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Abstract: The synergetic reduction of CO2 and PM2.5 emissions has received much attention in China
in recent years. A comprehensive evaluation of the synergy between CO2 emission reduction (CER)
and PM2.5 emission reduction (PER) would provide valuable information for developing synergetic
control policies. Thus, we constructed a comprehensive CO2-PM2.5-emission-reduction index system
and evaluated the synergy between CER and PER, using the coupling coordination degree (CCD) and
relative development degree (RDD) model in China’s 329 cities from 2003 to 2017. The spatiotemporal
characteristics of the CCD were analyzed on the national, regional, and urban scales. Furthermore,
we used the spatial autocorrelation analysis, kernel density estimation, and Dagum Gini coefficient
to investigate the spatial autocorrelation, evolutionary characteristics, and regional differences of
the CCD. The results indicate that (1) the synergy between CO2 and PM2.5 emissions’ reductions
showed an upward trend, and the lowest CCD values occurred in NW and Shanghai on the regional
and urban scales, respectively; (2) the CCD showed obvious spatial clustering characteristics, with
75% of the cities located in the “High–High” or “Low–Low” clustering zones in the Moran scatter
plots in 2017; (3) the polarization of CCD in SC, MYR, and SW showed intensified trends; (4) and the
hypervariable density was the largest contributor to the overall difference in the CCD. Our findings
suggest that more attention should be paid to the top-level design of the policies, technological
innovation, and cross-regional or intercity cooperation.

Keywords: CO2 emission reduction; PM2.5 emission reduction; synergy; coupling coordination
degree model; Dagum Gini coefficient

1. Introduction

During the past decades, China has been undergoing rapid industrialization and
urbanization. As a result, energy consumption has increased dramatically in China, increas-
ing from 571 million tons of standard coal in 1978 to 4.98 billion tons of standard coal in
2020. Huge energy consumption has produced large quantities of greenhouse gases and at-
mospheric pollutants [1–4], threatening the ecological environment and public health [5,6].
In 2022, China issued the “Implementation Plan for Synergistic Reduction in Pollution and
Carbon Emission”. It proposed that to ensure the green development of the economy and
society, coordinating the work on controlling CO2 emissions and atmosphere pollution
is essential [7]. China is facing the new challenge of synergizing carbon and pollution
reduction. In this context, to provide more information for formulating emission-reduction
measures, assessing the synergy level between CO2 and PM2.5 emissions’ reduction is of
great importance.

CO2 emissions lead to some environmental problems. High levels of atmospheric CO2
prevent heat from escaping the Earth, gradually raising the global average temperature
and changing the Earth’s climate. In addition, CO2 dissolves in seawater, causing ocean
acidification [8]. China is a large emitter of CO2, contributing 30.7% of total global fossil
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fuel emissions in 2020 [9,10]. To cut CO2 emissions, China formulated the “Action Plan for
carbon dioxide peaking by 2030” in 2021, focusing on improving non-fossil energy share
and energy efficiency. Specifically, by 2030, the share of non-fossil energy consumption is
expected to reach around 25%, and CO2 emission intensity (i.e., CO2 emissions/GDP) is
expected to be reduced by more than 65% compared with 2005.

Atmosphere pollution, especially respirable fine particulate matter (PM2.5), has been
associated with various health problems, such as stroke, ischemic heart disease, lung cancer,
etc., thereby increasing the risk of premature death [11–14]. In January 2013, China experi-
enced large-scale and long-lasting haze pollution (dominated by PM2.5) [15], which covered
an area of more than 1.4 million square kilometers, affected approximately 800 million
people, and lasted for almost one month [16–18]. In 2013, the annual average PM2.5 con-
centration in nearly all key monitoring cities (96%) in China failed to meet the air-quality
standard. Within this context, China has carried out many strict measures to reduce PM2.5
emissions [19,20], significantly enhancing air quality. For all the cities at the prefecture level
or above, the annual average PM2.5 concentration was 36 µg/m3 in 2019, decreasing by
28% compared to 2015; the days with good quality reached 82% in 2019, 0.8 percentage
points higher than that of 2015. However, the situation for PM2.5 pollution control remains
grim, with heavy-pollution weather occurring frequently in the autumn and winter in
some regions, such as the Fenwei Plain, and more than half of the country’s cities still
experiencing heavy-pollution weather.

The fossil-fuel-dominated energy structure determines a high degree of homology
between CO2 and PM2.5 emissions in China [21], and this particular co-rooted property
makes it possible to synergize CO2 emission reduction (CER) and PM2.5 emission reduction
(PER) [22]. Previously, many studies have focused on the co-benefit of PER from CER.
Some scholars examined the impact of CER policy on PER. They found that the policies
primarily aimed at reducing CO2 emissions, such as the low-carbon city pilot policy and
emissions trading system pilot programs, played important roles in alleviating PM2.5
pollution [23,24]. In addition to reducing PM2.5 emissions, Chen and Wang also found that
a long-term emission trading scheme policy could decrease PM2.5-associated morbidity
and mortality [25]. Some studies quantitatively assessed the impact of CO2 emissions on
PM2.5 emissions. For instance, Dong et al. [26] used the log-mean division index (LMDI)
method to investigate the drivers of PM2.5 emission changes in China, finding that the
synergistic effect of CER was the largest contributor to PER. Jia et al. [27] employed a similar
method to decompose PM2.5 emissions from coal consumption, proving CER’s obvious
role in PER. In addition, some studies have analyzed the co-benefit of CER from PM2.5
pollution control policies and measures. For example, Shi et al. [28] examined the effect of
clean-air actions on CER in China from 2013 to 2020. They found that the clean-air policy
led to a considerable reduction in CO2 emissions (2.43 Gt) over the period. Yang et al. [29]
evaluated the synergistic effect of PM2.5-pollution-abatement policies on CO2 emissions
in China’s iron and steel industry. They found that those policies could simultaneously
achieve CO2-emission-reduction goals. Xing et al. [30] confirmed that the Blue Sky Defense
Action Plan promoted the CO2 emission abatement in Tangshan City in China.

The quantitative assessment of the synergy degree between CER and pollutant reduc-
tion has received increasing concern [5]. Yi et al. [21] first constructed composite indexes for
CER and air-pollution control, respectively, and then calculated the synergy degree between
the two composite indexes, using a synergy degree model in China’s 30 provinces during
2005–2018. They found that Guangdong Province performed best in the synergy degree
among all the provinces due to its optimal industrial structure. Using provincial data from
2011 to 2019, Tang et al. [31] first developed a composite air-pollutant index (i.e., pollutant
emission equivalent). Then, they adopted the coupling coordination degree (CCD) model
to evaluate the synergy between CO2 emissions and the pollutant emission equivalent in
China. Similarly, Nie et al. [32] employed the CCD model to assess the synergy between
CER and pollution control in China’s provinces. When classifying the synergy states, both
Tang et al. [31] and Nie et al. [32] divided the CCD values into several groups in a subjective
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manner. As for the synergy between CER and PER, based on the gridded data, Li et al. [33]
characterized the changes in CO2 emissions and PM2.5 concentrations in China with the
four-quadrant diagram from 2005 to 2015. They compared the differences in the changes in
CO2 emissions and PM2.5 concentrations in China’s three urban agglomerations, finding
that the Pearl River Delta showed the best performance in the synergistic reduction.

Some deficiencies can be identified in the previous studies. Firstly, most studies
assessed the synergy between CER and pollution reduction at the provincial level or
above. However, the city is China’s basic unit for synergistic emission reduction [34,35].
It concentrates many people, industrial activities, and transportation, releasing a large
volume of pollutants and greenhouse gas [36,37]. Conducting the synergy evaluation on
the urban scale in China is essential. In addition, though some scholars have investigated
the synergy between CER and pollution reduction, the study on the synergy between CER
and PER is insufficient. Secondly, in the existing research, the single variables, i.e., CO2
emissions and PM2.5 concentrations, were used to represent the level of CER and PER,
respectively [5,38]. However, the emission intensity and growth rate of emissions are
also critical for measuring reduction levels. It is necessary to construct comprehensive
indicators for CER and PER, respectively. Moreover, because PM2.5 concentrations are
easily influenced by meteorological conditions and topography, using them to represent
the PER level is imprecise. Thirdly, when classifying the synergy states based on the results
of the CCD model, most studies adopted a subjective method to divide the CCD values
into different levels, which may lead to an inaccurate division when the values are not
uniformly distributed [39]. In addition, the relative development state between CER and
pollution reduction was not taken into account in the existing studies. Whether CER lags
behind pollution reduction or pollution reduction lags behind CER is unclear.

