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Abstract: In this study, we applied an explainable machine learning technique based on the Light-
GBM method, a category of gradient boosting decision tree algorithm, to conduct a quantitative
radar precipitation estimation and move to understand the underlying reasons for excellent estima-
tions. By introducing 3D grid radar reflectivity data into the LightGBM algorithm, we constructed
three LightGBM models, including 2D and 3D LightGBM models. Ten groups of experiments were
carried out to compare the performances of the LightGBM models with traditional Z–R relation-
ship methods. To further assess the performances of the LightGBM models, rainfall events with
11,483 total samples during August-September of 2022 were used for statistical analysis, and two
heavy rainfall events were specifically chosen for the spatial distribution evaluation. The results
from both the statistical analysis and spatial distribution demonstrate that the performance of the
LightGBM 3D model with nine points is the best method for quantitative precipitation estimation
in this study. Through analyzing the explainability of the LightGBM models from Shapley additive
explanations (SHAP) regression values, it can be inferred that the superior performance of the Light-
GBM 3D model is mainly attributed to its consideration of the rain gauge station attributes, diurnal
variation characteristics, and the influence of spatial offset.

Keywords: quantitative precipitation estimation; Z–R relationship; LightGBM; radar reflectivity; SHAP

1. Introduction

Quantitative precipitation estimation (QPE), as the basis of quantitative precipitation
forecasting and short-term and imminent warnings of heavy precipitation, plays an impor-
tant supporting role in agriculture, flash flood warning operations, streamflow predictions,
and water resource management [1–4]. Given the good performance of radar data in spatial
distributions, using radar data to produce a QPE is also conducive to solving the problem
that precipitation data are only available at limited sites [5]. For instance, blending radar
precipitation estimates that have better spatial and temporal coverage with accurate rain
gauge data can produce a gridded precipitation dataset over regions of insufficient gauge
density [5–7]. The multi-radar system can provide observational data for producing rapid
update quantitative precipitation estimations over special terrain surfaces, such as lakes
and high-altitude mountainous areas, with high spatial and temporal resolution [1].

Radar reflectivity reflects the content of hydrometeors (such as water droplets or ice
particles) in the atmosphere, which correlates well with the rainfall rate [8]. Therefore,
the radar reflectivity factor is often used as an input variable to estimate the precipitation
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rate [9,10]. An operational radar QPE method, the Z–R relationship [11], was proposed by
the assumed nonlinear relationship between the radar reflectivity factor (Z) and rainfall
rate (R). However, the Z–R relationship is dependent on the raindrop size distribution,
which can vary across different precipitation types and regions [12,13], and this uncertainty
is one of the primary error sources of radar QPEs [1,14]. Fixed Z–R relationship approaches
can be problematic in cases where the relationships vary spatially or temporally throughout
a region [15]. For example, the radar precipitation fields obtained from the currently used
Marshall–Palmer Z–R relationship show a systematic underestimation [15].

It is important to consider these variations when using the Z–R relationship to estimate
rainfall rates since the localized differences can affect its accuracy. Many studies take
these factors into account to develop region-specific Z–R relationships for more accurate
precipitation estimations. In order to improve the radar QPE, a real-time adjustment to the
radar reflectivity–rainfall rates (Z–R) relationship scheme with inverse distance weighting
interpolation was developed by Wang et al. (2012) [16]. Alfieri et al. (2010) suggested
that the Z–R relationship varies over time [17], and thus they proposed a time-dependent
(dynamic) Z–R relationship. This Z–R relationship in a short period should be redetermined
by the observed precipitation and radar reflectivity [17]. Shao et al. (2021) reconstructed a
local Z–R relationship using a genetic optimization algorithm to minimize the errors from
different rainfall patterns and climate zones [7]. Wu et al. (2018) proposed a dynamical Z–R
relationship to improve the precipitation estimation over the Yangtze River based on radar
echo-top height classification [13]. However, these optimized Z–R relationship methods
still struggle to capture the features of rainfall intensity or spatial distribution accurately.

The development of artificial intelligence technology also provides new technical
support for QPEs. Concurrent research applying the techniques from artificial intelligence
literature has shown that quantitative precipitation can be estimated using machine learn-
ing methods. For example, Kuang et al. (2016) improved rainfall estimation accuracy
by proposing a random forest and linear chain conditional spatiotemporal model [18].
Wolfensberger et al. (2021) proposed a QPE model by training a random forest regression
that can significantly reduce the bias of precipitation intensities but overestimate weak
precipitation [19]. Based on support vector machine (SVM) algorithms [20], Sehad et al.
(2017) improved the rainfall estimation over the north of Algeria using Meteosat Second
Generation [21]. Although artificial intelligence methods have shown some advantages in
radar precipitation estimations, there are still lots of challenges in explaining the ability of
artificial intelligence technology.

