
εdu and the potential vorticity PV (point-wise invariant in the absence of dissipation) are:

B f = N〈wθ〉 ; εdu = ν
〈
|ω|2

〉
; PV = f ∂zθ − Nωz + ω · ∇θ , (3)

with ω = ∇ × u the vorticity. B f is an energy exchange term with the same physical
dimension as εdu. It leads to local changes in density in the presence of gravity waves
which need to be modeled in large-eddy simulations. Characteristic scales can be defined as
the Taylor micro-scale λT that factors in the dissipation in the inertial range, the dissipation
scale ηK based on a Kolmogorov spectrum, the buoyancy scale LB measuring the effect of
stratification in the large scales, and the Ozmidov scale `Oz:

λT =

( 〈
u2〉
〈ω2〉

)1/2

, ηK =
( εdu

ν3

)−1/4
, LB =

Urms

N
, `Oz =

( εdu
N3

)1/2
;

`Oz
ηK

=

(
LB
λT

)3/2
. (4)

The last expression indicates the multi-scale link in the dynamics of the flow between the
development of turbulence and its stratification. The dimensionless parameters governing
the fluid behavior are the Reynolds, Rossby and Froude numbers, Re, Ro, Fr, with the
Prandtl number Pr ≡ ν/κ = 1 here:

Re =
UrmsLint

ν
, Ro =

Urms

f Lint
, Fr =

Urms

NLint
; Rλ =

UrmsλT
ν

, RB = ReFr2 , (5)

with Rλ, RB the Taylor and buoyancy Reynolds numbers. For the purely stratified runs, the
forcing scale L f = 2π/kF is used in the evaluation of the parameters instead of the integral
scale Lint. One also defines the interaction parameter RIB and, when involving gravity
through N, the Richardson number Ri based on an overall vertical gradient of u⊥, as well
as a local gradient Richardson number Rig:

RIB =
ω2

rms
N2 =

εdu
νN2 =

(
LB
λT

)2
; Ri =

N2〈
∂zu2
⊥
〉 , Rig =

N(N − ∂zθ)

[(∂zu)2 + (∂zv]2]
, IRi =

〈
Rig
〉

. (6)

The phenomenological evaluation of kinetic energy dissipation, εD = U3
rms/Lint, is based

on expressing that it occurs in an eddy turn-over time, irrespective of the (small) viscosity.
When εdu becomes comparable to εD, as in FDT, one has RB = RIB. Note also that Ri, Rig,
in the absence of uniform shear, are based on large-scale shear resulting from the overall
nonlinear dynamics. One can also define a Taylor Froude number Fλ and relate it to the
other parameters. After simple manipulations, one has:

Fλ ≡
Urms

NλT
=

LB
λT

=
ReFr
Rλ

= R1/2
IB =

(
`Oz
ηK

)2/3
. (7)

The RST runs cover the three regimes identified in [51]: wave and viscous-dominated at
small [Fr, RB], eddy-wave interactions at intermediate values, and the eddy-dominated
regime with a resolved turbulent inertial range beyond the Ozmidov scale (`Oz > ηK).
These three regimes can likely be related to the classification proposed in [52] for the
nocturnal planetary boundary layer (PBL) into weakly stable, transitional, and very stable
regimes: when increasing the Froude number, there is a drop in the Richardson number,
particularly marked in the transition regime, and a sharp increase in eddy diffusivities.
Another classification of stratified flows can be found in [53] (see also [54,55]) in which
the role of viscous dissipation, governed by a small Reynolds number, is particularly
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emphasized. This is in contrast to the role of fast waves compared to nonlinear eddies, as
governed by a small Froude number; the competition between these two effects can be
encompassed in the parameter RB = ReFr2, or in RIB, but not necessarily uniquely [56]. At
low RB, anisotropy comes strongly into play. Previous studies (see e.g., [57]) have shown
that when the system is forced three-dimensionally, this results in a significant excitation of
wave modes which, as a result of viscous effects, can excite less vortical modes. However,
their interactions with waves are still present [58], and we call this regime wave dominated
since no turbulence range is excited. We also note that, at a given (high) buoyancy Reynolds
number, all three regimes can be identified in the energy spectra in a given flow, provided
LB, `Oz and ηK are resolved (see [59] for an analysis of these regimes using a turbulence
closure). Different values for RIB can be found when using the energy injection rate 〈Fu · u〉
instead of εdu, the two equilibrating only on average. This is particularly relevant when
there are strong intermittent fluctuations in the system [60,61], and this balance can also
be broken in the presence of an inverse energy cascade. Finally, the skewness and excess
kurtosis of a random variable V, with averages taken over three-dimensional (3D) space
and with SG

V = 0, KG
V = 0 for a Gaussian, are defined as usual, with the following parabolic

relation to be tested in this paper, e.g., for V = B f :

SV =
〈

V3
〉

/
〈

V2
〉3/2

, KV =
〈

V4
〉

/
〈

V2
〉2
− 3 ; KV(SV) = aVS2

V + bV . (8)

2.2. Overview of the Direct Numerical Simulations

We use a variety of DNS (see Table 1). The runs labeled H are for the hydrodynamic
case (Navier–Stokes, N ≡ 0, Ω ≡ 0); the Si=1,6 runs deal with the Boussinesq equations with
Ω ≡ 0. The R, Q runs are RST with random or QG forcing; all these runs have N/ f0 ≈ 5,
leading to 0.28 ≤ Ro ≤ 3.7. Smaller Rossby numbers would imply the development of a
strong inverse energy cascade (see e.g., [62] and references therein), a cascade that would
be altered by the large-scale forcing when there is insufficient scale separation as here. The
dependence of kurtosis on skewness for various fields in the presence of both inverse and
direct energy cascades is left for future work.