Therefore, using data from China’s 329 cities from 2003 to 2017, this study revealed
the synergy between CER and PER in China’s 329 cities from 2003 to 2017. The specific
objectives of this study were to (i) evaluate the synergy between CER and PER with the CCD
model and relative development degree (RDD) model; (ii) characterize the spatiotemporal
characteristics, spatial autocorrelation, and evolutionary characteristics of the synergy with
a spatial autocorrelation analysis and kernel density estimation; and (iii) reveal the regional
differences in the synergy with Dagum’s Gini coefficient.

The contributions of the present study are as follows: (1) Selecting the city as the
primary research unit, this study evaluated the synergy between CER and PER in China and
further revealed the spatiotemporal characteristics, spatial autocorrelation, evolutionary
trends, and regional differences of the synergy. This study can enrich the research on the
synergy between CER and PER. (2) To more accurately characterize the CER and PER levels,
the study constructed composite indexes for CER and PER, respectively, from three aspects,
namely total emissions, emission intensity and growth rate of emissions. (3) This study
evaluated the synergy between CER and PER by using the CCD model. The synergy levels
were classified with an objective method, i.e., the quartile method. Moreover, the RDD
model was used to explore the relative development state between CER and PER.

The rest of the paper is organized as follows: Section 2 presents the materials and
methods. Section 3 presents the empirical results. Section 4 discusses the empirical findings.
Finally, Section 5 presents the conclusions and policy implications of the paper.

2. Materials and Methods

A three-step approach was designed for the study (Figure 1). First, a comprehensive
CO2-PM2.5-emission index system was developed, and the weights of the indicators were
calculated using the entropy method. Combing the CCD model and RDD model, the
synergy between CER and PER was assessed. Second, using the spatial autocorrelation
analysis and kernel density estimation methods, the spatial and temporal characteristics,
spatial autocorrelation, and evolutionary characteristics of the synergy were explored.
Third, the intra-regional and inter-regional differences in the synergy were distinguished,
and the sources of the overall difference were investigated using Dagum’s Gini coefficient.
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Figure 1. The framework of this study.

2.1. Study Area

This research was conducted on three spatial scales, namely the national, regional, and
urban scales. On the urban scale, 329 prefecture-level-and-above cities were selected for
the study (Figure 2). Cities in four provincial-level units (namely Tibet, Hong Kong, Macao,
and Taiwan) and Sansha City were not covered because of the lack of data. On the regional
scale, the cities were divided into eight regions, including Northeast (NE), North Coast
(NC), East Coast (EC), South Coast (SC), Middle Yangtze River (MYeR), Middle Yellow
River (MYR), Southwest (SW), and Northwest (NW) [40]. The full names of the cities in
each region are shown in Appendix A Figure A1.
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2.2. The Evaluation Index System

Greenhouse gases and PM2.5 often come from the same sources, which determines that
there can be a strong synergistic effect between CO2 and PM2.5 emission reductions. There-
fore, we constructed a comprehensive CO2-PM2.5-emission index system. The composite
system consists of two subsystems, namely the CO2 emission reduction (CER) subsystem
and the PM2.5 emission reduction (PER) subsystem. Then, following the principles of sci-
entificity, independence, and credibility, we selected three indexes (i.e., total emissions,
emission intensity, and growth rate of emissions) to measure the level of each subsystem
(Table 1). As an absolute index, the total emissions directly reflect changes in CO2 or PM2.5
emissions. The emission intensity and growth rate of emissions are both relative indexes.
The emission intensity is the amount of CO2 or PM2.5 emissions generated per unit of GDP,
representing the abatement potential. The growth rate of emissions is another effective
index for emission abatement evaluation, reflecting the trends in CO2 or PM2.5 emissions.
Note that all the indexes are negative indicators for assessing CO2 and PM2.5 emission
reductions. In other words, the lower the score, the better the subsystem. In addition, the
Pearson correlation analysis was performed to examine the independence of the indicators
within each subsystem. The correlations of any two indicators were low (Appendix A
Figure A2).

Table 1. The comprehensive CO2-PM2.5-emission-reduction index system.

Subsystem Indexes Unit Attributes Weights

CO2-emission-reduction
subsystem

Total CO2 emissions 106 ton - 0.3333
CO2 emission intensity Ton per 102 yuan - 0.0228

Growth rate of CO2 emissions % - 0.6439

PM2.5-emission-reduction
subsystem

Total PM2.5 emissions Ton - 0.2359
PM2.5 emission intensity Ton per 108 yuan - 0.0315

Growth rate of PM2.5 emissions % - 0.7326

2.3. Data Sources and Processing

The CO2 emission data were obtained from China Emission Accounts and Datasets
(https://www.ceads.net.cn/, accessed on 10 May 2023). Chen et al. [33] estimated the CO2
emissions of 2375 counties in China, using provincial-level CO2 emissions and nighttime
light data. We then calculated the CO2 emissions of each prefecture-level and above city by
using the county-level CO2 emission data. The PM2.5 emission data with a spatial resolution
of 0.1◦ were obtained from the annual PM2.5 emission grid maps [41], which were provided
by the Emissions Database for Global Atmospheric Research (https://edgar.jrc.ec.europa.eu/,
accessed on 12 May 2023). The GDP data were collected from the China City Statistical
Yearbook (https://data.cnki.net/yearBook/single?id=N2022040095, accessed on 15 May
2023). GDP was converted to constant 2000 prices by using the GDP deflator to remove the
effect of price changes.

Since the indexes of the composite system vary in units and magnitude, the raw data
were standardized using the following formula [42]:

zijt =
xijt −min

(
xj
)

max
(
xj
)
−min

(
xj
) , (1)

where xijt and zijt denote the original and standardized values of the jth indicator for city
i in year t, respectively; and max(xj) and min(xj) indicate the maximum and minimum
values. The minimum value for each indicator is 0 after standardization. Then, to facilitate
the subsequent calculation of information entropy, all the 0 values were substituted with
0.0001 [43].

https://www.ceads.net.cn/
https://edgar.jrc.ec.europa.eu/
https://data.cnki.net/yearBook/single?id=N2022040095
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2.4. Calculation of the Subsystem Scores
2.4.1. Entropy Method

We used the entropy method to assign weights to the indexes. This method determines
the weights of indexes according to the variations in the indexes, avoiding the interference
of subjective factors [44]. The greater the variance in the values of one index, the more
information the index can provide. Then, it should be assigned a higher weight. The details
are as follows:

Step 1: Calculate the proportion of the value of index j of the evaluation object i in the
year t to the sum of the values of the index j:

pijt =
zijt

m
∑

i=1

h
∑

t=1
zijt

, (2)

Step 2: Calculate the information entropy, Ej, of index j:

Ej = −
1

ln(h×m)

n

∑
i=1

h

∑
t=1

pijt ln pijt, (3)

Step 3: Calculate the weight, wj, of index j:

wj =
1− Ej

n
∑

j=1

(
1− Ej

) . (4)

Using Equations (2)–(4), we obtained the weights of all the indicators (Table 1).

2.4.2. Comprehensive Evaluation Function

After determining the weights of indexes, we used the comprehensive evaluation
function to calculate the scores of two subsystems.

CIit =
n

∑
j=1

wj × zijt, (5)

PIit =
n

∑
j=1

wj × zijt, (6)

where CIit and PIit denote the scores of CO2-emission- and PM2.5-emission-reduction
subsystems, respectively; CIit ∈ [0, 1]; and PIit ∈ [0, 1]. A higher value of CIit(PIit) indicates
the more excellent quality of the CO2 (PM2.5)-emission-reduction subsystem.

2.5. Evaluation of the Synergy between CER and PER
2.5.1. Coupling Coordination Degree Model

Two critical indicators in the coupling coordination degree (CCD) model are the
coupling degree and CCD. The coupling degree describes the dependency, while the CCD
reflects the level of coordination between the systems [45]. In order to reveal the synergy
level between CER and PER, we developed a CCD model as follows:

Cit = 2
√

CIit × PIit/(CIit + PIit), (7)

Dit =
√

Cit × (αPIit + βPIit), (8)

where Cit denotes the coupling degree, Dit indicates the CCD, and α and β are coefficients
of the two subsystems. Since both subsystems contribute equally to the system, we took
α = β = 0.5. Cit ∈ [0, 1]; Dit ∈ [0, 1]. A higher Cit value indicates a stronger interaction
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between CER and PER, and a higher Dit value indicates a higher coupling coordination
level between the two subsystems. After calculating the CCD, we used the quartile method
to divide the CCD values into four levels: low, medium, high, and extremely high. The
quartile method takes three values at 25%, 50%, and 75% of the data as clinical values,
ensuring a more objective classification [46].