In recent research, the application of explainable artificial intelligence techniques has
shown great promise in evaluating how various machine learning techniques make predic-
tions or estimations [22–26]. Silva et al. (2022) used XGBoost classification trees [27] and
Shapley additive explanations (SHAP) analysis to explore errors in the prediction of light-
ning occurrence [25]. Stirnberg et al. (2021) applied the SHAP regression values to quantify
the importance of various meteorological drivers on particulate matter concentrations [28].

The radar–precipitation estimation dataset in this research is a category of tabular
data that reflects the point-to-point mapping relationship between radar reflectivity and
precipitation in space. Grinsztajn et al. (2022) suggested that tree-based machine learning
algorithms have strong advantages in typical tabular data processing and even outperform
deep learning on tabular data [29]. For instance, Li et al. (2020) proposed a method to
quickly evaluate aircraft icing severity based on the XGBoost tree-based machine learning
method and found that the proposed approach can provide a suitable alternative to the
numerical simulation approach with reasonable accuracy [30]. However, the efficiency and
scalability of XGBoost are still unsatisfactory, especially when the feature dimension is
high, and the data size is large because the algorithms need to scan all the data instances
to estimate the information gain of all possible split points [31]. Due to the great potential
of machine learning for QPEs, we used the light gradient boosting machine (LightGBM)
to estimate precipitation in this study, which is a variant of the gradient boosting decision
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tree algorithm [31]. Based on the histogram algorithm, the LightGBM can greatly improve
calculation speed and save calculation time.

The following paper is organized as follows: Section 2 briefly introduces the study
area and data used in this research, as well as the experimental design. Section 3 describes
the proposed method to conduct the radar QPE as well as the evaluation methods. Section 4
presents the performance of the estimation results via statistical analysis and a case study.
The conclusions and discussion are shown in Section 5.

2. Study Data and Experiments Design
2.1. Study Area and Data

Figure 1a illustrates the study area and the geographic distributions of the observed
10 min accumulated rainfall amount. The study area encompassed the entire city of
Shanghai located in the southeast of China. The 10 min precipitation rate observations
were obtained from the Automated Weather Station (AWS) network, which consists of over
170 sites in Shanghai. It is important to note that due to measurement limitations and other
factors, the automatic stations may not always provide accurate rainfall data during the
observation process. Therefore, we eliminated the unqualified rainfall data according to
the quality code provided by the dataset.
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Figure 1. The location of (a) rain gauges (depicted as blue dots) within the study area, (b) LightGBM
method with surrounding 9 points, and (c) LightGBM method with single point.

The radar data used in this research were obtained from the new generation of 3D
grid and mosaic weather radar network data developed by the Chinese Academy of
Meteorological Sciences. The mosaic data can mitigate various problems caused by the
geometry of radar beams, such as data voids with the cone of silence above the radar and
in regions below the lowest beam. Multi-radar mosaic data have presented good stability
and real-time performance in operational applications. For this study, we selected the
multi-radar data with 0.01◦ resolution and 10 min precipitation observations during the
rainy season (June–October) of 2022. The radar data employed in this study consist of
24 vertical levels, and the height information for each vertical layer is provided in Table 1.
Notably, in order to investigate the stability and adaptability of different methods, the
non-precipitation echoes from the multi-radar data were not eliminated in this study.

Table 1. Vertical levels of radar data and corresponding height information for each layer.

Level Ref00 Ref01 Ref02 Ref03 Ref04 Ref05 Ref06 Ref07

Height (m) 500 1000 1500 2000 2500 3000 3500 4000

Level Ref08 Ref09 Ref10 Ref11 Ref12 Ref13 Ref14 Ref15

Height (m) 4500 5000 5500 6000 6500 7000 7500 8000

Level Ref16 Ref17 Ref18 Ref19 Ref20 Ref21 Ref22 Ref23

Height (m) 8500 9000 9500 10,000 10,500 11,000 11,500 12,000
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We constructed a training dataset with preprocessed radar and rainfall data. Since
weather phenomena are continuous in both time and space, each grid point is impacted by
its neighboring points. Therefore, it is crucial to take these impacts into account [32]. For
this reason, the radar data from 9 points surrounding the location of rainfall station were
selected in the training dataset to reduce the impact of spatial offset. In this study, we also
compared the QPE results from the LightGBM method with 9 points (Figure 1b) to that
with single point (Figure 1c). However, the dataset contained a small proportion of heavy
precipitation samples, which can limit the estimation ability for heavy precipitation during
the training process. To address this, we resampled the dataset by increasing the proportion
of heavy precipitation samples to improve the estimation ability for heavy precipitation.

