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Abstract: A fast pollutant dispersion model for urban canopies is developed by coupling mean
wind profiles to a parameterisation of turbulent diffusion and solving the time-dependent advection–
diffusion equation. The performance of a simplified, coarse-grained representation of the velocity field
is investigated. Spatially averaged mean wind profiles within local averaging regions or repeating
units are predicted by solving the three-dimensional Poisson equation for a set of discrete vortex
sheets. For each averaging region, the turbulent diffusion is parameterised in terms of the mean wind
profile using empirical constants derived from large-eddy simulation (LES). Nearly identical results
are obtained whether the turbulent fluctuations are specified explicitly or an effective diffusivity is
used in their place: either version of the fast dispersion model shows much better agreement with
LES than does the Gaussian plume model (e.g., the normalized mean square error inside the canopy
is several times smaller). Passive scalar statistics for a regular cubic building array show improved
agreement with LES when wind profiles vary in the horizontal. The current implementation is around
50 times faster than LES. With its combination of computational efficiency and moderate accuracy,
the fast model may be suitable for time-critical applications such as emergency dispersion modelling.

Keywords: building array; coarse graining; computational fluid dynamics (CFD); effective diffusivity;
wind profile

1. Introduction

Fast and accurate prediction of pollutant dispersion is important for practical appli-
cations such as operational air-quality modelling and emergency dispersion modelling.
Computational fluid dynamics (CFD), which has been extensively applied to pollutant
dispersion in idealised [1] and realistic [2,3] urban areas, features relatively high accuracy;
however, it is too computationally demanding for time-critical applications. Hence, there is
a need for a fast dispersion model that can provide useful predictions without significant
computational resources, extensive training data or many adjustable parameters.

The simplest dispersion model is the Gaussian plume model (GPM) [4], which is
still widely used. In the original formulation, the pollutant concentration downwind of a
point source is estimated by assuming flat terrain and an eddy diffusivity that increases
linearly with downwind distance [5]. The GPM is therefore not well-suited to the urban
canopy layer, where pollutants are emitted and many people live and work. The intrinsic
limitations of the GPM have helped spur the development of fast dispersion models that are
more appropriate for urban areas. The Quick Urban & Industrial Complex (QUIC) model
is based on a variational solution for a steady velocity field [6] and a Lagrangian stochastic
model for the time-dependent dispersion [7]. Although QUIC has been successfully applied
in a variety of contexts (e.g., [8]), accuracy is potentially limited by the initial guess for
the velocity and the nonlocal mixing parameterisation. The urban dispersion models
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SIRANE [9] and MUNICH [10] assume constant concentration on the building scale (i.e.,
within a street canyon) and parameterise the mean velocity profiles and turbulent transfer.
They show good agreement with in situ observations [11,12]; however, information about
individual buildings is lost as only the canyon dimensions and aspect ratio are considered.

The complexity of the urban environment is such that any fast dispersion model must
rely on assumptions, approximations and empirical relationships. Hence, models such
as QUIC, SIRANE and MUNICH may not be well-suited to all applications or geome-
tries. In this paper, we introduce a new fast dispersion model based on coarse graining
of the velocity field, i.e., spatial averaging over subregions or repeating units. This is a
potentially attractive strategy because accurate and computationally efficient models of
spatial averages are more easily obtained than ones for the fine-scale turbulent velocity
field. We estimate the spatially averaged mean wind profiles within the urban canopy
by approximating the vorticity field [13] and couple them to different turbulence param-
eterisations. Although the time-dependent three-dimensional (3D) advection–diffusion
equation is solved, mean wind profiles within subregions are used in place of a continu-
ously varying 3D velocity field. For one of the parameterisations, turbulent fluctuations
within each subregion are prescribed; for the other one, the associated effective diffusivity
is used instead.