The linear dimension of the cubic grid is np, varying from 128 to 512. The code is a ver-
satile pseudo-spectral formulation of the time-integration of a large set of partial differential
equations for fluid and plasma turbulence, with efficient hybrid parallelism implemented
in a periodic box [63]. There is a version of the code in non-cubic geometry, as well as with
non-periodic boundary conditions in one direction for the incompressible case [64]. TM is
the extension in terms of turn-over time τNL of the segment of the simulation used to build
the statistics, with 41 ≤ TM ≤ 1646 across all runs. Data is gathered roughly four times
every τNL, but for purely stratified runs, statistics of the dimensionless parameters are taken
around the first peak of dissipation in order to avoid the effect of energy accumulation in
the slow-mode leading to vertically sheared horizontal winds [65,66]. An estimate of the
error on the skewness, and thus of its departure from Gaussianity, is

√
6/NS, and twice that

for the kurtosis [38,67], NS being the number of independent samples. For our runs, the
worst-case gives S > 0.38 for a flow to be determined to be non-Gaussian, and ≈0.06 in the
best case. All Taylor Reynolds numbers are above≈27 and should thus suffice to determine
small-scale intermittent properties of the flow [68,69] when properly averaged over long
times. In fact, local quasi-singular behavior in the intensity and curvature (morphology) of
the vorticity and strain tensor can already be discerned at moderate Rλ when accurately
evaluating the geometrical properties and anisotropy of the flow close to such structures
through a so-called sparseness scale [70–72].

Finally, in Table 1, KM
w is the maximum over time of the kurtosis of the vertical ve-

locity, a signature of large-scale intermittency and strong dissipation in the transitional
regime [30,31,73,74]. Most of the RST runs are at low to intermediate RB with high KM

w , as
for the stratified runs. How well the runs are resolved is measured through ResN = kmaxηK,
with kmax = np/3 using a standard dealiasing method. ResN ≥ 1 implies that the dissi-
pation scale is resolved by the numerical grid; a, b are the parameters when performing
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aS2 + b fits analyzing K(S) for the buoyancy flux; r.m.s. errors are between 1.8 and 6.3%
for all runs for a, and between 0.8 and 2.3% for b, with respective averages for the eight
QG runs of 4.27% and 1.44%. The extent of the turbulent range beyond the Ozmidov scale
is ResT = `Oz/ηK = F3/2

λ ; when greater than unity, a sharp transition occurs in the K(S)
scaling parameters for both B f and the kinetic energy dissipation εdu (see Section 4 below).

Table 1. Characteristics of the hydrodynamics (H), stratified (S) and RST runs with random (R) or QG
(Q) forcing. KM

w is the temporal maximum kurtosis of vertical velocity, TM the final time in units of
τNL, and ResN = kmaxηK the numerical resolution for FDT. [aB, bB] are fit coefficients for the parabolic
law of B f , ResT = `Oz/ηK = F3/2

λ is the extent of the fully turbulent range, and IRi =
〈

Rig
〉

is the
averaged gradient Richardson number. ResT and IRi mark a clear scaling transition.

ID np N Fr Re Rλ RB Ro KM
w TM ResN aB bB ResT IRi

H1 128 0 – 306 28 – – 0.1 142 2.0 2.8 6.2 – 0.82
H2 512 0 – 821 53 – – 0.06 150 3.7 3.9 7.0 – 0.34

S1 512 16. 0.032 3223 162 3.3 – 5.06 42 1.96 2.49 7.96 0.51 7.1
S2 512 14. 0.036 3209 162 4.2 – 3.88 64 1.97 1.06 8.51 0.61 5.4
S3 512 11.8 0.042 3158 155 5.6 – 5.6 59 1.97 5.52 12. 0.79 3.7
S4 512 8. 0.060 3017 134 11. – 15.3 428 1.97 13.8 29.4 1.6 1.6
S5 512 5. 0.089 2792 113 22. – 6.09 98 1.90 14.6 10.3 3.3 0.72
S6 512 2.95 0.145 2692 93.3 56. – 4.09 41 1.71 5.31 8.61 8.6 0.28

R1 128 4.78 0.056 454 43 1.4 0.28 8.7 148 2.3 7.2 8.2 0.45 4.1

R2 128 3 0.1 345 31 3.3 0.49 5.5 136 2.2 3.1 8.8 1.2 2.7
R3 128 1.4 0.24 299 27 16.6 1.2 1.2 134 2.1 3.7 5.6 4.3 1.3
R4 512 1.4 0.36 2231 94 293 1.8 0.37 51 6.2 3.1 4.0 25. 0.3

Q1 128 4.78 0.07 631 53 3.2 0.36 10.8 197 2.5 3.4 16.5 0.76 3.1
Q2 128 3 0.12 450 38 6 0.6 5.6 169 2.0 3.6 9.9 1.7 0.69
Q4 256 3.5 0.11 942 63 11.3 0.55 4.16 91 3.0 4.4 10.3 2.1 1.8