2.2. Experiments Design

Based on the 2D and 3D LightGBM algorithm and the traditional Z–R relationship,
ten groups of experiments were designed to estimate the rainfall amounts (Table 2). The
3D LightGBM method used the radar reflectivity data from all 24 vertical layers specified
in Table 1 in the model-building process. In the second experiment (Exe 2), the radar data
from the corresponding positions of the rain gauge station and its surrounding 9 points
(Figure 1b) were considered in the model to reduce the impact of spatial location errors. In
the first experiment (Exe 1), only radar data corresponding to the location of the rain gauge
station were considered for precipitation estimation (Figure 1c). The 2D LightGBM method
used the composite reflectivity (CR) to estimate the precipitation (Exe 3).

Table 2. Precipitation estimation skills of MAE, MSLE, R2 score, and CORR of the ten groups of
experiments for the testing dataset in August 2022.

Algorithm Experiments Description MAE MSLE R2 Score CORR

LightGBM 3D Exe 1 24 levels 1 point 0.017 0.005 0.423 0.680
Exe 2 24 levels 9 points 0.015 0.004 0.494 0.722

LightGBM 2D Exe 3 CR 9 points 0.017 0.005 0.283 0.598

Z–R

Exe 4 Z–R Ref00 0.028 0.009 −5.027 0.422
Exe 5 Z–R Ref01 0.041 0.010 −8.715 0.554
Exe 6 Z–R Ref02 0.051 0.011 −12.846 0.607
Exe 7 Z–R Ref03 0.054 0.011 −13.570 0.656
Exe 8 Z–R Ref04 0.056 0.012 −14.926 0.650
Exe 9 Z–R Ref05 0.058 0.012 −17.794 0.636

Exe 10 Z–R CR 0.133 0.031 −58.296 0.535

It was found that using low-level radar data can estimate more realistic precipitation
via the traditional Z–R relationship method. Consequently, the radar data from 6 layers
ranging from 500 to 3000 m were used to estimate the precipitation with the Z–R relationship
method. In comparison to the 2D LightGBM, we also applied the composite reflectivity to
estimate rainfall using the Z–R relationship method (Exe 10).

3. Analysis Methods
3.1. The LightGBM Methods

The LightGBM is a decision tree-based machine learning method that is suitable
for structured or tabular datasets and is commonly used in regression problems [29,31].
It was chosen in this research to estimate the amount of the precipitation rate and has
an efficient, distributed, and high-performance gradient boosting framework [31]. The
LightGBM machine learning algorithm is an improvement of the gradient enhancement
iterative decision tree (GBDT) by adopting an enhanced histogram-based algorithm to
accelerate the training process and mitigate memory consumption. The LightGBM splits
the tree leafwise with the histogram-based algorithm for selecting the most optimal split
and buckets continuous feature values into discrete bins to curtail memory usage [33]. The
application of a histogram-based algorithm also has a regularization effect, serving as a
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preventive measure against overfitting. In tandem with the histogram-based algorithm, the
LightGBM employs a leafwise generation strategy during the training process distinguished
from the traditional depth-wise strategy in the GBDT. The leafwise generation strategy
demonstrates superior performance in minimizing losses during the growth of the same
leaf in comparison to the traditional depth-wise strategy employed by the GBDT [34]. In
summary, based on the histogram algorithm and leafwise tree growth, the LightGBM
provides faster training times and significantly lower memory consumption compared to
other gradient-boosting frameworks. For example, the LightGBM can achieve 10 times
faster training than some similar algorithms while ensuring accurate results. Additionally,
through the adoption of the leafwise leaf growth strategy with depth restrictions to further
optimize the histogram algorithm, the LightGBM can reduce calculation errors.