This study introduces a new multiscale fast dispersion model based on estimates of the
spatially averaged wind profiles and applies it to the canonical case of a cubic building array.
The fast dispersion model (FM) is presented in Section 2: the estimation of the mean wind
profiles within the array units is reviewed and the two turbulence parameterisations are
described. The methodology section details the implementation of two versions of the FM,
which are distinguished by their turbulence parameterisation, as well as the LES model
that is used for calibration and assessment (Section 3). The performance of the fast model is
assessed in Section 4 through comparisons with LES and the GPM. The sensitivity to mean
wind speeds and the specification of the diffusivity tensor is described in Sections 5 and 6,
respectively. Limitations of the fast dispersion model are discussed in Section 7. Practical
implications for operational dispersion modelling are given in Section 8.

2. Derivation of the Fast Dispersion Model

The fast dispersion model requires mean wind profiles, a turbulence parameterisation
and a numerical model for the solution of the advection–diffusion equation. It includes the
following steps:

1. Estimation of mean wind profiles using the vortex method [13].
2. Parameterisation of turbulent diffusion.

• FM1 (direct approach): velocity perturbations are specified using the mean
wind profiles.

• FM2 (indirect approach): the effective diffusivity is specified using the temporal
velocity variance.

3. Solution of advection–diffusion equation using the mean wind profiles and turbulence
parameterisation.

Mean wind profiles within urban canopies can be estimated by assuming that the
velocity is controlled by intense layers of vorticity, i.e., by solving the three-dimensional
Poisson equation for a set of discrete vortex sheets. The detailed procedure is summarised
in Section 2.1. Briefly the method yields steady, spatially averaged wind profiles,

URl
i ≡ 〈ūi〉Rl , (1)

where i = {x, y, z}, 〈·〉Rl denotes a volume average over a region Rl (e.g., a canyon) and
the overbar is a time average. Henceforth the overbar is dropped for convenience.

Since urban dispersion is strongly affected by the turbulent component of the flow,
a turbulence parameterisation is required. Two versions are examined. First, turbulent
fluctuations are introduced via stochastic velocity perturbations: this is referred to as FM1.
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Second, the effect of turbulent fluctuations is mimicked by defining an effective diffusivity:
this is referred to as FM2. Note that the effective diffusivity [14] differs from standard
prescriptions of the turbulent diffusivity.

The numerical solution of the advection–diffusion equation is described in Section 3.2.

2.1. Estimating Mean Wind Profiles

The mean wind profiles are estimated by the vortex method [13], in which a set of
vortex sheets (i.e., thin layers of intense vorticity) are used to determine a set of basis
functions. This method has been successfully applied to a variety of urban canopies,
including realistic ones, by [15].

A brief summary of the vortex method now follows. For further details, see [13,15].

1. Definition of the vortex sheets. The vorticity field is strongly localised near solid walls
for urban canopy flows. Therefore, the continuous vorticity field is approximated by a
set of discrete vortex sheets at the walls, namely, at the top of the tallest building (<t),
street level (<b), or along side walls (<s). Approximating the vorticity field in this way
is a standard technique in vortex dynamics [16,17] that has been applied to different
areas of fluid dynamics [18,19]. A given vortex sheet location may not include all
three vorticity components. A vorticity sheet is defined by the vortex sheet location
<j and vorticity component ωk. The set of vorticity sheets, {(<j, ωk)}, for a region Rl
is denoted by Ωl .

2. Solution of Poisson equation. The flow induced by each vortex sheet (a Green’s function
or, in two dimensions, streamfunction) is obtained by solving a 3D Poisson equation.
More precisely, velocity basis functions, 〈V j,ωk

i 〉Rl , are obtained for the entire set of
vorticity sheets. The basis functions represent the effect of a specific vorticity sheet for
the specified building geometry.

3. Synthesis. The basis functions are used to estimate mean wind profiles. Summing over
vorticity sheets,

URl
i (z) = ∑

(<j ,ωk)∈Ωl

αj,ωk 〈V<j ,ωk
i 〉(z). (2)

yields the mean velocity profiles for region Rl . The αj,ωk are weights that determine
the contribution of each vorticity sheet to the estimated velocity profile.