Q3 128 1.4 0.29 370 31 30.5 1.4 1.6 1646 1.7 1.58 5.5 6.4 0.9
Q5 256 1.4 0.36 694 48 87.5 1.8 1.0 89 3.1 1.45 6.2 11.9 0.6
Q7 512 1.4 0.36 1063 62 140 1.8 0.69 183 3.8 1.6 5.8 15.3 0.5
Q8 512 1.4 0.40 2641 102 385 1.9 0.8 96 3.1 1.7 6.0 33.3 0.3
Q6 256 0.7 0.73 636 44 343 3.7 0.22 86 3.2 1.4 3.8 34.3 0.2

Many studies of stratified flows have been performed [27,53,54,75–80]. Small-scale
intermittency is present once `Oz/ηK > 1, whereas at large-scale it is observed in a restricted
range of values of Rig strongly peaked for shear instabilities (as well as in a narrow range
of Fr, RB, ResT), without rotation [30], or with it as shown in this paper. An increase
in the amplitude of nonlinear PV when going to higher buoyancy Reynolds number is
also observed [74,75]. Note also that, in the presence of a strong Coriolis force, a quasi-
geostrophic balance is obtained that can lead not only to an inverse energy cascade to large
scales (Ref. [62] and references therein), but in fact to a dual constant-flux energy cascade
to both large and small scales [81–83].

3. Large-Scale and Small-Scale Intermittency in Turbulence

Intermittency, measured by non-Gaussian statistics [14], can modify passive scalar ad-
vection such as pollutants, and thus the chemistry within turbulent flows, e.g., through seg-
regation as in the convective boundary layer, in particular when strong shear is present [84]
(see [48,85] in the interstellar medium and galactic contexts). These baroclinic instabili-
ties can be abrupt and result in turbulent bursts, reminiscent of large-scale on-off inter-
mittency (LSI). There are in fact several such findings of LSI, starting with the proba-
bility distribution function (PDF) of the temperature which can be non-Gaussian (e.g.,
Métais and Herring [16], Rorai et al. [73]). One of the striking new results in [31] is that
dissipation can be stronger locally than for FDT, as quantified by measuring the minimum
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flow volume needed to reach some level of energy dissipation, say 50%. Close to the peak
of intermittency of w, θ, this volume can be as small as 12%, compared to 15% for FDT at a
similar Reynolds number, and less than 4% for the active scalar, possibly indicating than a
log-normal distribution is not adequate for the statistics of these flows [86] (see [87] for the
FDT case). The waves can enhance dissipation in hot spots even when, globally, the flow is
constrained by the large-scale, smooth dynamics. Extreme events are observed frequently
in the atmosphere, e.g., in terms of w, θ [88], of the rate of energy dissipation [89] as well
as for extreme precipitation [90,91]. A possible role in the formation of such structures is
through the precession resonance of Rossby waves which was analyzed e.g., in [92,93],
leading to their breaking as well as to their interactions with potential vorticity [94,95].
Similarly, in the ocean, wave breaking leads to efficient mixing processes [77–79], and
observations of double-signed skewness can be the signature of a front, modeled in a
dichotomic way for relative vorticity [67] as for the Agulhas current.

A simple non-Gaussian model is to express the PDF for field V as the sum of a normal
distribution and its square, the relative weight of the two being governed by an open
parameter. When the quadratic term dominates, one finds KV = 3S2

V/2 + b [96]. In
fusion plasmas, similar relationships are obtained [41,42,97,98], with different quadratic
laws followed by different experiments [43]. The properties of the high-variability parts
of turbulent flows, such as shear layers and their relaxation, seem universal and can be
described by the model in [34], such shear layers developing at the boundaries [97], or
as internal structures due to the turbulence. In fact, high kurtosis for the velocity and
temperature at the edge of a shear layer have been found in a DNS of a Kelvin-Helmholtz
instability [99], and singular shear layers can lead to intrinsic stochasticity [100]. Moreover,
interactions with large scales in fluid turbulence represent roughly 20% of the kinetic energy
flux at moderate Re. For structure functions beyond the energy level, including in the
absence of waves, the nonlinear interactions are found to be mostly non-local, involving
the integral scale [101], but with a tendency towards locality as Re → ∞. Large-scale
extreme events can arise as well in climatological studies, for example from quasi-resonant
amplifications of planetary waves [92]. One also recovers a quadratic K(S) law by adding
three Gaussian PDFs, a model suitable for climate temperature variability [102], with the
result that knowledge of skewness becomes a predictor of kurtosis. In fact, (S, K) mapping
can be taken as an indicator of the turbulent dynamics in all these flows [44,46,67,96].