During the training process with the LightGBM, various features are inputted into the
model. The categorical features include the index of rain gauge stations and month and
hour information on precipitation. The numerical characteristics consist of the reflectivity
of the radar data at the nine points surrounding the rain gauge station (Figure 1b), as well
as the longitude and latitude information of the rainfall station. The input values for the
LightGBM model are summarized in Figure 2. Here, Ref00 to Ref24 represent the radar
reflectivity data from all 24 vertical layers, Station_Id_C corresponds to the index of the rain
gauge station, Mon and Hour, respectively, denote the month and hour of the precipitation
occurrence, and Lon as well as Lat indicate the longitude and latitude of the rain gauge
station. These input variables were selected for the following three reasons: Firstly, factors
such as longitude, latitude, altitude, and other environmental attributes of the rain gauge
station can significantly influence the accuracy of the precipitation intensity estimation.
As a result, we have assigned a distinct index (Station_Id_C) to each grid point within
the research area. This index was used as a categorical feature to incorporate the inherent
attributes of each rain gauge station and their impact on the precipitation estimation.
Secondly, since the weather phenomenon is continuous in both time and space, each grid
point is impacted by its neighboring points, and it is imperative to consider the influence of
neighboring points when estimating precipitation using radar data. To address this, the
radar data from nine points surrounding the location of the rainfall station were selected
in the training dataset to reduce the impact of spatial offset. Thirdly, Shanghai is situated
along the eastern coast of China and is notably affected by local terrain features, such as
the distribution of land and sea. These factors contribute to distinct diurnal variations
in precipitation. To effectively account for this diurnal variability within our estimation
method, the “Hour” information was integrated as a categorical feature. In summary,
the choice of these inputs stems from a multi-faceted consideration of the geographical
attributes of the rain gauge stations, the interconnectedness of the neighboring grid points,
and the region-specific seasonal and diurnal precipitation variations in Shanghai. This
comprehensive approach aims to enhance the precision of our estimation methods.

3.2. The Traditional Z–R Relationship Method

The traditional Z–R relationship, expressed as Z = aRb, establishes a connection
between radar reflectivity (Z) and precipitation (R). The relationship between the radar
reflectivity and precipitation is determined by coefficients a, b. Hence, choosing appropriate
coefficients a, b is crucial in the Z–R relationship. In this study, we adopted the formula
Z = 200 R1.2 to represent the Z–R relationship and to estimate the rainfall amount. This
particular formulation is commonly used in meteorological operations in Shanghai.
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3.3. Evaluation Methods

The evaluation methods used in this study include the pattern correlations (CORRs),
the mean absolute error (MAE), the mean squared logarithmic error (MSLE), and the
R2 score. These metrics were used to assess the accuracy and performance of the rainfall
amount estimation. A larger CORR and smaller MAE and MSLE indicate a better estimation
of the rainfall amount. The MSLE is a variation of the mean squared error that is commonly
used in cases when the target values are positive and distributed with a long tail. It is
particularly useful in evaluating variables that increase exponentially and is more sensitive
to values that are much lower than the observations. The R2 score is defined as the
coefficient of determination [35], which is used to determine the matching degree between
the estimations and the observations in the regression analysis. The R2 score represents
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the fitness and evaluates how much of the variation in the dataset the estimations are able
to explain. The values of the R2 score range from 0 to 1 where a value of 1 indicates that
the estimations and the observations are equal. An R2 score closer to 1 indicates a better
estimation of the precipitation, while a negative R2 score usually indicates poor estimating
performance. The equations of the CORR, MAE, MSLE, and R2 score are as follows:

CORR(fore, obs) =
∑
(

f orei − f ore
)(

obsi − obs
)

√
∑
(

f orei − f ore
)2
√(

obsi − obs
)2

MAE(fore, obs) =
1
N

N

∑
i=1
| f orei − obsi|

MSLE(fore, obs) =
1
N

N

∑
i=1

(loge(1 + obsi)− loge(1 + f orei))
2

R2(fore, obs) score = 1− ∑N
i=1( f orei − obsi)

2

∑N
i=1

(
obsi − obs

)2

where forei denotes the estimated precipitation, obsi denotes the observed precipitation,
( f ore) denotes the mean precipitation estimations, (obs) denotes the mean precipitation
observations, and N denotes the number of observed stations.