4. Calibration. The weights are calculated through a calibration procedure. Using refer-
ence CFD data, the αj,ωk are defined to be proportional to the strength of each vorticity
sheet, i.e.,

αj,ωk ≡ Cj,ωk γj,ωk (3)

where γj,ωk is the circulation of the vorticity sheet. Cj,ωk is a geometric constant,
which depends on the geometry only. The Cj,ωk are obtained by minimising the
residual between the reference CFD profile and the estimated profile (i.e., Equation (1)).
By construction, the Cj,ωk are calculated for a reference wind direction; however, they
can be successfully applied to other wind directions for various urban canopies,
justifying their interpretation as geometric constants [15]. The circulation for the
reference wind direction is calculated from the reference mean wind profiles; γj,ωk for
other wind directions is obtained by rotating the mean velocity.

5. Matching. Since inviscid vortex dynamics is assumed, the preceding steps only yield
an estimate of the mean velocity profiles away from boundaries or above the ground.
The vertical profiles near the ground, i.e., below a height zb, are parameterised with a
log-law profile and the friction velocity.

2.2. Turbulence Parameterisations

The velocity components can be decomposed with respect to the space-time
average [20,21], i.e.,
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ui = 〈ūi〉Rl + ˜̄ui + u′Rl
i , (4)

where i ∈ {x, y, z}, denotes the velocity component and Rl label different subdomains or
averaging regions. Above the canopy, only a single region is required. The tilde denotes
fluctuations with respect to the spatial mean. In turbulence parameterisations, spatial
fluctuations are rarely considered. Strictly speaking, this is justified only for homogeneous
turbulence; however, it is reasonable to assume that ˜̄ui has no preferred spatial structure, in
which case u′i effectively represents temporal and spatial fluctuations.

2.2.1. Fast Model 1 (FM1)

Turbulent fluctuations are parameterized in terms of the mean flow by discretising in
space and time. At times t ∈ [tk, tk+1],

u′Rl
i (x, y, z; tk) = β

Rl
i (z)URl

i (z)N(0, 1), (5)

where tk ≡ kTupdate,i, k ≥ 0 is an integer, URl
i (z) ≡ 〈ūi〉Rl are the mean profiles obtained

from the vortex method, β
Rl
i is a turbulence coefficient, and N(0, 1) is a normal distribution

with mean 0 and standard deviation 1. The spatially random fluctuations are essentially
frozen between updates but temporally uncorrelated from one update to another.

Although specifying turbulent fluctuations explicitly is unconventional in CFD,
Lagrangian stochastic models for turbulent diffusion work similarly [22]. We assume
that the turbulent fluctuations in each direction are linearly related to the corresponding
mean velocity components. As with the mean wind profiles, the β

Rl
i are calculated for a

reference wind direction and applied to other directions.
The turbulence coefficients are determined from reference LES velocity data, vi, rather

than from a theoretical model because this study is concerned with the extent to which
simple turbulence parameterisations may be applied to fast dispersion modelling. Vertical
profiles are calculated as follows:

β
Rl
i (z) = 〈v′i,rms〉Rl /〈vi,rms〉Rl , (6)

where the temporal root-mean square (rms) is taken in the numerator and denominator.
For simplicity, values inside and above the canopy, β

Rl
i,canopy and βi,above, respectively, are

considered. They are defined as

β
Rl
i,canopy =

1
H

∫ H

0
β

Rl
i (z)dz, βi,above =

1
Lz − H

∫ Lz

H
βi(z)dz, (7)

where Lz denotes the height of the computational domain.
Turbulent diffusion is introduced by Equation (5). Its magnitude depends on the

timescale at which the fluctuations are updated, Tupdate,i, which may be interpreted as a
correlation timescale for the turbulence. Since pure diffusion is associated with white noise
(see Section 2.2.2), it is natural to use the shortest timescale resolved by the model, namely,
the model timestep. Thus Tupdate,i ≡ ∆t in the first instance.