3.1. Is There a Skewness–Kurtosis Relationship for Fluid Turbulence with a Passive Scalar?

Curiously perhaps, FDT (with a passive scalar) has barely been analyzed in the context
of K(S) laws. This problem was studied in Herring and Kerr [12] in the decaying context
and for Pr = 0.5. The skewness of the velocity was compared with experiments and with
predictions of turbulence closures at Rλ comparable to what we compute in this paper,
but here in the forced case. The flatness evaluated from the DNS was also contrasted with
that given by closures (DIA and TFM). Good agreement was observed up to Rλ ≈ 30.
At high Rλ (above 800 or so), the experimental and numerical data reviewed in [103] for
fluid turbulence does lend some credence to a relationship K ∼ Sj, j ' 2.5 for the velocity
derivative, as noted in [43] (see also [104], Figure A6, for a recent estimate of K, S for
numerical and experimental fluid turbulence with Rλ in excess of 6000). Furthermore, a
statistical study of passive scalars in the atmosphere under many physical conditions gives
a parabolic relationship, with in some cases rather high values of both SP and KP [36,37].
Several PDFs have been invoked to justify a quadratic relationship between K and skewness
S, depending on the tails of such distributions [105], and exponential wings in PDFs of the
horizontal vorticity for RST flows have been found [74]. Thus, we briefly discuss first the
kurtosis and skewness data for FDT and a passive scalar with Pr = 1.

Figure 1 (top) displays K(S) for run H2 for the vertical velocity, temperature and ωz
(a–c). At the bottom, K(S) is shown for the buoyancy flux B f (we are not considering
here the joint w, θ distribution), for runs H1 (d) and H2 (e), with least-square fits for [a, b]
given in Table 1. Note that, for a unimodal and symmetric distribution, one can derive
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estimates that improve on the Cauchy-Schwarz inequality, namely K ≥ S2 − 6/5 [106],
thus limiting potential closures [107]. In all the K(S) figures, two parabolae are drawn,
K(S) = 1.5S2 − 1.1 and K(S) = 3(S2 + 2) (using n = 5 in [108], Equation (9b)). The first
formulation appears in a variety of data, as described earlier. It should also be mentioned
that it is quite close to the approximation developed in [109] (who also considers joint
distributions), namely K ≈ 16S2/9, emanating from an expansion of a PDF assumed to
be quasi-Gaussian and first analyzed on data of coastal waves [110] (see e.g., [111] in the
context of the Weibull distribution for a model of sea surface wind velocity, and [112] for
recent data analysis of strong waves on a beach with a sloping bottom). The second K(S)
formulation arises from the analysis of stochastically-generated skewed distributions (SGS)
for which general K(S) relations are obtained. These SGS distributions can be related to
Markov processes, thereby shedding some light on the underlying stochastic systems [108].
As expected, no measurable intermittency is seen in Figure 1 in the large-scale field w, with
both S and K close to zero, but θ, ωz display measurable non-zero values that are at times
higher than those given in Herring and Kerr [12], the forcing likely allowing for wider
excursions. In plasmas, the K ∼ S2 law obtains for both quiet and active regions and, in that
sense, the relationship itself may not be related to the development of strong turbulence,
but rather to intrinsic multi-scale properties of the fields themselves [41]; εdu (not shown) is
also close to a quadratic law, but with higher coefficients. Taking ωz as a (skewed) velocity
gradient, the values of S, K are in fact consistent with data in [113], but higher Reynolds
numbers will have to be explored to see whether a parabolic law actually appears.

(a) (b) (c)

(d) (e)

Figure 1. Kurtosis vs. skewness for the vertical velocity w (a), temperature θ (b) and vertical vorticity
(c) for run H2. Bottom: K(S) for 〈wθ〉 for runs H1 (d) and H2 (e). All lower solid lines follow
K = 3S2/2− 1.1 and upper ones, K = 3S2 + 6 (see text). Red dashed lines are fits as given in insets.
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Many models describe the interactions between widely separated scales from energy-
containing to dissipative eddies. The combination of (weak) fast additive noise and large-
scale multiplicative noise is known to produce PDFs with power-law tails [114]. Further
examples are on-off intermittency in FDT close to instability [115], the scale-dependent
creation of intermittency [116], or the magnetic dynamo problem [117]. Chaotic dynamics
can also be seen as quasi-linear behavior forced by non-Gaussian processes whose events
in the tail can trigger bifurcations in the system [118]. In this context, let us mention
the climate model of Hasselmann [119] which begins with a linear stochastic (Langevin)
equation for the temperature anomaly Θ, namely ∂tΘ = −λΘ + η; here, λ represents
the heat flux and η is a noise term modeling small-scale fast fluctuations. One can in
fact write λ = λ̄ + λ′ with λ̄ an average, making the noise multiplicative [38] (see [120]
for a recent review). Indeed, small-scale eddies are in large numbers, have low energy
compared to that of the large scales and are intermittent, leading to complex behavior. This
makes it plausible to model them through a stochastic linear noise acting on the slower
large scale eddies (see also [121] for another Langevin approach, and [122] for stochastic
turbulence models). One can then derive the parabolic relationship in Equation (8) with
the expectation that a ≥ 3/2, b ≥ 0 [38], a finding corroborated by several analyses of
climate data. The long-term (monthly onward) climate statistics are Gaussian, but the daily
averages reflect the stochasticity of small-scale eddies [38] which also interact with waves.
Therefore, on some intermediate temporal scale for the large structures, these small eddies
can be viewed as noise, although there exist nonlocal (in scale) interactions between small
and large scales. This leads to enhanced dissipation at the level that is needed in order that,
in its adimensionalized form and at least in the absence of waves, it be of order unity, both
for fluid turbulence [19,123] and for fusion and space plasmas [124,125].