4. Estimation Results and Evaluation
4.1. Explain Ability Analysis

In this study, we used the SHAP regression values [36] to evaluate the contribution of
the input features to the estimations made by the machine learning estimating model. An
input variable with a positive SHAP value indicates a contribution towards increasing the
estimated value, and a negative SHAP value denotes a contribution toward decreasing the
estimation [25]. Figure 2 summarizes the SHAP value magnitude for all input variables
in the LightGBM 3D model with a single point (Exe 1). For a given estimation and input
variable, larger SHAP values correspond to a greater contribution from that variable to
that estimation. Accordingly, the magnitude of the SHAP value is commonly perceived as
a metric of variable importance [37], which also means that variables with larger SHAP
values are interpreted as more important for the estimation task. In the case of Exe 1, the
most important variables for estimating the quantitative precipitation are the radar data
at the heights of 1500 m, 2500 m, 2000 m, and 1000 m (Ref02, Ref04, Ref03, and Ref01).
Exe 4 to Exe 9 in Table 2 presents the skill scores of the MAE, MSLE, R2 score, and CORR
for the Z–R relationship from Ref00 to Ref05, which may indirectly explain this SHAP
result. It was found that the closer the radar echo is to the ground, the smaller the error that
exists between the estimation and observation. For example, as the height increases (from
Ref00 to Ref05), the MAE of the Z–R relationship estimating the precipitation continues to
increase. However, the correlation coefficient between the estimated precipitation and the
observed precipitation first increases and then decreases with the increase in height. At
Ref03, the correlation coefficient reaches its maximum. We speculate that the estimation
may be more easily affected by ground clutter at lower levels, such as the heights of
500–1000 m (Ref00 to Ref01), making the correlation coefficient at these two layers smaller.
The SHAP value shows that the most important variables for estimating the quantitative
precipitation are the radar data at Ref02, which might be because the LightGBM algorithm
comprehensively considers the combined effects of the estimation errors and correlation
coefficients during the training process. Additionally, the inherent features of the rain gauge
station (Station_Id_C) and diurnal variation (Hour) also make substantial contributions to
the estimations. Figure 2 further suggests that the low-level radar data seem to play a more
significant role in building the estimation model.
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Figure 3 provides a summary of the top 20 input variables with the largest SHAP
value magnitude in the LightGBM 3D model with the surrounding nine points (Exe 2). The
figure highlights the variables that have the most significant influence on the estimation
process. In the case of Exe 2, similar to Exe 1, the most important variable for building the
estimation model is also the radar data at the height of 1500 m (Ref02). Specifically, the radar
data at the locations “Z0” (Ref02_Z0) and “DZR1” (Ref02_DZR1) exhibit larger average
contributions to the estimation task. This suggests that these specific radar data points,
when considering the surrounding nine points, have a substantial impact on the estimation
process. It is likely that the inclusion of the radar data from the surrounding points helps
mitigate the influence of spatial offset and improves the accuracy of the estimation model.
Similar to Exe 1, the inherent features of the rain gauge station (Station_Id_C) and diurnal
variation (Hour) also demonstrate significant average contributions to the estimations in
Exe 2. These variables consistently play important roles in both modeling scenarios.
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4.2. Performance of the Estimation Results
4.2.1. Statistical Analysis

Affected by various weather systems, the precipitation that occurred in the Shang-
hai area from August to October 2022 showed different characteristics. The convective
precipitation was predominant in August 2022, while the precipitation associated with
typhoon systems occurred mainly from September to October 2022. In order to explore
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the ability of estimation models to perform on different types of precipitation, two sets of
training-estimating datasets were established in this study. In the first dataset, we used
the rainfall–radar data from June to July 2022 as the training data, while the rainfall–radar
data from August 2022 were used as the testing data to explore the ability of the estimation
models to estimate the convective rainfall. In the second dataset, we used the rainfall–radar
data from June to August 2022 as the training data and the rainfall–radar data from Septem-
ber to October 2022 as the testing data to explore the ability of the estimation models to
estimate the precipitation caused by typhoon systems.

Table 2 presents the skill scores of the MAE, MSLE, R2 score, and CORR for the ten
groups of experiments using the testing dataset in August 2022. As shown in Table 2,
the LightGBM 3D model with the surrounding nine points (Exe 2) shows the best ability
for the estimation of convective precipitation with the highest CORR (0.722) and lowest
MAE (0.015) and MSLE (0.004). This can be attributed to the consideration of spatial
offset during the model building process in Exe 2. Generally, the LightGBM 3D models
outperform the LightGBM 2D model due to their higher CORR and R2 scores closer to 1.
In the Z–R relationship method, the MAE and MSLE increase with the height, while the
CORR increases and reaches its maximum at 2000 m (Ref03) and then decreases with the
height. In terms of convective precipitation, the LightGBM models demonstrate superior
estimating performance compared to the Z–R relationship methods. The traditional Z–R
relationship produced larger a MAE and MSLE, especially at 3000 m (Ref05), and a lower
CORR, especially at 500 m (Ref00).

Table 3 displays the skill scores of the MAE, MSLE, R2 score, and CORR of the ten
groups of the experiments for the testing dataset from September to October 2022. Similar
to the previous findings, the LightGBM models outperform the Z–R relationship methods
in terms of estimating performance. As shown in Table 3, the LightGBM 3D model with
the surrounding nine points (Exe 2) achieves the highest CORR (0.739) and the lowest
MAE (0.021) and MSLE (0.005) for the testing dataset from September to October 2022.
Notably, compared to the convective precipitation, all three LightGBM models produced
larger estimation errors for the testing dataset from September to October 2022 in which
the precipitation was mainly caused by typhoon systems. This means that the LightGBM
3D models demonstrate a more accurate estimation of convective precipitation compared
to precipitation caused by typhoon systems. This finding suggests that the model performs
better in capturing the characteristics and patterns associated with convective rainfall.