2.2.2. Fast Model 2 (FM2)

Parameterising the effect of the turbulent fluctuations on the scalar field is more
convenient. This can be achieved by appealing to standard results for stochastic differential
equations (SDEs) to derive an effective diffusivity [22]. Consider the SDE

dxi = ui(x, t)dt +
√

2κijdWj, (8)

where xi is the displacement vector, dWj is an incremental Wiener process and κij is the
noise amplitude. This SDE is equivalent to the advection–diffusion equation
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∂C
∂t

+ Ui
∂C
∂xi

= κij
∂2C
∂x2

j
, (9)

if the concentration C is interpreted as the probability distribution function of xi [14,23].
Physically, κij is an effective diffusivity tensor that represents the effects of temporal
fluctuations absent from the velocity, Ui.

The preceding theory is idealised and cannot be applied exactly to urban flows. First,
it is assumed that the fluctuations are Gaussian and completely independent of the mean
flow. Second, the boundary conditions at the wall are neglected. Nevertheless, this theory
represents a natural starting point for estimating the effective diffusivity. Assuming that
turbulent fluctuations can be modelled by a stochastic process (i.e., by κijdWj), the vertical
profile of the effective diffusivity within each repeating unit is estimated from reference
LES velocity data:

κ
Rl
ij (z) = (σ

Rl
ij )

2TRl
ij , (10)

where the temporal standard deviation of the Reynolds stress,

σ
Rl
ij =

〈(
v′iv
′
j − v′iv

′
j

)2〉
Rl

, (11)

and TRl
ij is the corresponding correlation time. In the first instance,

κij = 0, for i 6= j, (12)

by analogy with molecular diffusion. As with FM1, TRl
ij ≡ ∆t and averages inside and

above the canopy, κ
Rl
ij,canopy and κij,above, are taken:

κ
Rl
ij,canopy =

1
H

∫ H

0
κ

Rl
ij (z)dz, κij,above =

1
Lz − H

∫ Lz

H
κij(z)dz. (13)

The advection–diffusion equation is written in dimensional form so as to facilitate
comparison with the SDE, Equation (8). Nevertheless, the effective diffusivity does depend
on the choice of length and velocity scales. Nondimensionalising Equation (9) yields

∂C
∂t∗

+ U∗i
∂C
∂x∗i

=
1

Pe
∂2C
∂x∗2j

, (14)

where the Peclet number Pe = UL/κij, with U and L being characteristic velocity and
length scales, respectively. Hence, the effective diffusivity can be scaled by fixing Pe.
Alternatively, the nondimensional diffusivity,

κ∗ij =
κij

UL
=

1
Pe

. (15)

is fixed.

3. Methodology

There are many models for predicting pollutant dispersion [24]. The most widely
used theoretical model is the Gaussian plume model (GPM) [5], which incurs essentially no
computational cost, neglects the presence of buildings but works well in the far field [1]. The
GPM is summarised in Appendix A. The most accurate approach is building-resolving CFD,
but it is technically complicated and computationally expensive, especially for LES [25].
LES and GPM results will be compared to the fast dispersion models derived in Section 2.
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3.1. Computational Domain

A regular cubic array, which is more representative of urban areas than the 2D street
canyon [26], constitutes the topography for this study. For a sufficiently large array, the flow
inside the canopy is approximately homogeneous. Hence, there are three types of repeating
units: channels (R1), where the buildings are aligned in the y direction; canyons (R3), where
the buildings are aligned in the x direction; and intersections (R2), which lie between them.
See Figure 1 for an illustration.

Properties of the mean flow and turbulence differ qualitatively among the repeating
units [21]. For example, for a flow parallel to the x axis (i.e., at 0°), there is approximately
rectilinear motion through the channel and intersection units, but a pair of counterrotating
vortices inside the canyon units [27]. The flow patterns change with the wind direction, θ,
but the inhomogeneity persists [28]. Hence, the repeating units are used to define the
regions over which the mean velocity profiles are calculated (see Equation (2)).