3.2. K(S) Relationships for the Buoyancy Flux in the Purely Stratified Case

For strong stratification, the vertical velocity intermittency can be significant, like in
the nocturnal PBL [18,34,52], or for DNS in a narrow range of Froude number [30]. Does a
K(S) relationship ensue in that regime? To answer this question, we examine the results
of a series of purely stratified runs with 0.032 ≤ Fr ≤ 0.145, and with high Re ≈ 3000. At
left in Figure 2 is K(S) for w for the run with the highest kurtosis of w [30,31]. We observe
that there is a large number of data points with large excess kurtosis, but the skewness
of w remains close to zero. On the other hand, such is not the case for the buoyancy flux
B f shown at right in Figure 2 for all the S runs. In the inset, three parabolae are given
(dash; dots; and dash-dots) corresponding to different [a,b] fits. The first remark is that,
for stratified turbulence, a parabolic K(S) law seems to emerge as well for B f (and for εdu,
not shown). Note that practically all runs lie on the lower parabola marked with dash,
and showing as an orange cloud of points in the plot. Superimposed on this, for two runs
close to the maximum of Kw, there is an explosion in the values taken by the kurtosis (blue
triangles and black squares, runs S3 and S4). This confirms the analysis performed in [31]
that dissipation in this Fr range takes high local values; it corresponds to a transitional
phenomenon with high intermittency of vertical velocity, flux and dissipation itself, and
thus leading to enhanced mixing as we move from regime I (wave dominated) to regime II
(eddy-wave interactions), likely similar to what happens in the nocturnal PBL [52]. The
a coefficient in front of the quadratic term in the K(S) law for the vertical velocity in the
PBL is thought to depend on the stability of the layer through Rig [54,126]. Indeed, strong
vertical drafts are clearly correlated with Rig ≈ 1/4 (see [30], Figure 3). It may be that K(S)
laws are emerging here from the flow being at the edge of instability [127,128]. An analysis
similar to that of Vieillefosse [129] yields nontrivial relations between high-order moments
of the field gradients near the onset of convective instabilities [130]. An inverse scaling, on
more than two orders of magnitude, between two a-priori unrelated parameters, namely
one governing stratification (the gradient Richardson number) and one governing the
turbulence in the presence of stratification (the buoyancy Reynolds number)– was observed
in DNS of rotating stratified flows [51]. One could thus infer that the a parameter just
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mentioned would depend in a similar fashion on RB. This inverse Rig ∼ R−1
B relationship

is significant because it implies a strong dynamical effect of vertical shear, and a balance
between vertical gradients (of the turbulent horizontal velocity field) and the turbulent
isotropic eddies beyond the Ozmidov scale [51], as hinted in fact by several authors over
the years in varied contexts.

(a)
(b)

Figure 2. (a): Kurtosis vs. skewness of the vertical velocity for run S3 at the peak of Kw [30,31]. Note
the narrow range of skewness allowing to focus on small Sw, high Kw values. (b): KB(SB) for the
buoyancy flux B f for all stratified runs; parabolic fits and color symbols are given at right.

4. The Case of Rotating Stratified Turbulence (RST)

Intermittent vertical velocities are also found in RST, for decaying flows [74] and, as
shown here, in forced runs. We look first at global dynamics. In Figure 3a is given as
a function of time the total kinetic energy for run H1 as a base, and for three runs with
varying Fr and 0.36 ≤ Ro ≤ 3.7. The higher level of saturation for the RST runs is due to
the fact that on the one hand, there is a lesser dissipation due to the strong effect of waves,
and on the other hand, Ro ≈ 0.36 for run Q1, which is low enough that an inverse transfer
of energy to the large scales is plausible, although it cannot be distinguished directly on
energy spectra which are still peaked at k ≈ kF (see Figure 3d). Higher Ro may correspond
to the environment of tropical storms in which turbulence also plays a dual role [131,132].
In Figure 3b we plot Kw (dotted magenta line), the kinetic (solid blue), potential (black
dashed) and total energy dissipation rates for run R1, with the time expressed in units of
the turnover time τNL. We see that Kw can take large values, as in the purely stratified
case [30]. There are also discernible excursions in the dissipation rates. The high-K values
are associated with local instabilities and overturning regions; these excursions in Kw are
also present in several other runs. We recover here the behavior analyzed in detail in [30,31]
for purely stratified flows: narrow peaks in Kw as a function of Fr and RB occur, compatible
with observed strong updrafts in the DNS. The temporal evolution of the kinetic energy EV
and enstrophy

〈
|ω|2

〉
are given for the total length of that run in (c), showing a persistence

in the amplitude of fluctuations. The sporadic energetization of the flow has its signature
in energy spectra shown in Figure 3d for run R1; indeed, the kinetic and potential spectra
gain close to a factor of ten at the smallest scales for an excited state (with a peak in Kw)
when compared to quiet times (with a trough in Kw), whereas the spectra have comparable
amplitudes at the largest scales. Similar differences in small-scale spectra occur for the QG
runs. Note also that, the forcing being centered in the large scales, no inverse cascade of
energy that would occur in the presence of strong rotation can be observed in these runs
(see [81,82] for DNS resolving both the inverse and direct energy cascades).
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(a)

(b)

(c) (d)

Figure 3. Time variation of (a) kinetic energy for runs (see inset) up to t/τNL ≈ 100; (b) kinetic,
potential and total dissipation (scale at right), and Kw, run R1; (c): kinetic energy (black) and enstrophy
(red, scale at right) for the total length of Q3. (d): Kinetic (solid black/dash blue) and potential (solid
red/dash green) energy spectra at resp. maximum and minimum kurtosis of w, run R1.