2.5.2. Relative Development Degree Model

The relative development degree (RDD) model was used to assess the relative devel-
opment status between CER and PER. The RDD is defined as follows [24]:

kit =
CIit
PIit

, (9)

where kit denotes the RDD of CER and PER of evaluation object i in year t. When 0 < kit ≤ 0.9,
CER lags behind PER. When 0.9 < kit ≤ 1.1, this indicates a state of synchronous develop-
ment of CER and PER; when kit > 1.1, PER lags behind CER.

2.6. Spatial Autocorrelation Analysis

To determine whether the spatial distribution of the synergy level is clustered, dis-
persed, or random, we used the Global Moran’s I to explore the global spatial autocorrela-
tion of the CCD. The formula is as follows [32]:

I =

n
∑

i=1

n
∑

j=1
wij(xi − x)

(
xj − x

)
S2

n
∑

i=1

n
∑

j=1
wij

, (10)

where x =
n
∑

i=1
xi

/
n; S2 =

n
∑

i=1
(xi − x)

/
n; n is the number of the space units; xi and xj are

the attribute values of the space units i and j, respectively; and wi j is the spatial weight
matrix. I ∈ [−1, 1]. The spatial autocorrelation among attribute values is positive when
I > 0 and negative when I < 0.

The Moran scatter plot can be used to visualize the Global Moran’s I. The first quadrant
of the scatter plot indicates that both the central spatial unit and its neighbors have high
attribute values, known as “High–High cluster (HH)”; the second quadrant indicates that
the central spatial unit has low attribute values, while its neighbors have high values,
known as “Low–High cluster (LH)”; the third quadrant indicates that both the central
spatial unit and its neighbors have low values, known as “Low–Low cluster (LL)”; and the
fourth quadrant indicates that the central spatial unit has high attribute values, while its
neighbors have low values, known as “High–Low cluster (HL)”.

2.7. Kernel Density Estimation

The kernel density estimation (KDE) is a non-parametric approach [44] which can
better depict the distribution shape of the continuous variable compared to the histogram.
We used the KDE method to present the dynamic evolutionary process of the CCD. Let
{x1, . . . , xn} be an n-dimensional random sample whose density function can be estimated
as follows:

f (x) =
1

nh

n

∑
i=1

K
(

xi − x
h

)
, (11)

where K(·) is the kernel function, and h is the bandwidth. The Gaussian kernel function
was chosen for the estimation in this paper. The bandwidth value is of crucial practical
importance for the kernel regression estimation. The accuracy decreases as the bandwidth
increases. However, the density curve will be too spiky if the bandwidth is too small. We
used the optimal bandwidth selection method to determine the bandwidth in this study.
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2.8. Dagum Gini Coefficient

Traditional inequality indices, such as the Theil index and classical Gini coefficient, are
based on normal distribution and homoscedasticity, requiring no overlap between grouped
samples. Moreover, it is difficult to decompose the two indices into several economically
significant sub-indices [47]. The Dagum Gini coefficient can effectively overcome the above
defects [40]. We used the Dagum Gini coefficient (G) to investigate the regional differences
in the CCDs. G can be calculated as follows:

G =

k
∑

j=1

k
∑

h=1

nj

∑
i=1

nh
∑

r=1

∣∣yji − yhr
∣∣

2n2y
, (12)

where j and h denote different regions, respectively; i and r denote different cities, respec-
tively; k and n are the numbers of regions and cities, respectively; yji(yhr) is the CCD of city
i(r) in region j(h); and y is the average value of the CCD of all the cities.

To perform the Dagum Gini coefficient decomposition, we first defined the Gini
coefficient for the j-th region (Gjj) and the inter-regional Gini coefficient between the j-th
and h-th regions (Gjh), as illustrated in Equations (13) and (14).

Gjj =

1
2yj

nj

∑
i=1

nj

∑
r=1

∣∣yji − yjr
∣∣

n2
j

, (13)

Gjh =

nj

∑
i=1

nh

∑
r=1

∣∣yji − yhr
∣∣

njnh
(
yj + yh

) , (14)

where nj(nh) is the number of cities in region j(h), and yj(yh) denotes the mean value of
CCD for all cities in region j(h).

Furthermore, G can be decomposed into three parts, namely the contributions of
intra-regional differences (Gw), inter-regional differences (Gnb), and hypervariable density
(Gt), i.e., G = Gw + Gnb + Gt. The detailed equations are as follows:

Gw =
k

∑
j=1

Gjj pjsj, (15)

Gnb =
k

∑
j=2

j−1

∑
h=1

Gjh
(

pjsh + phsj
)

Djh, (16)

Gt =
k

∑
j=2

j−1

∑
h=1

Gjh
(

pjsh + phsj
)(

1− Djh
)
, (17)

Djh =
djh − pjh

djh + pjh
, (18)

djh =
∫ ∞

0
dFj(y)

∫ y

0
(y− x)dFh(x), (19)

pjh =
∫ ∞

0
dFh(y)

∫ y

0
(y− x)dFj(x), (20)

where pj = nj
/

n, sj = njyj
/

ny, and ∑ pj = ∑ sj =
k
∑

j=1

k
∑

h=1
pjsh = 1; Djh indicates the

relative impact of the CCD between regions j and h; djh is the mathematical expectation of
the sum of all the sample values satisfying yji − yhr > 0 in regions j and h; pjh denotes the
mathematical expectation of the sum of all the sample values satisfying yhr − yji > 0; and
Fj(Fh) denotes the cumulative distribution function of the CCD of region j(h).
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3. Results
3.1. Spatiotemporal Characteristics of Coupling Coordination Level

According to Equations (1)–(8), we calculated the CCD of 329 Chinese cities from 2003
to 2017. Then, the CCD values were classified into four levels, using the quartile method:
(1) low level (0 ≤ CCD < 0.8101), (2) medium level (0.8101 ≤ CCD < 0.8316), (3) high level
(0.8316 ≤ CCD < 0.8526), and (4) extremely high level (0.8526 ≤ CCD < 1). To evaluate the
overall synergy between the CER and PER of the whole country and eight regions, we also
calculated the national average CCD and regional average CCD, respectively.

3.1.1. CCD on the National Scale

Figures 3a and 4a present the changing trends of the average CCD and the proportion
of cities with different coupled coordination types in China, respectively. As shown in
Figure 3a, the national CCD ranged from 0.7935 to 0.8710 during the whole period. Overall,
the CCD presented an upward trend. It grew slowly from 2003 to 2011, at an average
growth rate of 0.23%. Then, after 2012, the CCD entered a rapid growth stage, growing at
an average growth rate of 0.90% and increasing by 5.58% within six years. The changes in
the proportions of cities with different coupled coordination types also confirm a significant
improvement in the overall coupling coordination level (Figure 4a). In 2003, the proportions
of low-level, medium-level, high-level, and extremely high level coordinated cities were
79.33%, 19.15%, 1.52%, and 0, respectively. In 2017, the proportions of low- and medium-
level coordinated cities decreased to 3.65% and 6.99%, respectively, while the proportions
of high-level and extremely high level coordinated cities increased to 31.31% and 58.05%.
The enhancement in the national CCD indicates that China has achieved remarkable results
in the synergistic control of CO2 and PM2.5 emissions’ reductions.
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Figure 3. CCD of China and its eight regions from 2003 to 2017: (a) China; (b) NE; (c) NC; (d) EC;
(e) SC; (f) MYeR; (g) MYR; (h) SW and (i) NW.
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Figure 4. Proportions of cities with different coupled coordination types in China and its eight regions
from 2003 to 2017: (a) China; (b) NE; (c) NC; (d) EC; (e) SC; (f) MYeR; (g) MYR; (h) SW and (i) NW.

3.1.2. CCD on the Regional Scale

Figure 3b–i show the changing trends of the average CCD in eight regions. In general,
the CCD of all the regions presented increasing trends, but there were fluctuations during
the study period, and fluctuation ranges varied for different regions. NE, SW, and NW
showed large fluctuations in CCD, with values ranging from 0.7607 to 0.8785, from 0.7656
to 0.8808, and from 0.7656 to 0.8780, respectively. The fluctuation of CCD in SC was the
smallest among the eight regions, and the CCD values were in the range from 0.7941
to 0.8677. The CCD of six regions (i.e., NE, SC, MYeR, MYR, SW, and NW) peaked in
2015 but dropped slightly afterwards. In 2017, the regional CCD followed the order of
NE (0.8658) > SC (0.8651) > EC (0.8611) > MYR (0.8577) > MYeR (0.8559) > NC (0.8523) >
SW (0.8485) > NW (0.8379).