The topography extends throughout the computational domain. A plan view is shown
in Figure 1. It has dimensions Lx × Ly × Lz or 24H × 24H × 6H, where H = 20 m is the
length of each side of the cubic buildings. The same computational domain is used for the
LES and FM.

Figure 1. Schematic illustration of the computational domain. The areas enclosed by blue dashed
lines represent different repeating units (R1—channel; R2—intersection; R3—canyon). The red circle
represents a ground-level point source, P3, located inside a canyon unit.

3.2. LES

The fast models were calibrated and assessed using building-resolving, implicitly
filtered, LES and OpenFOAM, a finite-volume library for the Navier–Stokes equations [29].
For all simulations described herein, the model configuration is as follows. The advection
terms are discretised using a Gauss scheme and second-order Gauss linear upwinding is
used for the velocity divergence. The Crank–Nicolson scheme is used for time-stepping.
The subgrid scale (SGS) stress tensor, τij, is parameterized by the wall-adapting local
eddy-viscosity (WALE) model [30],

τij =
1
3

τkkδij + 2νtSij, (16)

where Sij =
1
2 (

∂ui
∂xj

+
∂uj
∂xi

) is the resolved-scale strain rate tensor. The Spalding [31] wall
function (implemented in OpenFOAM as nutUSpaldingWallFunction) is applied to solid
surfaces: it specifies the turbulent viscosity as a function of the wall-normal distance by
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correcting the shear stress at the wall. An isotropic grid spacing ∆ = 1 m is used away
from the walls. Mesh refinement is applied in the immediate vicinity of the walls where
the finest horizontal resolution is ∆ = 0.5 m.

The flow is forced by a constant external forcing. A wind speed of 3 ms−1 is obtained
at the upper lid. Periodic boundary conditions are applied in the horizontal. A free-slip
boundary condition is imposed at the top of the computational domain and there is no slip
on all solid surfaces.

The passive scalar is released at ground level (actually the centre of the first cell) from
a steady point source (P3) located inside the canyon unit (R3). To avoid the accumulation
of scalar, a sponge layer was added to the lateral boundaries: the concentration is manually
reset to zero after each time step. The turbulent Schmidt number is set to Sct = 0.7 [1,32].
Since the turbulent diffusivity is several orders of magnitude greater than the molecular
diffusivity, the contribution from the latter is neglected. The calibration relies on veloc-
ity statistics only (Section 3.3.3), but passive scalar statistics are needed to evaluate the
performance of the fast models (Section 4).

The model was spun up for approximately 4000 s, which is sufficient for the mean
flow and turbulence to reach approximate statistical stationarity; after the spin up, data were
collected for another 1000 s. The variable time step ∆tLES ∼ 0.2 s and the average CFL number
is less than unity at every time step. Henceforth, only time-averaged data are considered. For
convenience, the overbar is omitted for the mean wind profiles, URl

i .
The validation of the LES model against wind-tunnel data for velocity and scalar

statistics are presented in Appendix B. Validation metrics for the mean streamwise velocity
and pollutant concentration indicate acceptable agreement. We conclude that the LES
model is capable of providing a useful baseline truth for the fast model.

3.3. Implementation of the FM
3.3.1. Numerical Solution

The numerical solution of the advection–diffusion equation is essentially identical to
that for the full LES model (Section 3.2). The numerical schemes, boundary conditions
and configurations are identical. The (variable) timesteps are, ∆tFM ∼ ∆tLES, and the
integration lengths are identical (i.e., 5000 s). The only difference is that the velocity field
is prescribed (obviating the need for a spin up) and the turbulent diffusivity is set to zero.
FM1 and FM2 use the same mean velocity profiles, URl

i (Section 3.3.2), but differ in their
turbulence parameterisations.