Table 3. As in Table 2 except for the testing dataset during September–October 2022.

Algorithm Experiments Description MAE MSLE R2 Score CORR

LightGBM 3D Exe 1 24 levels 1 point 0.022 0.006 0.396 0.653
Exe 2 24 levels 9 points 0.021 0.005 0.491 0.739

LightGBM 2D Exe 3 CR 9 points 0.023 0.007 0.328 0.616

Z–R

Exe 4 Z–R Ref00 0.027 0.010 −0.121 0.337
Exe 5 Z–R Ref01 0.029 0.007 −0.658 0.547
Exe 6 Z–R Ref02 0.031 0.006 −4.565 0.424
Exe 7 Z–R Ref03 0.028 0.006 −1.048 0.619
Exe 8 Z–R Ref04 0.028 0.006 −0.537 0.604
Exe 9 Z–R Ref05 0.028 0.007 −0.345 0.583

Exe 10 Z–R CR 0.064 0.015 −31.059 0.255

Figure 4 describes the scatter distributions of the 10 min cumulative precipitation esti-
mated with the LightGBM 3D model and Z–R relationship method against the reflectivity
of the radar data. Figure 4a,b illustrates the scatterplots for the testing dataset in August,
and Figure 4c,d shows the scatterplots for the testing dataset from September to October.
As shown in Figure 4a, the LightGBM 3D model produces more realistic QPEs for convec-
tive precipitation than the traditional Z–R method. However, for the precipitation with a
10 min cumulative precipitation greater than 15 mm, the LightGBM 3D model estimates
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a smaller precipitation than the observed rainfall. For the precipitation in September,
which is mainly caused by typhoon systems, the estimating ability of the LightGBM 3D
model has decreased (Figure 4c) and manifested as an underestimation of the precipitation.
The Z–R relationship method has a serious overestimation for the precipitation, with a
10 min cumulative precipitation greater than 10 mm (Figure 4b,d), resulting in a large MAE
and MSLE.
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Figure 5 describes the scatterplots of the LightGBM 3D QPEs and Z–R QPEs versus
the observed 10 min cumulative precipitation. The LightGBM 3D model produced a higher
CORR than the traditional Z–R relationship method for both the convective precipitation
and typhoon system-induced precipitation. However, the LightGBM 3D model underesti-
mates the precipitation caused by typhoon systems as well as the convective precipitation,
with the accumulated precipitation exceeding 15 mm in 10 min.

Figure 6 illustrates the frequency distribution of the precipitation bias between the rain
gauge observation and the estimation from the four methods. For the LightGBM 3D model,
most of the bias values are less than 0 mm/10 min, with the maximum frequency (about
67%) at the difference between −2.5 and 0 mm/10 min. The frequency of the bias values
between −2.5 and 2.5 mm/10 min is about 91%, which is the highest among the results
of the four methods. In addition, the CORR of the LightGBM 3D model results is about
0.72, which is also the largest among the four methods (Figure 6a). These statistics further
demonstrate that the estimation accuracy of the LightGBM 3D model is the highest among
the four methods. Regarding the LightGBM 2D estimates, the frequency distribution of the
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bias values is similar to that of the LightGBM 3D model except that the frequency (about
90%) decreases slightly at the differences between −2.5 and 2.5 mm/10 min and increases
somewhat at the differences between −10 and −2.5 mm/10 min. Additionally, the CORR
of the LightGBM 2D estimates is about 0.60, which is also lower than that of the LightGBM
3D (Figure 6c).
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Figure 6. The frequency of precipitation difference between the rain gauge observation and QPE
obtained from LightGBM 3D (a), Z–R ref02 (b), LightGBM 2D (c), and Z–R CR in August 2022 (d).

As for the Z–R Ref02 estimates, the maximum frequency (about 61%) is still at the
difference between −2.5 and 0 mm/10 min, and the frequency of the bias values between
−2.5 and 2.5 mm/10 min is about 84%, which is less than the LightGBM 3D and the
LightGBM 2D model (Figure 6b). In terms of the Z–R CR estimates, most of the bias
values shift to more than 0 mm/10 min, the frequency of the differences between −2.5 and
2.5 mm/10 min decreases to about 77%, and that of the differences exceeding
20 mm/10 min increases remarkably. Moreover, the CORR of the Z–R CR estimates
is only 0.54.
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The above statistics suggest that the LightGBM method obviously improves the QPE
accuracy compared to the Z–R relationship method. After introducing the LightGBM 3D
model, the biases between the observations and estimations decrease, and the correlation
between the observations and estimations increases remarkably. Therefore, the LightGBM
3D model proposed in this research performs the best for precipitation estimation compared
to the other methods discussed above.