Figure 4b–i display the changing trends of the proportions of the cities with different
coupled coordination types in the eight regions. The proportions of extremely high level
coordinated cities in all the regions, especially in NE, SC, and EC, showed clear upward
trends. Specifically, no extremely high level coordinated cities were in NE, SC, and EC
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in 2013. However, by 2017, the proportions of extremely high level coordinated cities
accounted for 86.11%, 84.85%, and 80% in the three regions, respectively. In 2017, except
for NW, the proportions of high-level and extremely high level coordinated cities in all the
other regions were more than 90%; NW had 19.51% cities in low-level coordination and
24.39% in medium-level coordination.

3.1.3. CCD on the Urban Scale

Figure 5a,c,e illustrate the CCDs in 329 cities in 2003, 2010, and 2017. The CCD
values in 329 cities were in the ranges of 0.6462–0.8427 in 2003, 0.6430–0.8537 in 2010,
and 0.7382–0.9010 in 2017. During the whole period, the coupling coordination status of
329 cities shifted from low- and medium-level predominant coordination to high-level and
extremely high level predominant coordination. In 2003, only five cities, namely Danzhou,
Sanya, Haidong, Haikou, and Xining, were in high-level coordination, while all the other
cities were in low- or medium-level coordination; Shanghai had the lowest CCD (0.6462). In
2010, Jiayuguan was in extremely high level coordination, and 72 cities were in high-level
coordination; the lowest CCD was observed in Shanghai (0.6430), followed by Anshan
(0.7325) and Chongqing (0.7524). In 2017, the number of extremely high level coordinated
cities increased to 191, and the highest CCD was observed in Mudanjiang (0.9010); the CCD
of Shanghai increased by 14.80%, but Shanghai was still in low-level coordination and had
the lowest CCD among the cities.
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From the perspective of the relative development of CER and PER (Figure 5b,d,f), most
cities were in the status of “PER lags” and “synchronous development” during the study
period; “CER lags” were observed only in 2003 and 2017. Specifically, the cities in the status
of “PER lags” accounted for 82.98%, 84.80%, and 60.18% of the total cities in 2003, 2010, and
2017, respectively, indicating a decreasing trend in the number of PM2.5-emission-reduction
lagged cities. By contrast, the ratio of cities in the status of “synchronous development”
increased largely, increasing from 0.61% in 2003 to 38.60% in 2017. Only two (namely
Gannan and Hotan) and four (namely Tianjin, Haikou, Chongqing, and Yinchuan) cities
lagged in CER in 2003 and 2017, respectively.

3.2. Spatial Autocorrelation of CCD

The Global Moran’s I indexes of the CCD of 329 cities in China from 2003 to 2017 were
measured using the Geoda software. As reported in Table 2, the Global Moran’s I value
ranged from 0.0776 to 0.5016, with a mean value of 0.2779 (p < 5%). The results show that
there is a significant positive spatial autocorrelation among the CCDs of 329 cities in China.

Table 2. The Global Moran’s I of CCD from 2003 to 2017.

Year Moran’s I z-Value p-Value

2003 0.2578 6.8480 0.005
2004 0.2927 8.6137 0.005
2005 0.2955 8.7381 0.005
2006 0.1971 6.8913 0.005
2007 0.2393 7.1758 0.005
2008 0.3198 9.5676 0.005
2009 0.2539 7.9959 0.005
2010 0.1612 4.6888 0.005
2011 0.5016 16.5871 0.005
2012 0.0776 2.4300 0.025
2013 0.4627 13.1608 0.005
2014 0.2274 6.9304 0.005
2015 0.3512 11.6491 0.005
2016 0.1380 4.2518 0.005
2017 0.3933 12.3570 0.005

To visually illustrate the overall spatial correlation of the CCD, we drew scatter plots
of the CCD distributions in 329 cities for three representative years. As shown in Figure 6,
the horizontal axis represents the standardized CCD, while the vertical axis denotes the
CCD’s spatial lag. It can be seen that 233 (71%), 210 (64%), and 248 (75%) cities were located
in the first and third quadrants, i.e., “High–High” or “Low–Low” clustering zones, in 2003,
2010, and 2017, respectively, showing prominent positive spatial clustering characteristics.
The Moran scatter plots further reveal the significant positive spatial autocorrelation of the
CCDs among cities.
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3.3. Evolutionary Characteristics of CCD

Figure 7 shows the dynamic trends of the CCD in China and its eight regions. From
the perspective of distribution position and distribution shape, the kernel density curves
for the CCD in China (Figure 7a) and its eight regions (Figure 7b–i) all displayed clear
“right-shifted” trends from 2003 to 2017, implying increasing trends in the CCD; the height
of the main peak of the national curve increased first and then decreased, while the width
decreased first and then increased, indicating that the gaps for CCDs among cities narrowed
first and then expanded. MYeR, MYR, and SW had similar changes in the shapes of the
curves with the whole country, indicating that the intra-regional variations in the CCDs
also decreased first and then increased. For NC, EC, and SC, the main peaks’ heights all
increased, while the widths decreased, indicating that the intra-regional variations of the
CCD decreased. The opposite distribution trends occurred in NE and NW.
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For distribution ductility, obvious left-side tailings were observed in the curves of
China and its eight regions, indicating that some cities’ CCD values were obviously lower
than those of other cities in the whole country or the regions. NE and EC had longer
left-side tailings among the regions, especially in 2003. As illustrated in Figure 5, Anshan
in NE and Shanghai in EC were cities with obviously lower CCDs than the others. MYR
also had long left-side tailings in 2003, while the tailing became shorter in 2010 and 2017,
indicating that the CCD values of the low-level coordinated cities in MYR were improved.
In 2017, the tailing of NW had a thickening trend, implying an increase in the number of
low-level coordinated cities.
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Regarding polarization characteristics, China, EC, and MYeR showed obvious “single-
peak” patterns during the period, indicating no polarization in these regions. SC, MYR,
and SW experienced shifts from the patterns of “single-peak” to “double-peaks”, indicating
intensified polarization in these regions. In contrast, the polarization of NC and NW
weakened, with the patterns changing from “double-peak” to “single-peak”.

3.4. Reginal Differences in CCD
3.4.1. Intra-Regional Differences

Figure 8 reports the results of intra-regional Gini coefficients in the eight regions. EC
had the highest mean value of the intra-regional Gini coefficient (0.018), followed by NW
(0.0143) and NE (0.0135), suggesting the large variations in the CCD within these regions.
The lowest mean value of the intra-regional Gini coefficient was observed in MYR (0.010),
implying a small variation in the CCD in MYR. In terms of the changing trends of the
intra-regional Gini coefficients, large fluctuations occurred in all the regions during the
whole period. SC, MYeR, EC, MYR, and NC showed apparent fluctuating downward
trends in intra-regional Gini coefficients, with total decreases of 34.50%, 29.42%, 27.75%,
and 24.66% in the 15 years, respectively. These results indicate that the gaps in the CCD
within the five regions narrowed. From 2003 to 2017, the intra-regional Gini coefficient
increased from 0.0142 to 0.0172 in NW, showing an expanding gap in CCD within the
region. For NE and SW, the intra-regional Gini coefficients fluctuated from 0.0069 to 0.0212
and from 0.0068 to 0.0160, respectively.
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Figure 8. The intra-regional Gini coefficients from 2003 to 2017.