3.3.2. Mean Wind Profiles

The first step in solving for the mean wind profiles, URl
i , is to define the vorticity

sheets. From the vorticity field at 0° (Figure 2), strong vorticity appears at the roof, street
levels and sidewalls, as with street canyons [13] and realistic canopies [15]. This suggests
the following arrangement of vorticity sheets:

Ωux ≡ {(<b, ωy), (<b, ωz), (<t, ωy), (<t, ωz), (<s, ωy), (<s, ωz)}, (17a)

Ωuy ≡ {(<b, ωx), (<b, ωz), (<t, ωx), (<t, ωz), (<s, ωx), (<s, ωz)}, (17b)

Ωuz ≡ {(<b, ωx), (<b, ωy), (<t, ωx), (<t, ωy), (<s, ωx), (<s, ωy)}, (17c)

where Ωi denotes the set of vorticity sheets used to predict velocity component ui.
Note that each Ωi includes all vorticity components that influence velocity component ui:
by definition, ωi has no effect on ui. The procedure can be simplified by taking a subset of
the vorticity sheets [15], but this is not necessary to test the usefulness of the FM.

The flow induced by each vorticity sheet is obtained by solving the associated Poisson
equation with a geometric-algebraic multi-grid solver and a free-slip boundary condition
at the walls. For all cases considered herein, the calibration was performed using data
for 45°; hence, the geometric coefficients for 45° are applied to other directions (e.g., 0°).
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At z/H = 0.25, the estimate from the vortex method is matched to a log profile that extends
to the ground.

The vortex method performs well for idealised [13] and realistic [15] domains. Here
we summarise its performance for the cubic building array. Figure 3 compares estimated
and LES wind profiles for θ = 45°. There is generally good agreement for the velocity
components, though relative errors are larger for the vertical velocity on account of the
small magnitudes (typical dimensional errors are ∼0.01 ms−1). For the horizontal veloc-
ity components, relative errors inside the canyon are ∼10%. Agreement is maintained
up to z/H = 2, but for clarity, the figure extends to z/H = 1 only.

Figure 2. Normalised spatially averaged vorticity magnitude, ||~ω||∗ at y = 9H (see Figure 1).
The maximum value is used for the normalisation.

3.3.3. Turbulence Parameterisation

The numerical solution of the advection–diffusion equation is essentially identical to
that for the full LES model (Section 3.2). The numerical schemes, boundary conditions
and configurations are identical. The (variable) timesteps are comparable. The only
difference is that the velocity field is prescribed (obviating the need for a spin up) and
the turbulent diffusivity is set to zero. FM1 and FM2 use the same mean velocity profiles,
URl

i (Section 3.3.2), but differ in their turbulence parameterisations.

3.3.4. Fast Model 1 (FM1)

The turbulence coefficients, β
Rl
i,canopy and βi,above, were calculated from reference LES

data using Equations (6) and (7). Analogously to the estimation of the mean wind profiles
in Section 2.1, reference LES data for 45° were used. The β

Rl
i,canopy and βi,above so obtained

(Table A6) are then applied to other wind directions, e.g., 0°. The sensitivity to the choice of
reference wind direction is considered in Section 5.

3.3.5. Fast Model 2 (FM2)

The effective diffusivities, κ
Rl
ij,canopy and κij,above, were determined from reference LES

data using Equations (10) and (13). As with the turbulence coefficients, reference wind data
for 45° were used to calculate the effective diffusivities, which are applied to 45° and 0°.
Normalising the effective diffusivities via Equation (15) to yield κ

Rl∗
ij,canopy and κ∗ij,above

(Table A7) facilitates the application to stronger or weaker mean flow. The reference
velocity scale is U ≡ Uref = 3 ms−1 (i.e., free-stream speed at the upper lid, 5H) and
the reference length scale L = 20 m (i.e., building height, H). Since the choice of 45° for
the reference data is arbitrary, the sensitivity of FM2 to the wind direction is examined
in Section 6.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3. Vertical profiles of normalised velocities at 45° for different averaging regions. Velocities are
normalized by the reference wind speed, Uref at z = H. Solid lines represent predictions and dashed
lines are LES results. Upper panels are for ux; middle ones are for uy; and bottom ones are for uz.
(a,e,i) Channel units; (b,f,j) intersection units; (c,g,k) canyon units; and (d,h,l) entire domain.