Figure 7 shows the MAE and MSLE of the radar QPE from the different methods for
different thresholds of precipitation in August 2022. The MAE values for the different
methods increase gradually with the increase in the precipitation rate (Figure 7a), implying
that the biases of the QPE from the observations increase with increasing precipitation
intensity. The LightGBM methods perform better than the Z–R relationship methods for
the estimations of the overall precipitation due to their lower MAE and MSLE values for all
the rainfall intensities. Among the whole methods, the LightGBM 3D model produces the
lowest MAE and MSLE values for all the rainfall intensities, indicating the best performance
for the whole thresholds of precipitation. Compared to the other rainfall intensities, the
LightGBM 3D model has the largest MAE and MSLE values for a rainfall rate larger than
10 mm/10 min, indicating its worst performance for extreme precipitation.
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4.2.2. Case Study

To access the performance of various radar QPE methods proposed in this study on
the spatial distribution, two types of heavy rainfall cases were selected this study: One
occurred on 6 August 2022 that is representative of the convective precipitation, and the
other occurred on 12 September 2022 that is representative of the typhoon-systems-induced
rainfall. The composite reflectivity (CR) values of the two cases are illustrated in Figure 8.
For the case that occurred at 0300 UTC 6 August 2022, the radar echoes mainly appeared
at Pudong and Nanhui, Shanghai (Figure 8a), with the maximum reflectivity exceeding
60 dBZ. Subsequently, the echoes continued to develop and triggered new convection
in the surrounding area. At 0500 and 0600 UTC, the echoes appeared to the north of
Shanghai, resulting in heavy rainfall in these areas. Notably, there is a large range of
non-precipitation echoes in the south of Shanghai. Regarding the case on 12 September
2022, a heavy rainstorm occurred in Shanghai due to the external inverted trough and
the main body of the severe Typhoon Muifa. The radar echoes mainly appeared in the
northeast of Shanghai, with the maximum reflectivity exceeding 50 dBZ (Figure 8f) and the
precipitation intensity exceeding 18 mm/10 min.
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(f), 0800 UTC (g), 0900 UTC (h) 12 September 2022.

Figure 9 shows the observed rainfall and the radar QPEs obtained from five methods
at 0300, 0400, 0500, and 0600 UTC 6 August 2022. The results from the above methods
can reproduce at least some aspects in the convective rainfall case. The LightGBM 3D
model can reproduce a more realistic range of observed rainfall. However, whether the
Z–R relationship methods can reproduce the rainfall range depends on which layer of
reflectivity it uses for the radar QPE. For example, the Z–R Ref03 method produces a
more reasonable rainfall range compared to the Z–R Ref01 method. The LightGBM 3D
model also produces a more realistic intensity of the convective rainfall case with lower
biases. However, both Z–R Ref01 (Figure 9j,k) and Z–R Ref03 (Figure 9n,o) remarkably
overestimate the precipitation intensity of this convective rainfall case. Although both of
the following QPE methods are based on composite reflectivity (CR), the LightGBM 2D
model can reproduce a more reasonable range and intensity of precipitation compared to
the Z–R CR method. The Z–R CR method has estimated a large range of false precipitation
in the non-precipitation echo areas that appeared to the south of Shanghai (Figure 9v,w),
which also indicates that the precise quality control of radar data is required when using
the Z–R CR method for precipitation estimation. Different from the Z–R CR method, the
LightGBM 2D model barely estimates false precipitation in the non-precipitation echo
areas, possibly due to its automatic quality control on radar data during the model training.
Moreover, compared to the LightGBM 2D model, the LightGBM 3D model based on the
multi-level radar data can estimate a more refined spatial structure and accurate intensity of
rainfall. Overall, the radar QPE results from the LightGBM 3D model are the most realistic
compared to the observations for both the rainfall intensity and spatial distribution.