3.4.2. Inter-Regional Differences

Figure 9 reports the results of inter-regional Gini coefficients. EC-NW had the largest
inter-regional Gini coefficient (0.0193), followed by NE-EC (0.0188), NE-NC (0.0182), and
NC-NW (0.0178), indicating the large gap in CCD between coastal areas and northern
inland areas. By contrast, MYR-SW had the lowest inter-regional Gini coefficient (0.0104).
Concerning the changing trend, the inter-regional differences showed fluctuations before
2013. However, after 2013, most inter-regional Gini coefficients presented relatively stable
decline trends. From 2003 to 2017, the largest drop was observed in NE-EC, with a total
decrease of 0.0076. NE-EC exhibited a fluctuating increasing trend, reaching its peak
(0.0274) in 2008, dropping to the lowest value (0.0109) in 2016, and finally rebounding to
0.0133 in 2017. EC-MYR and EC-MYeR also showed large declines in the inter-regional
Gini coefficient, from 0.0194 to 0.0117 and from 0.0178 to 0.0116, respectively, with minor
fluctuations. In contrast, SC-SW had the smallest fluctuation range in the inter-regional
Gini coefficient (0.0071–0.0240). From 2003 to 2017, the inter-regional Gini coefficient of
SC-SW decreased by only 0.09%.
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3.4.3. Sources of the Overall Difference

Figure 10 reports the decomposition results of the overall difference in CCD. The
15-year average contribution followed the order hypervariable density (0.0066) > inter-
regional differences (0.0055) > intra-regional differences (0.0016). Similarly, the 15-year
average contribution rate of hypervariable density was the largest (48.81%), followed by
inter-regional differences (39.60%) and intra-regional differences (11.58%). The hypervari-
able density apparently accounted for the most significant difference in CCD overall. In
contrast, the intra-regional differences had the smallest effect on the overall difference in
CCD. From the perspective of the changing trends, the contribution rate of the hypervari-
able density showed an overall downward trend. It decreased from 57.47% in 2003 to 42.36%
in 2017, with a decrease of 26.30%, suggesting a weakening effect of the hypervariable
density on the overall difference. The contribution rate of the inter-regional differences
showed a fluctuating upward trend. It increased from 30.43% in 2003 to 46.11% in 2017,
indicating an intensifying effect of the inter-regional differences on the overall difference.
Unlike hypervariable density and inter-regional differences, intra-regional differences only
showed slight fluctuations, fluctuating around 11%.
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4. Discussion
4.1. Explanation for the Spatiotemporal Characteristics of CCD

Overall, the national average CCD showed an upward trend, indicating an improve-
ment in the level of synergistic emission reduction of CO2 and PM2.5 in China. Our result
is consistent with Tang et al.’s [31]. In recent years, China has implemented a series of
measures to reduce CO2 and PM2.5 emissions, including eliminating outdated capacity,
promoting clean energy, phasing out small coal-fired boilers, enforcing total coal consump-
tion control, and retiring yellow labels and old vehicles. Specifically, since 2013, China has
eliminated about 424 GW small coal-fired boilers, reducing inefficient coal consumption
and thereby resulting in the synergistic benefits of CO2 and PM2.5 emissions’ reduction [28].
In addition, due to non-compliance with national emission standards, approximately 26 mil-
lion yellow labels and old vehicles were eliminated from 2003 to 2020 [28]. The package of
policies and measures contributes most to the CO2 and PM2.5 emissions’ reductions.

Among the eight regions, NE had the highest coupled coordinated level. On the
one hand, NE has been plagued by economic recession and population loss for a long
time, resulting in low total energy consumption and low emissions of CO2 and PM2.5.
On the other hand, from 2006 to 2010, NE accelerated structural transformation and
the development of a circular economy of resource-exhausted cities, improving energy
efficiency and reducing CO2 and PM2.5 emissions. SC and EC also performed well in
CCD, benefiting from their relatively reasonable industrial structure and high economic
development level. Similar results were obtained from a previous study. Yi et al. [21]
found that of the 11 provinces that achieved synergy between CO2 emission reduction and
pollution control in 2018, 5 are located in SC or EC. In the two regions, the proportion of
service and high-tech industries is high; as a result, the energy consumption and emissions
of CO2 and PM2.5 are relatively low. In addition, a high economic development level can
enable the regions to invest more money in emission reductions. By contrast, NW had the
lowest CCD, which agrees with Nie et al. [32]. They measured the synergy between carbon
reduction and pollution control, finding that Xinjiang, Inner Mongolia, and Ningxia had
the lowest CCD values in 2009. With rich coal and iron resources, the region’s petroleum
extraction and processing industries are densely distributed, leading to great CO2 and PM2.5
emissions. Moreover, because of an underdeveloped economy and low energy efficiency,
NW had a high emission intensity and emission growth rate, which also lowered the
synergy level of CO2 and PM2.5 emissions’ reduction.

On the urban scale, the CCD of Shanghai was the lowest in 2003, 2010, and 2017.
Though Shanghai performed well regarding emission intensity and the growth rate of
emissions, its performance on the total CO2 and PM2.5 emissions was poor. In 2003, 2010,
and 2017, the emissions of CO2 were 139.42 Mt, 230.71 Mt, and 192.50 Mt, respectively,
which were about 10, 8, and 6 times the national average level, respectively; and the
emissions of PM2.5 were 238,511 t, 575,583 t, and 515,521 t, respectively, which were 8, 15,
and 16 times the national average level. The large CO2 and PM2.5 emissions led to the low
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CCD level in Shanghai. Additionally, with regard to the relative development type, “PM2.5
emission reduction lag” is the primary lagged type. China has been concerned about CO2
emission reduction for a long time, while focusing on PM2.5 pollution control only since
2013. Thus, for many cities, the governance of the PM2.5 emissions lagged behind that of
the CO2 emissions.

4.2. Explanation for the Regional Differences in CCD

Regarding the intra-regional differences, EC had the highest inter-regional Gini coef-
ficient. This may be attributed to the large variation in energy consumption within this
region. For instance, due to the large scale of their population and economy, cities such
as Suzhou and Shanghai in EC consumed 6315 and 5977 million tons of standard coal, re-
spectively. However, many other cities, such as Zhoushan, Quzhou, and Lishui, consumed
much lower energy than Suzhou and Shanghai, with values of 844, 921, and 929 million
tons of standard coal, respectively. In terms of the inter-regional differences, the difference
between EC and NW was the largest, while that between MYR and SW was the smallest.
Compared with NW, EC had more advantages in technological innovation, energy struc-
ture, industrial structure, and environmental regulation intensity, and therefore the gap in
the CCD values between the two regions is relatively large. In contrast, MYR and SW had
great similarities in the abovementioned aspects. Furthermore, the hypervariable density
played the most dominant role in the difference in CCD, followed by the inter-regional
differences. The hypervariable density reflects the contribution of the cross-overlapping
of samples to the overall difference [48]. Cross-overlapping refers to the phenomenon
of some cities with extremely low CCD values located in the high-CCD-level regions or
some cities with extremely high CCD values located in the low-CCD-level regions, such as
Shanghai in EC and Anshan in NE. The high hypervariable density indicates a high number
of cities involved in overlapping. Thus, to achieve the synergy between CO2 and PM2.5
emissions’ reductions, the cross-overlapping problem among the eight regions should not
be overlooked.

5. Conclusions and Policy Implications
5.1. Conclusions

This study focused on the synergy between CO2 and PM2.5 emissions’ reductions
in China from 2003 to 2017. We first calculated the CCD of CO2 and PM2.5 emissions’
reductions in China’s 329 cities and analyzed the spatiotemporal characteristics of the
CCD on three spatial scales (i.e., national, regional, and urban scales). Then, we explored
the spatial autocorrelation and evolutionary characteristics of the CCD. Finally, regional
differences in CCD were examined. Key findings and principal conclusions are as follows:

• The synergy between CER and PER showed overall upward trends on three scales. On
the national scale, the proportions of high-level and extremely high level coordinated
cities increased largely, from 1.52% and 0 in 2003 to 31.31% and 58.05% in 2017,
respectively. On the regional scale, NE, SC, and EC showed the best performance in
CCD, while NW performed worst in CCD. On the urban scale, Shanghai had the lowest
CCD values. In addition, from the perspective of the relative development of CER
and PER, most cities were in the status of “PER lags” or “synchronous development”
during the study period. The ratio of cities in the “synchronous development” status
increased from 0.61% in 2003 to 38.60% in 2017.

• The CCD showed an obvious positive spatial autocorrelation. The Global Moran’s
I value ranged from 0.0776 to 0.5016, with a mean value of 0.2779. In Moran scatter
plots, the cities in the “High–High” or “Low–Low” clustering zones accounted for
71%, 64%, and 75% of all the cities in 2003, 2010, and 2017, respectively, indicating
strong clustering characteristics.

• The kernel density curves of CCD in China and the eight regions showed clear “right-
shifted” trends and a left-side tailing phenomenon. In particular, due to the extremely
lower CCD in individual cities, such as Anshan and Shanghai, NE and EC presented
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very long left-side tailings. Moreover, the polarization of CCD in SC, MYR, and SW
showed intensified trends, while that of NC and NW gradually weakened.

• As for the regional differences, EC showed the largest intra-regional difference, and
the difference showed a fluctuating downward trend. The inter-regional difference
between EC and NW was the largest, while that between MYR and SW was the small-
est. The hypervariable density contributed most to the overall difference, followed
by inter-regional and intra-regional differences, indicating that the cross-overlapping
problem among the regions should not be overlooked.