In Figure 4, we give K(S) for w for runs R1–R3 (a–c) , and for B f for runs Q1, Q3, and
Q8 (d–f), with buoyancy Reynolds numbers varying from 1.4 to 385. At top, the skewness is
typically bounded by ±1 or less, and there is a clear decrease in the kurtosis of the vertical
velocity as RB increases from left to right. We note that, for all these runs, and similarly
to the FDT and purely stratified cases, the vertical velocity has basically no skewness
but its kurtosis can take moderate values, especially so at intermediate RB (here, the first
plot), although no parabolic law emerges from the data. For the buoyancy flux, there is a
marked transition towards a standard scaling (≈ 1.5S2 + b), once the Kolmogorov regime
is sufficiently resolved, i.e., for high enough RB, Rig, and with a classical FDT dissipation
taking place (Figure 4e,f). Note that the intermittency uncovered in this paper likely deals
more with intrinsic properties of dissipation than local accelerations that might be observed
in a boundary layer. A different approach, following [109], is to expand the PDF in terms of
its cumulant under the assumption of closeness to a Gaussian distribution. In the simplest
case, a relationship is obtained, namely K = [4S/3]2, close to the previous expression
(a ≈ 1.5 for small b). The K(S) plots for the temperature (Figure 5a,b) and the vertical
component of the vorticity (c,d plots in Figure 5) are similar as well, as shown for runs Q2
(a,c) and Q7 (b,d). In all cases, the skewness stays close to zero and there is a decrease of
kurtosis as the flows become more dynamical.

A last issue is how much mixing occurs, estimated through B f , εdu taken as proxies [79,86].
Thus, we give in Figure 6, K(S) for εdu for runs Q1, Q2 (a,b) with ResT ≈ 1, and Q5, Q6
(d,e, ResT > 10). Again, a transition is observed, with steeper scaling in the latter case;
similar results obtain for FDT, with a best fit for εdu (run H2) of K = 2.6S2 + 7.2 (not shown).
Note that, for the components of the strain tensor itself, Sij = [∂iuj + ∂jui]/2, we have
K ≥ 21S2/4 in the incompressible case [133]. Figure 6 (right) gives the PDFs of εdu for run
Q3 for times with a high (c) and low (f) Kw; a ≈ −3 power law is plausible, with a larger
extension when the intermittency of w is stronger; note that a shallower scaling for εdu has
been observed in oceanic data, together with substantially higher values of K, S [134]. In

the fits, α =
√

1 + S2
εdu

/4 (see [108]).
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(a) (b) (c)

(d) (e) (f)

Figure 4. Kw(Sw) of vertical velocity for RST runs (a) R1, (b) R2 and (c) R3. KB f (SB f ) of buoyancy
flux for QG runs (d) Q1, (e) Q3 and (f) Q8. Insets give best fits indicated by dashed red lines.

(a) (b)

(c) (d)

Figure 5. K(S) for θ and the z−component of vorticity for runs Q2 (left, (a,c)) and Q8 (right, (b,d)).
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Figure 6. K(S) for kinetic energy dissipation εdu for (a,b) Q1, Q2, and (d,e) Q5, Q6. At right, (c,f) give
the PDFs of εdu at different times (see text).

5. Possible Frameworks for K(S) Relationships

It is not clear what the link of the above results is with the analysis of complex
turbulent flows using the concept of avalanches and of self-organized criticality [127,135].
In that latter case, the dissipative structures at small scale propagate in some fashion
their intermittency to the large scales, just as small avalanches become large through
merging. Saying it another way, dissipative structures near strain and vortices, or in current
sheets and filaments, exist at the large scale characteristic of the flow and at the small
scale corresponding to their thickness, of the order of the dissipation length. Therefore,
the governing parameter may not be Re or Rλ, but could be related to the ability of the
small-scale structures to organize into larger clusters, or in other words to a transition at
the local (in scale) Reynolds number of unity in the vicinity of the Kolmogorov scale in
fluid turbulence. The occurrence of a quadratic K(S) law, albeit with varying coefficients,
has been noted before. One should analyze large-enough samples [108,136]), but the non-
Gaussianity of turbulence is ascertained, for non-vanishing dissipation, by the exact laws
stemming from the conservation of quadratic invariants, as for kinetic energy in fluid
turbulence [137,138], under several conditions:〈

δu3
L(r)

〉
= −4

5
εdur ,

〈
δuL(r)Σiδu2

i (r)
〉
= −4

3
εdur , (9)

with uL the longitudinal velocity along the distance |r|, and δ expressing velocity differences.
In MHD, cross-field correlations emerge [139] (see [140] for a review), which are central
to the structure of reconnection events [33,47,141]. Inertia-gravity waves, which exchange
energy between the kinetic and potential modes, will not alter the balance at the level of
total energy dissipation. However, when writing an equation for the temporal evolution
of B f , it occurs at the scale of the turn-over time since it deals with large-scale variables,
whereas the equipartition deficiency N

〈
[θ2 − w2]

〉
due to waves evolves on a fast time for

small Fr and can be averaged to be modeled as a stochastic forcing for B f , εdu; this makes
their temporal evolutions akin to systems already discussed herein (see e.g., [38,119]).