4. Evaluation of the Default FM Configurations
4.1. LES and GPM

The performance of the fast models is now evaluated against LES passive scalar data.
For simplicity, a vertical average is taken.
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〈C〉H ≡
1
H

∫ H

0
Cdz. (18)

Figure 4a,b show mean concentration fields, 〈C〉H from LES. The spatial patterns are
consistent with many previous numerical studies (e.g., [27,28,33]). At θ = 0°, pollutants
preferentially disperse in the x direction, i.e., along the rows, and are easily trapped within
the canyon units. The plume width does not increase noticeably downstream of the source,
likely on account of spanwise channelling of pollutants. At θ = 45°, there is more cross-
stream dispersion.

Predictions from the GPM are shown in Figure 4c,d. The GPM does a poor job of cap-
turing the plume structure and generally underestimates concentrations as the cross-stream
dispersion in the direction is overestimated. Since the GPM does not include a representa-
tion of buildings, trapping within canyons is not captured. Hence, the dependence on the
wind direction is also missed.

(a) 0°, LES (b) 45°, LES

(c) 0°, GPM (d) 45°, GPM

Figure 4. Mean concentration fields (temporally and vertically averaged over the canopy) in the x− y
plane for LES and the GPM: (a) 0°, LES; (b) 45°, LES; (c) 0°, GPM; and (d) 45°, GPM.

4.2. FM1

Scalar fields generated by FM1 are plotted in Figure 5. The same turbulence coef-
ficients and geometric constants (obtained at 45°) were used for both wind directions,
i.e., 0° and 45°. Compared to the GPM ones, the FM1 fields inside the canopy show much
better agreement with LES: in particular, the strong downwind and weak cross-stream
dispersion are partially captured. However, the cross-stream dispersion is too weak in
FM1 as the localisation of the plume along the 45° line is exaggerated. This suggests that
turbulent diffusion is too weak in FM1.
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(a) 0° (b) 45°

(c) 0° (d) 45°

Figure 5. Spatially and temporally averaged concentrations for FM1. Concentration fields (vertically
averaged over the canopy) are shown at the top; lateral concentration profiles (averaged in the
spanwise direction and plotted as a function of the downwind distance from the source, x′) at
the bottom: (a,c) 0°; and (b,d) 45°. The RAD is indicated with a solid black line. The LES results are
shown in green and the FM1 in blue. The GPM is presented in red.

To analyse the accuracy of FM1 as a function of the downwind distance, the concentra-
tion is averaged over the canopy and along the spanwise direction:

〈C〉H,y ≡
1

HLy

∫ Ly

0

∫ H

0
Cdydz. (19)

Lateral profiles, i.e., 〈C〉H,y versus x′ ≡ x − xs, where xs is the streamwise location of
the point source, are plotted in Figure 5c,d. The LES and FM1 profiles show reasonable
agreement, though the step-like changes in the concentration between units are smoothed
out, especially at 0°. The GPM underestimates the concentration everywhere.

Far from the source, the nature of the dispersion should become independent of
the precise arrangement of buildings since pollutants will have passed many buildings,
leading to central-limit-type behaviour. This idea is captured in the notion of the radius
of homogenisation (RAD) [34], which demarcates the near- (x′ < RAD) and far-field
(x′ > RAD) regions. The RAD can be estimated from concentration autocorrelations [1].

Statistical performance measures (Appendix C) for different averaging regions are
listed in Table 1. Compared to the GPM, FM1 shows significantly smaller errors; for exam-
ple, the normalised mean-square error (NMSE) for the entire field decreases by ∼60–90%
inside the canopy. However, the spatial dependence differs. Whereas the far-field error for
the GPM is always smaller, this is not necessarily true for FM1 as the NMSE at 0° actually
increases slightly in the far field. On the other hand, FM1 at 45° performs rather poorly
in the near field as the correlation coefficient (R) is close to zero. Above the canopy, the
NMSE is significantly smaller but the other metrics do not show obvious improvements.
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Table 1. Statistical performance measures for different dispersion models at 0° and 45°. GPM, FM1
and FM2 are evaluated against corresponding LES data; FM1 is evaluated against FM2. The results
inside the canopy (z/H ≤ 1) are shaded; results above the canopy (z/H ≤ 1) are unshaded.