Figure 10 analyzes the observed rainfall and the radar QPE obtained from five methods
at 0600, 0700, 0800, and 0900 UTC 12 September 2022 during Typhoon Muifa. Similar to
the above case, the Z–R method obviously overestimates the rainfall intensity (Figure 10o)
and significantly estimates a larger rainfall range (Figure 10u). The LightGBM 3D model
accurately estimates the location of the center of heavy precipitation in the eastern coastal
area of Shanghai at 0700 UTC but underestimates the precipitation intensity. This might be
because of the lack of rainfall samples caused by the typhoon systems in the training dataset
where there are multiple convective precipitation samples. In the rainfall events caused
by typhoon systems, relatively small reflectivity values can generate heavy precipitation,
while in the convective precipitation events, the reflectivity values that generate heavy
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precipitation are often larger. For example, for the convective rainfall case that occurred
at 0600 UTC 6 August 2022, the maximum precipitation rate reached 17.4 mm/10 min
with the maximum reflectivity >65 dBZ. However, for the rainfall case caused by the
typhoon system at 0700 UTC 12 September 2022, the maximum precipitation rate reached
18.2 mm/10 min with the maximum reflectivity only exceeding 50 dBZ.
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5. Conclusions and Discussion

In this study, we propose a method for quantitative precipitation estimation (QPE)
using the new generation 3D grid and mosaic weather radar network data. The method is
based on the LightGBM machine learning algorithm, which is a computationally efficient
gradient boosting decision tree algorithm. The radar reflectivity data from 24 vertical levels
were selected to feed the LightGBM 3D model. Moreover, to mitigate the impact of spatial
offset on the QPE model, we selected the reflectivity data from nine points surrounding
the rain gauge station. In addition, the location and time information from the rain gauge
station were input into the model as the category features. As a result, the diurnal variation
and geographic attribute characteristics of the rain gauge station were taken into account
during the estimating process. Furthermore, the LightGBM model is explainable by using
the SHAP regression values to evaluate the contribution of the input features. In order to
further evaluate the performance of the LightGBM 3D model with nine points (Exe 2), it
was compared with the other nine methods: the LightGBM 3D model with a single point
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(Exe 1), the LightGBM 2D model based on the composite reflectivity (Exe 3), and various
Z–R relationship methods obtained from Ref00 to Ref05 (Exe 4 to Exe 9), as well as the
Z–R relationship based on composite reflectivity (Exe 10). Moreover, to further assess
the performance of various radar QPE methods on the spatial distribution, two types of
heavy rainfall cases, including the convective rainfall event and the rainfall event caused
by typhoon systems, were selected in this study. Both the statistical analysis and the spatial
distribution results demonstrate that the LightGBM 3D model with nine points performs
the best in terms of quantitative precipitation estimation in this study. The main conclusions
are as follows:

(1) The statistical analysis results indicate that the LightGBM 3D model with nine
points shows the best ability for the QPE due to its highest correlation (CORR) and
R-squared (R2) scores, as well as the lowest mean absolute error (MAE) and mean
squared logarithmic error (MSLE). Conversely, the Z–R relationship method based
on composite reflectivity (CR) shows the worst performance for the radar QPE in
this study.

(2) The spatial distribution results from the two type cases demonstrate that the Light-
GBM 3D model with nine points can reproduce a more realistic range and intensity
of the observed rainfall, while the Z–R relationship method (especially the Z–R CR
method) tends to significantly overestimate the range and intensity of heavy rain-
fall. However, the LightGBM models tend to underestimate extreme rainfall, which
is perhaps due to the “long tail effect” caused by the limited number of extreme
precipitation samples.

(3) In this study, the Z–R CR method estimated a large range of false precipitation in the
non-precipitation echo areas, resulting in its overestimation of the range of rainfall.
Different from the Z–R CR method, neither the LightGBM 3D model nor the LightGBM
2D model can estimate a realistic precipitation range or minimally estimate the false
precipitation in the non-precipitation echo areas. This suggests that the LightGBM
methods may have an automatic quality control effect on the non-precipitation echoes
of radar data, enhancing the model stability and reducing the impact of the radar
data quality.

(4) The advantages of the LightGBM 3D model can be attributed not only to the in-
clusion of multi-level reflectivity in its training but also to its consideration of the
geographic attributes of the rain gauge stations, diurnal variation characteristics, and
the influence of mitigating spatial offset. The SHAP magnitude further highlights that
the geographic attributes of the rain gauge stations (Station_Id_C) and the diurnal
variation (Hour) characteristics make significant contributions to the LightGBM 3D
model (Figures 2 and 3).

(5) The LightGBM 3D model exhibits an accurate estimation of convective precipita-
tion; however, it tends to underestimate the intensity of precipitation caused by
typhoon systems. This discrepancy may be attributed to the differing radar reflectivity
characteristics between convective precipitation and typhoon-induced precipitation.
Convective rainfall events typically exhibit high reflectivity values, whereas, in ty-
phoon systems, heavy precipitation can occur without significantly strong reflectivity.
Additionally, the training process includes multiple convective precipitation samples
but lacks sufficient rainfall samples caused by typhoon systems, leading to a slight
underestimation in typhoon-induced precipitation.
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