Another remark is that, obtaining quadratic K(S) laws for both weak and strong
turbulence, diffusive or not, and dispersive or not, could lead one to conclude that the issue
is more of a mathematical constraint than a physical one. However, the K(S) relationship
is important in limiting possible closures applied to turbulence, as for example in the
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context of solar convection (see [107] for recent developments of closures beyond the
quasi-normal framework). It has also been remarked that these systems have in common a
convective nonlinearity, however weak or intense [97]. The specific transition in the scaling
of the K(S) laws obtained here is linked to the fact that waves become progressively more
strongly coupled to nonlinear eddies, or in other words steepen significantly, thus leading
to enhanced dissipation and to the onset of a Kolmogorov energy spectrum at small scale.
The existence of K ∼ S2 laws at high and low Rλ leads to another possible origin for it,
namely the presence of intermittency in the dissipation range common to all such flows.
As pointed out in [15,142], this range can be prone to extreme intermittency because of a
faster than algebraic decrease of the intensity of turbulence at high wavenumber, a spectral
domain that exists even in the near absence of a nonlinear inertial range at low Rλ. This
likely leaves only a few shear structures dominating the overall statistics. In this context,
studies of Lagrangian turbulence have been able to show the link between the dissipation
range and large scales, with both short and long-range correlations [143].

Computations performed at moderate Rλ identify small-scale intermittency with nu-
merous large-scale structures [15], as opposed to the more familiar vortex filaments [144–146].
Such nonlocal structures could be detected in rotating stratified flows using specific al-
gorithms (see [135] for the identification of current sheets at the onset of the dissipation
range of plasmas in the MHD regime). In that spirit, it would be of interest to consider
as well the case of quasi-geostrophy, that of cubic nonlinearities like for compressible
flows, or for solitons (such as for the Korteweg–deVries or the cubic nonlinear Schrödinger
(NLS) equations and their multi-dimensional extensions), all in the presence of forcing
and dissipation (see also [147] where the K(S) behavior for the NLS equation is associated
with on-off intermittency). The large-scale behavior linked with the presence of Rossby
waves and their possible nonlinear coupling and breaking may also reinforce or even alter
large-scale intermittency.

Finally, a link between inertial and dissipative ranges is consistent with a linear
stochastic model for the fast small scales which is successful in giving K(S) ∼ S2 for climate
data [38,39]. In decaying experiments at both low and high Rλ using sulfur hexafluoride,
the inertial range does not follow a strict power-law, but rather may display a logarithmic
correction that is independent of Reynolds number and that may arise from the dissipative
range, putting into question their independence [148]. Nonlinearities do not seem to be cen-
tral to the establishment of non-Gaussian statistics beyond their (necessary) mode-coupling
role [149], and it is rather the susceptibility of the system being close to criticality, linking
all scales through dissipation that is central to turbulence dynamics and intermittency.
This can manifest itself as avalanches in granular media, or in the development of shear
instabilities in (e.g., RST) flows close to the critical Richardson number ([74,75,89,127,150]
and references therein).

6. Discussion, Conclusions, and Perspectives

In the nocturnal planetary boundary layer, “ ... turbulence is expected to become more
intermittent in very stable conditions“ (Mahrt et al. [52]). Relating to these observations, we
are likely dealing in this paper with two phenomena, possibly superposed and intertwined.
On the one hand, we have the increased intermittency, as diagnosed by a high kurtosis of
vertical velocity and temperature, if in a narrow domain of Froude and buoyancy Reynolds
number [30,74], and signaling the onset of small-scale turbulence interacting with the
larger-scale (inertia)-gravity waves. The signature in physical space consists of a high
local vertical velocity and hence a high local Reynolds number, allowing for instabilities
to develop until the system evolves (in a turn-over time) back to a state dominated by
the fast waves [31,127,130,151], and the cycle can restart. Thus, it leads to strong local
energy dissipation in an otherwise wave-dominated rather placid system, and as such these
isolated hot spots are a critical factor in controlling the overall dissipation. This dynamics
can be modeled e.g., through the temporal evolution of the velocity and temperature
gradient matrices, taking into account the anisotropy of the system and using a closure
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for the pressure Hessian [130]. High kurtosis values for the vertical velocity are narrowly
centered around a peak in Froude number (and in RIB), although it is not known at
this point how much the peak depends on the Reynolds number itself. They can be
associated for example with jet meandering in the ocean and modeled through stochastic
parametrization. In fact, it has been hypothesized – and studied in depth over the years–
that shear flows are central to the critical instability of turbulence, a point further developed
recently in a global fluid context [152–155], and applied to stratified fluids as well [127]
(see [128] for RST, and [156] for plasmas). This transition could also be linked to a role-
change in potential vorticity PV at small scales due to the breaking, at the Ozmidov scale
onward, of gravity waves [80].