The study still has some limitations. First, due to data limitations, the research period
only spanned from 2003 to 2017. Since December 2019, the coronavirus pandemic has
spread across China, and many anthropogenic activities have been restricted in the country,
including transportation, industrial production, and construction. This may lead to reduc-
tions in both CO2 and PM2.5 emissions. The evaluation of the synergistic emission reduction
level after 2017 may provide more information for policymakers. Thus, the period is ex-
pected to extend when data are available. Second, we compared the synergy level of CER
and PER in only eight regions in China, which were divided according to the commonly
used division criteria. Future work should focus on the synergy in China’s key strategic
regions and city clusters. Third, the reasons for the spatial and temporal differences in the
synergy in China were analyzed primarily based on comparative inference. Therefore, the
influencing factors of the synergy should be explored in detail in a future study.

5.2. Policy Implications

Based on the above conclusions, the following policy implications are presented.
Firstly, a top-level design is required for formulating policies. CO2 and PM2.5 emis-

sions’ reductions have a common target, and a high synergy is challenging to achieve with
the separate CO2- or PM2.5-emission-reduction policies. Hence, the policies for synergistic
emission reduction should focus on restructuring energy, improving energy efficiency,
upgrading industrial structure, and the synergistic control of multi-pollutants.

Secondly, it is essential to enhance the role of technological innovation in the synergistic
governance of CO2 and PM2.5 emissions. At present, the synergy degree of CO2 and PM2.5
emissions’ reduction is limited by the technological level in some undeveloped cities in
China. Thus, the investment in technological innovation in the synergistic governance of
CO2 and PM2.5 should be increased. In addition, the new technologies which have achieved
significant emission-reduction effects in some high-tech cities should be introduced to
other cities.

Finally, it is vital to strengthen cooperation among cities and even among regions.
Because both CO2 and PM2.5 emissions showed spatial agglomeration characteristics,
stronger industrial and technological cooperation between regions is crucial for reducing
emissions. In particular, cooperation regarding industrial transfer, energy consumption
reduction, clean energy utilization, and energy-saving technologies should be emphasized.

Author Contributions: Conceptualization, S.W., S.Z. and L.C.; methodology, S.W. and L.C.; software,
S.W.; validation, S.W. and L.C.; formal analysis, S.W. and L.C.; investigation, S.W. and L.C.; data
curation, S.W. and L.C.; writing—original draft preparation, S.W.; writing—review and editing, S.W.,
S.Z. and L.C.; visualization, S.W.; supervision, S.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China, grant num-
bers 11926354 and 72073038; Technology Planning Project of Shaoguan, grant numbers 210726224533614
and 210726214533591; Philosophy and Social Science Program of Shaoguan, grant number J2020008;
Social Science Program of Shaoguan University, grant number SY2020SK02; Talent Project of Shaoguan
University, grant number 9900064502; Natural Science Foundation of Guangdong Province, grant
numbers 2022A1515011358 and 2023A1515010825.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Atmosphere 2023, 14, 1338 19 of 21

Data Availability Statement: CO2 emission data available online at https://www.ceads.net.cn/
(accessed on 10 May 2023); PM2.5 emission data available online at https://edgar.jrc.ec.europa.eu/
(accessed on 12 May 2023); and GDP data can be collected from the China City Statistical Yearbook
(https://data.cnki.net/yearBook/single?id=N2022040095, accessed on 15 May 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Atmosphere 2023, 14, x FOR PEER REVIEW 20 of 23 
 

 

emissions. In particular, cooperation regarding industrial transfer, energy consumption 
reduction, clean energy utilization, and energy-saving technologies should be empha-
sized. 

Author Contributions: Conceptualization, S.W., S.Z., and L.C.; methodology, S.W. and L.C.; soft-
ware, S.W.; validation, S.W. and L.C.; formal analysis, S.W. and L.C.; investigation, S.W. and L.C.; 
data curation, S.W. and L.C.; writing—original draft preparation, S.W.; writing—review and edit-
ing, S.W., S.Z., and L.C.; visualization, S.W.; supervision, S.Z. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This work was supported by the National Natural Science Foundation of China, grant 
numbers 11926354 and 72073038; Technology Planning Project of Shaoguan, grant numbers 
210726224533614 and 210726214533591; Philosophy and Social Science Program of Shaoguan, grant 
number J2020008; Social Science Program of Shaoguan University, grant number SY2020SK02; Tal-
ent Project of Shaoguan University, grant number 9900064502; Natural Science Foundation of 
Guangdong Province, grant numbers 2022A1515011358 and 2023A1515010825. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: CO2 emission data available online at https://www.ceads.net.cn/ (ac-
cessed on 10 May 2023); PM2.5 emission data available online at https://edgar.jrc.ec.europa.eu/ (ac-
cessed on 12 May 2023); and GDP data can be collected from the China City Statistical Yearbook 
(https://data.cnki.net/yearBook/single?id=N2022040095, accessed on 15 May 2023). 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. The full names of the cities in the eight regions: (a) NE, (b) NC, (c) EC, (d) SC, (e) MYeR, 
(f) MYR, (g) SW, and (h) NW. 
Figure A1. The full names of the cities in the eight regions: (a) NE, (b) NC, (c) EC, (d) SC, (e) MYeR,
(f) MYR, (g) SW, and (h) NW.

Atmosphere 2023, 14, x FOR PEER REVIEW 21 of 23 
 

 

    
Figure A2. Results of the Peason correlation analysis. 

References 
1. Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.X.; Xing, L.R. Extreme weather events risk to crop-production and the adaptation 

of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 
117, 102255. https://doi.org/10.1016/j.technovation.2021.102255. 

2. Elahi, E.; Khalid, Z.; Zhang, Z.X. Understanding farmers’ intention and willingness to install renewable energy technology: A 
solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. https://doi.org/10.1016/j.apen-
ergy.2021.118459. 

3. Abbas, A.; Waseem, M.; Ahmad, R.; Khan, K.A.; Zhao, C.Y.; Zhu, J.T. Sensitivity analysis of greenhouse gas emissions at farm 
level: Case study of grain and cash crops. Environ. Sci. Pollut. Res. 2022, 29, 82559–82573. https://doi.org/10.1007/s11356-022-
21560-9. 

4. Abbas, A.; Zhao, C.Y.; Waseem, M.; Khan, K.A.; Ahmad, R. Analysis of Energy Input-Output of Farms and Assessment of 
Greenhouse Gas Emissions: A Case Study of Cotton Growers. Front. Environ. Sci.-Switz. 2022, 9, 826838. 
https://doi.org/10.3389/fenvs.2021.826838. 

5. Guan, Y.; Xiao, Y.; Rong, B.; Lu, W.T.; Zhang, N.N.; Qin, C.B. Assessing the synergy between CO2 emission and ambient PM2.5 
pollution in Chinese cities: An integrated study based on economic impact and synergy index. Environ. Impact Asses 2023, 99, 
106989. https://doi.org/10.1016/j.eiar.2022.106989. 

6. Yu, Y.J.; Dai, C.; Wei, Y.G.; Ren, H.M.; Zhou, J.W. Air pollution prevention and control action plan substantially reduced PM2.5 
concentration in China. Energy Econ. 2022, 113, 106206. https://doi.org/10.1016/j.eneco.2022.106206. 

7. Li, S.; Wang, S.; Wu, Q.; Zhang, Y.; Ouyang, D.; Zheng, H.; Han, L.; Qiu, X.; Wen, Y.; Liu, M.; et al. Emission trends of air 
pollutants and CO2 in China from 2005 to 2021. Earth Syst. Sci. Data 2023, 15, 2279–2294. https://doi.org/10.5194/essd-15-2279-
2023. 

8. Harrould-Kolieb, E.R. Framing ocean acidification to mobilise action under multilateral environmental agreements. Environ. 
Sci. Policy 2020, 104, 129–135. https://doi.org/10.1016/j.envsci.2019.10.019. 

9. Gregg, J.S.; Andres, R.J.; Marland, G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consump-
tion and cement production. Geophys. Res. Lett. 2008, 35, L08806. https://doi.org/10.1029/2007gl032887. 

10. Wu, J.Q.; Chen, Y.; Yu, L.; Li, J.K. Coupling effects of consumption side renewable portfolio standards and carbon emission 
trading scheme on China’s power sector: A system dynamic analysis. J. Clean. Prod. 2022, 380, 134931. 
https://doi.org/10.1016/j.jclepro.2022.134931. 

11. Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geo-
chem. Health 2015, 37, 631–649. https://doi.org/10.1007/s10653-015-9720-1. 

12. Bala, G.P.; Rajnoveanu, R.M.; Tudorache, E.; Motisan, R.; Oancea, C. Air pollution exposure-the (in)visible risk factor for respir-
atory diseases. Environ. Sci. Pollut. Res. 2021, 28, 19615–19628. https://doi.org/10.1007/s11356-021-13208-x. 

13. Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), 
nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Envi-
ron. Int. 2020, 142, 105876. https://doi.org/10.1016/j.envint.2020.105876. 

Figure A2. Results of the Peason correlation analysis.

https://www.ceads.net.cn/
https://edgar.jrc.ec.europa.eu/
https://data.cnki.net/yearBook/single?id=N2022040095


Atmosphere 2023, 14, 1338 20 of 21

References
1. Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.X.; Xing, L.R. Extreme weather events risk to crop-production and the adaptation

of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022,
117, 102255. [CrossRef]

2. Elahi, E.; Khalid, Z.; Zhang, Z.X. Understanding farmers’ intention and willingness to install renewable energy technology:
A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [CrossRef]

3. Abbas, A.; Waseem, M.; Ahmad, R.; Khan, K.A.; Zhao, C.Y.; Zhu, J.T. Sensitivity analysis of greenhouse gas emissions at farm
level: Case study of grain and cash crops. Environ. Sci. Pollut. Res. 2022, 29, 82559–82573. [CrossRef]

4. Abbas, A.; Zhao, C.Y.; Waseem, M.; Khan, K.A.; Ahmad, R. Analysis of Energy Input-Output of Farms and Assessment of
Greenhouse Gas Emissions: A Case Study of Cotton Growers. Front. Environ. Sci.-Switz. 2022, 9, 826838. [CrossRef]

5. Guan, Y.; Xiao, Y.; Rong, B.; Lu, W.T.; Zhang, N.N.; Qin, C.B. Assessing the synergy between CO2 emission and ambient PM2.5
pollution in Chinese cities: An integrated study based on economic impact and synergy index. Environ. Impact Asses 2023,
99, 106989. [CrossRef]

6. Yu, Y.J.; Dai, C.; Wei, Y.G.; Ren, H.M.; Zhou, J.W. Air pollution prevention and control action plan substantially reduced PM2.5
concentration in China. Energy Econ. 2022, 113, 106206. [CrossRef]

7. Li, S.; Wang, S.; Wu, Q.; Zhang, Y.; Ouyang, D.; Zheng, H.; Han, L.; Qiu, X.; Wen, Y.; Liu, M.; et al. Emission trends of air pollutants
and CO2 in China from 2005 to 2021. Earth Syst. Sci. Data 2023, 15, 2279–2294. [CrossRef]

8. Harrould-Kolieb, E.R. Framing ocean acidification to mobilise action under multilateral environmental agreements. Environ. Sci.
Policy 2020, 104, 129–135. [CrossRef]

9. Gregg, J.S.; Andres, R.J.; Marland, G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption
and cement production. Geophys. Res. Lett. 2008, 35, L08806. [CrossRef]

10. Wu, J.Q.; Chen, Y.; Yu, L.; Li, J.K. Coupling effects of consumption side renewable portfolio standards and carbon emission
trading scheme on China’s power sector: A system dynamic analysis. J. Clean. Prod. 2022, 380, 134931. [CrossRef]

11. Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem.
Health 2015, 37, 631–649. [CrossRef]

12. Bala, G.P.; Rajnoveanu, R.M.; Tudorache, E.; Motisan, R.; Oancea, C. Air pollution exposure-the (in)visible risk factor for
respiratory diseases. Environ. Sci. Pollut. Res. 2021, 28, 19615–19628. [CrossRef]

13. Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5),
nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ.
Int. 2020, 142, 105876. [CrossRef]

14. McDuffie, E.E.; Martin, R.V.; Spadaro, J.V.; Burnett, R.; Smith, S.J.; O’Rourke, P.; Hammer, M.S.; van Donkelaar, A.; Bindle, L.;
Shah, V.; et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat.
Commun. 2021, 12, 3594. [CrossRef] [PubMed]

15. Zhang, R.H.; Li, Q.; Zhang, R.N. Meteorological conditions for the persistent severe fog and haze event over eastern China in
January 2013. Sci. China Earth Sci. 2014, 57, 26–35. [CrossRef]

16. Huang, R.J.; Zhang, Y.L.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.M.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al.
High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [CrossRef]

17. Zhi, G.R.; Zhang, Y.Y.; Sun, J.Z.; Cheng, M.M.; Dang, H.Y.; Liu, S.J.; Yang, J.C.; Zhang, Y.Z.; Xue, Z.G.; Li, S.Y.; et al. Village energy
survey reveals missing rural raw coal in northern China: Significance in science and policy. Environ. Pollut. 2017, 223, 705–712.
[CrossRef]

18. Jiang, L.; Bai, L. Spatio-temporal characteristics of urban air pollutions and their causal relationships: Evidence from Beijing and
its neighboring cities. Sci. Rep. 2018, 8, 1279. [CrossRef] [PubMed]

19. Huang, J.; Pan, X.C.; Guo, X.B.; Li, G.X. Health impact of China’s Air Pollution Prevention and Control Action Plan: An analysis
of national air quality monitoring and mortality data. Lancet Planet. Health 2018, 2, E313–E323. [CrossRef] [PubMed]

20. Jiang, X.; Li, G.L.; Fu, W. Government environmental governance, structural adjustment and air quality: A quasi-natural
experiment based on the Three-year Action Plan to Win the Blue Sky Defense War. J. Environ. Manag. 2021, 277, 111470. [CrossRef]

21. Yi, H.R.; Zhao, L.J.; Qian, Y.; Zhou, L.X.; Yang, P.L. How to achieve synergy between carbon dioxide mitigation and air pollution
control? Evidence from China. Sustain. Cities Soc. 2022, 78, 103609. [CrossRef]

22. Yu, Y.; Jin, Z.X.; Li, J.Z.; Jia, L. Low-carbon development path research on China’s power industry based on synergistic emission
reduction between CO2 and air pollutants. J. Clean. Prod. 2020, 275, 123097. [CrossRef]

23. Yang, H.C.; Gan, T.; Liang, W.; Liao, X.C. Can policies aimed at reducing carbon dioxide emissions help mitigate haze pollution?
An empirical analysis of the emissions trading system. Environ. Dev. Sustain. 2022, 24, 1959–1980. [CrossRef]

24. Yang, X.; Yang, X.; Zhu, J.; Jiang, P.; Lin, H.; Cai, Z.; Huang, H. Achieving co-benefits by implementing the low-carbon city pilot
policy in China: Effectiveness and efficiency. Environ. Technol. Innov. 2023, 30, 103137. [CrossRef]

25. Chen, S.Y.; Wang, C. Health benefits from the reduction of PM2.5 concentrations under carbon tax and emission trading scheme:
A case study in China. Environ. Sci. Pollut. Res. 2022, 30, 36631–36645. [CrossRef]

26. Dong, F.; Yu, B.L.; Pan, Y.L. Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: Evidence from
China. J. Clean. Prod. 2019, 223, 759–771. [CrossRef]

https://doi.org/10.1016/j.technovation.2021.102255
https://doi.org/10.1016/j.apenergy.2021.118459
https://doi.org/10.1007/s11356-022-21560-9
https://doi.org/10.3389/fenvs.2021.826838
https://doi.org/10.1016/j.eiar.2022.106989
https://doi.org/10.1016/j.eneco.2022.106206
https://doi.org/10.5194/essd-15-2279-2023
https://doi.org/10.1016/j.envsci.2019.10.019
https://doi.org/10.1029/2007GL032887
https://doi.org/10.1016/j.jclepro.2022.134931
https://doi.org/10.1007/s10653-015-9720-1
https://doi.org/10.1007/s11356-021-13208-x
https://doi.org/10.1016/j.envint.2020.105876
https://doi.org/10.1038/s41467-021-23853-y
https://www.ncbi.nlm.nih.gov/pubmed/34127654
https://doi.org/10.1007/s11430-013-4774-3
https://doi.org/10.1038/nature13774
https://doi.org/10.1016/j.envpol.2017.02.009
https://doi.org/10.1038/s41598-017-18107-1
https://www.ncbi.nlm.nih.gov/pubmed/29352226
https://doi.org/10.1016/S2542-5196(18)30141-4
https://www.ncbi.nlm.nih.gov/pubmed/30074894
https://doi.org/10.1016/j.jenvman.2020.111470
https://doi.org/10.1016/j.scs.2021.103609
https://doi.org/10.1016/j.jclepro.2020.123097
https://doi.org/10.1007/s10668-021-01515-9
https://doi.org/10.1016/j.eti.2023.103137
https://doi.org/10.1007/s11356-022-24781-0
https://doi.org/10.1016/j.jclepro.2019.03.152