On the other hand, different K(S) laws emerge with different coefficients for the
buoyancy flux, the kinetic energy dissipation as well as for mixing as measured through
the ratio B f /εdu. This second phenomenon of a transition between regimes for K(S) is
new to our knowledge, certainly in the specific context of rotating stratified flows, but of
course long computations at higher Re, RIB with a resolved range beyond `Oz are needed.
The scaling corresponds to a shift, in the small scales and possibly as well in the early
dissipation range, in the nature of an intermittency which becomes stronger as the nonlinear
eddies get stronger, and with a K(S) scaling for B f which seems to approach that found
for other turbulent systems [38,41,46]. This is linked to the well-known transition at the
Ozmidov scale of an energy spectrum becoming progressively more Kolmogorov-like.
Many models have been proposed for these K(S) parabolic laws, as partially reviewed all
along in the paper. More work will be needed to sort out the different possibilities, and
to reach higher buoyancy Reynolds numbers corresponding to conditions pertaining to
those in atmospheric and oceanic flows. In order to obtain dissipative structures at higher
RB for long-time runs, a computation in a non-cubic geometry will help tremendously.
For example, it was shown in [157] that in a flat box with a 1:8 aspect ratio, the process of
front and filament formation can be very efficient in sheared flows [130]. The evolution of
extreme events in such flows with comparable geometries was also considered in [158] for
their effect on the mixing of neutrally buoyant particles (see also [159] for a substantially
higher aspect ratio together with using hyper-viscosity). Similarly, peak vertical vorticity
can be close to two orders of magnitude larger than the imposed rotation, as shown in [160]
within a Large Eddy Simulation (LES) framework. Another feature of these flows is
their persistent anisotropy [59,128,161,162], associated, for example, with seasonal oceanic
variability [163]. Thus, the precise formulation of the small-scale parametrization and of
the dissipation of resolved scales in numerical codes may affect the mesoscale dynamical
properties such as energy spectra [164]. Related evaluations for plasma disruptions and
fusion, from MHD to Hall-MHD and beyond, might also be of interest to understand better–
and possibly control to some extent– these strong small-scale disruptive features.

One of the several models of dissipative events leading to a quadratic K(S) relationship
not yet mentioned here is in the context of so-called 1/ f n noise as a signature of long-
time correlations in turbulent hydrodynamic and MHD flows [165] where it is shown
that the transition from Gaussian statistics in the inviscid case to a non-Gaussian one in
the presence of dissipation can be associated with varying properties of energy transfer
through scales. Are there several different classes of universality, though? In this context,
we have already noted that, for the Navier–Stokes equations, there is a clear departure from
standard coefficients for the law K(S) = 3S2/2− 1.1, as well as for low Froude numbers in
the case of stratified turbulence and RST.

Another potential issue is the form of the dissipation operator. When using either
eddy viscosity or hyper-viscosity as a model , or LES, a sub-grid scale algorithm, or the
α-model Lagrangian description for fluids and MHD, do similar quadratic K(S) relations
arise? What about for the cyclostrophic balance in helical stratified flows [166]? Or in the
ideal (ν = 0) case in its pseudo-dissipative range stemming from the eddy viscosity due to
the small-scale equilibrium range [167], or in 2D MHD or even in 1D (allowing for the long
temporal integrations which are needed in this intermediate inviscid but turbulence-like
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phase)? In other words, does modifying the way energy is dissipated in turbulence alter
the K(S) relation for velocity or dissipation, therefore suggesting that it is a crucial feature
for dissipative events? We already know that the PDFs of velocity gradients in the NS case
are affected [168], but it is not clear whether the K(S) law would be. Such renormalized
dissipation arise at high Re, whereas a K ∼ S2 relation is present as well at moderate Re,
for which the viscosity is directly active. If a change in the K(S) law occurs, beyond the one
identified in this paper and related to the onset of a Kolmogorov range beyond `Oz, what
functional form does it take, and are there consequences for accuracy in an evaluation of
the large-scale dynamics that weather and climate codes seek to reproduce faithfully while
using techniques such as LES (see, e.g.„ the discussion in [108])?

We have presented preliminary results, limited in Reynolds number, and much remains
to be done. One issue is to examine the dual constant-flux energy cascade when forcing
is at smaller scale [81,82]. Other questions arise, such as the persistence of large-scale
intermittency of vertical velocity in RST in the presence of a resolved turbulence range,
or of strong helicity (see e.g., [169,170] on intermittency and helicity in FDT). Nonlinear
interactions ∝ u× ω are weakened in vortex tubes, potentially allowing waves to play
a more prominent role in driving the flow closer to the critical state in which strong
vertical drafts and ensuing dissipation occur. A wave-vortex decomposition, such as
that studied e.g., in [171,172], could be of help to distinguish between these different
regimes. One can also ask how anisotropy in RST flows is affected by these strong updrafts.
Large-scale intermittency has also been linked to the role of helicity (velocity-vorticity
correlations) [173], and the eigenvectors of strain can play an important role as well in
intermittent energy transfer, as shown in a simple model in which alignment of vorticity
with strain eigenvector corresponding at first to its intermediate eigenvalue, and featuring
the combination of a shear flow with a horizontal straining field [174] (see also [175]), and
yet anisotropy is essential in possibly stopping the formation of singular structures [70].

We wish to end this text with a direct quote from a review article on waves and
coherent flows in the tropics (Stephan et al. [176], see page 2619): “Theory provides the
qualitative framework—the causal narrative—within which the quantitative information
from models and observations can be meaningfully compared and usefully combined.”
The research of Jack Herring was on the idealized, theoretical side of the study of the
dynamics of the atmosphere, pioneering the inclusive use of theoretical and numerical
approaches. As such, it has provided invaluable information, and causal accounts, for
the idealized behavior of turbulence and the central role played by nonlinear effects in
such—and other geophysical, astrophysical as well as engineering, chemical, biological
and climatological—complex systems.
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