Atmosphere 2023, 14, 1338 21 of 21

27. Jia, W.L.; Li, L.; Lei, Y.L.; Wu, S.M. Synergistic effect of CO2 and PM2.5 emissions from coal consumption and the impacts on
health effects. J. Environ. Manag. 2023, 325, 116535. [CrossRef]

28. Shi, Q.; Zheng, B.; Zheng, Y.; Tong, D.; Liu, Y.; Ma, H.; Hong, C.; Geng, G.; Guan, D.; He, K.; et al. Co-benefits of CO2 emission
reduction from China’s clean air actions between 2013–2020. Nat. Commun. 2022, 13, 5061. [CrossRef]

29. Yang, H.Z.; Liu, J.F.; Jiang, K.J.; Meng, J.; Guan, D.B.; Xu, Y.; Tao, S. Multi-objective analysis of the co-mitigation of CO2 and PM2.5
pollution by China’s iron and steel industry. J. Clean. Prod. 2018, 185, 331–341. [CrossRef]

30. Xing, Y.; Mao, X.; Feng, X.; Gao, Y.; He, F.; Yu, H.; Zhao, M. An effectiveness evaluation of co-controlling local air pollutants and
GHGs by implementing Blue Sky Defense Action at city level—A case study of Tangshan city. Chin. J. Environ. Manag. 2020,
12, 20–28. [CrossRef]

31. Tang, X.; Zhang, Y.; Cao, L.; Zhang, J.; Chen, X. Spatio-Temporal Characteristics and Influencing Mechanism of Synergistic Effect
of Pollution and Carbon Emission Reduction in China. Res. Environ. Sci. 2022, 35, 2252–2263. [CrossRef]

32. Nie, C.F.; Lee, C.-C. Synergy of pollution control and carbon reduction in China: Spatial—Temporal characteristics, regional
differences, and convergence. Environ. Impact Assess. Rev. 2023, 101, 107110. [CrossRef]

33. Li, Y.; Cui, Y.; Cai, B.; Guo, J.; Cheng, T.; Zheng, F. Spatial characteristics of CO2 emissions and PM2.5 concentrations in China
based on gridded data. Appl. Energy 2020, 266, 114852. [CrossRef]

34. Yan, D.; Ren, X.H.; Kong, Y.; Ye, B.; Liao, Z.Y. The heterogeneous effects of socioeconomic determinants on PM2.5 concentrations
using a two-step panel quantile regression. Appl. Energy 2020, 272, 115246. [CrossRef]

35. Chen, J.Y.; Luo, W.J.; Ren, X.H.; Liu, T.Q. The local-neighborhood effects of low-carbon city pilots program on PM2.5 in China:
A spatial difference-in-differences analysis. Sci. Total Environ. 2023, 857, 159511. [CrossRef]

36. Liu, Z.; Wang, F.; Tang, Z.Y.; Tang, J.T. Predictions and driving factors of production-based CO2 emissions in Beijing, China.
Sustain. Cities Soc. 2020, 53, 101909. [CrossRef]

37. Zhang, B.L.; Yin, S.S.; Lu, X.; Wang, S.F.; Xu, Y.F. Development of city-scale air pollutants and greenhouse gases emission inventory
and mitigation strategies assessment: A case in Zhengzhou, Central China. Urban Clim. 2023, 48, 101419. [CrossRef]

38. Li, L.; Mi, Y.F.; Lei, Y.L.; Wu, S.M.; Li, L.; Hua, E.S.; Yang, J.J. The spatial differences of the synergy between CO2 and air pollutant
emissions in China’s 296 cities. Sci. Total Environ. 2022, 846, 157323. [CrossRef]

39. Lai, Z.; Ge, D.; Xia, H.; Yue, Y.; Wang, Z. Coupling coordination between environment, economy and tourism: A case study of
China. PLoS ONE 2020, 15, e0228426. [CrossRef] [PubMed]

40. Liu, F.; Tang, L.; Liao, K.; Ruan, L.; Liu, P. Spatial distribution and regional difference of carbon emissions efficiency of industrial
energy in China. Sci. Rep. 2021, 11, 19419. [CrossRef] [PubMed]

41. Oreggioni, G.D.; Mahiques, O.; Monforti-Ferrario, F.; Schaaf, E.; Muntean, M.; Guizzardi, D.; Vignati, E.; Crippa, M. The impacts of
technological changes and regulatory frameworks on global air pollutant emissions from the energy industry and road transport.
Energy Policy 2022, 168, 113021. [CrossRef]

42. Ji, J.; Liu, H.; Yin, X. Evaluation and regional differences analysis of the marine industry development level: The Case of China.
Mar. Policy 2023, 148, 105445. [CrossRef]

43. Xia, D.; Zhang, L. Coupling coordination degree between coal production reduction and CO2 emission reduction in coal industry.
Energy 2022, 258, 124902. [CrossRef]

44. Wen, H.; Liang, W.; Lee, C.-C. China’s progress toward sustainable development in pursuit of carbon neutrality: Regional
differences and dynamic evolution. Environ. Impact Assess. Rev. 2023, 98, 106959. [CrossRef]

45. Tomal, M. Evaluation of coupling coordination degree and convergence behaviour of local development: A spatiotemporal
analysis of all Polish municipalities over the period 2003–2019. Sustain. Cities Soc. 2021, 71, 102992. [CrossRef]

46. Shen, L.; Yang, Y.; Bao, H.; Du, X.; He, H. Residents’ perceptions on the urban resources environment in Chinese large cities.
Environ. Impact Assess. Rev. 2023, 100, 107080. [CrossRef]

47. Ma, T.; Liu, Y.; Yang, M. Spatial-Temporal Heterogeneity for Commercial Building Carbon Emissions in China: Based the Dagum
Gini Coefficient. Sustainability 2022, 14, 5243. [CrossRef]

48. Chen, Z.; Zhang, Z.; Feng, T.; Liu, D. What drives the temporal dynamics and spatial differences of urban and rural household
emissions in China? Energy Econ. 2023, 125, 106849. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jenvman.2022.116535
https://doi.org/10.1038/s41467-022-32656-8
https://doi.org/10.1016/j.jclepro.2018.02.092
https://doi.org/10.16868/j.cnki.1674-6252.2020.04.020
https://doi.org/10.13198/j.issn.1001-6929.2022.08.10
https://doi.org/10.1016/j.eiar.2023.107110
https://doi.org/10.1016/j.apenergy.2020.114852
https://doi.org/10.1016/j.apenergy.2020.115246
https://doi.org/10.1016/j.scitotenv.2022.159511
https://doi.org/10.1016/j.scs.2019.101909
https://doi.org/10.1016/j.uclim.2023.101419
https://doi.org/10.1016/j.scitotenv.2022.157323
https://doi.org/10.1371/journal.pone.0228426
https://www.ncbi.nlm.nih.gov/pubmed/32017789
https://doi.org/10.1038/s41598-021-98225-z
https://www.ncbi.nlm.nih.gov/pubmed/34593841
https://doi.org/10.1016/j.enpol.2022.113021
https://doi.org/10.1016/j.marpol.2022.105445
https://doi.org/10.1016/j.energy.2022.124902
https://doi.org/10.1016/j.eiar.2022.106959
https://doi.org/10.1016/j.scs.2021.102992
https://doi.org/10.1016/j.eiar.2023.107080
https://doi.org/10.3390/su14095243
https://doi.org/10.1016/j.eneco.2023.106849

	Introduction 
	Materials and Methods 
	Study Area 
	The Evaluation Index System 
	Data Sources and Processing 
	Calculation of the Subsystem Scores 
	Entropy Method 
	Comprehensive Evaluation Function 

	Evaluation of the Synergy between CER and PER 
	Coupling Coordination Degree Model 
	Relative Development Degree Model 

	Spatial Autocorrelation Analysis 
	Kernel Density Estimation 
	Dagum Gini Coefficient 

	Results 
	Spatiotemporal Characteristics of Coupling Coordination Level 
	CCD on the National Scale 
	CCD on the Regional Scale 
	CCD on the Urban Scale 

	Spatial Autocorrelation of CCD 
	Evolutionary Characteristics of CCD 
	Reginal Differences in CCD 
	Intra-Regional Differences 
	Inter-Regional Differences 
	Sources of the Overall Difference 


	Discussion 
	Explanation for the Spatiotemporal Characteristics of CCD 
	Explanation for the Regional Differences in CCD 

	Conclusions and Policy Implications 
	Conclusions 
	Policy Implications 

	Appendix A
	References