FB MG N MSE VG R FAC2

0°

Near field 1.01 2.44 3.23 2.81 0.70 0.48
Far field 0.89 2.61 1.14 2.84 0.69 0.31

Entire field 0.95 2.58 2.71 2.83 0.73 0.34
Above canopy −0.28 0.83 0.22 1.37 0.78 0.93

45°

Near field 1.02 2.75 2.41 3.10 0.69 0.12
Far field 0.96 2.75 1.37 2.91 0.92 0.08

Entire field 0.98 2.75 2.08 2.94 0.82 0.09

GPM

Above canopy −0.27 0.84 0.15 1.22 0.82 0.95

0°

Near field 0.39 1.49 0.25 1.40 0.93 0.69
Far field 0.25 1.21 0.28 1.24 0.36 0.89

Entire field 0.31 1.26 0.25 1.27 0.93 0.85
Above canopy 0.09 1.10 0.02 1.03 0.64 0.98

45°

Near field 0.59 1.63 1.26 1.59 −0.02 0.78
Far field 0.03 0.93 0.14 1.14 0.76 0.96

Entire field 0.23 1.03 0.76 1.21 0.65 0.93

FM1

Above canopy 0.20 1.25 0.05 1.07 0.87 1.0

0°

Near field 0.40 1.31 0.49 1.22 0.92 0.97
Far field −0.05 0.89 0.13 1.16 0.54 0.96

Entire field 0.14 0.96 0.40 1.17 0.91 0.96
Above canopy −0.01 1.01 0.04 1.05 0.30 1.0

45°

Near field 0.46 1.44 0.95 1.38 −0.07 0.84
Far field −0.20 0.76 0.10 1.17 0.80 0.91

Entire field 0.06 0.87 0.60 1.20 0.63 0.90

FM2

Above canopy −0.21 0.84 0.09 1.07 0.75 1.0

0°
Entire field 0.18 1.32 0.09 1.09 0.97 1.0

Above canopy −0.07 0.89 0.04 1.07 0.91 1.0

45°
Entire field 0.03 1.02 0.01 1.01 0.96 1.0FM1 vs. FM2

Above canopy −0.07 0.88 0.02 1.26 0.99 0.95

The preceding results may be explained as follows. For the GPM, the accuracy of a
diffusion equation for modelling the pollutant dispersion improves in the far field. Inside
the canopy, FM1 is similar to the GPM insofar as dispersion is driven by the mean flow and
a turbulence parameterisation; however, the GPM assumes a constant streamwise velocity
and a turbulent diffusivity that is a function of x′ (Appendix A). At 0°, the FM1 approxi-
mation of the mean flow by the averages for each repeating unit evidently works well as
the near- and far-field NMSE values are similar, but at 45°, the flow within the canyon and
intersection units is of greater importance (e.g., see the horizontal streamlines in [1]). The
NMSE is much smaller above the canopy, likely on account of the greater homogeneity of
the scalar field.

4.3. FM2

Figure 6 shows scalar fields and lateral profiles inside the canopy for FM2. The plume
structures (panels a,b) are very similar to those for FM1, although cross-stream dispersion
at 45° increases slightly for FM2, in agreement with the LES. The lateral profiles (panels c,d)
show that, like FM1, FM2 underestimates concentration differences between the units.

Statistical performance measures (Table 1) confirm that FM2 is more accurate than the
GPM inside and above the canopy. For example, the NMSE inside the canopy is ∼70–80%
smaller for FM2. The NMSE decreases in the far field at 0° and 45° for FM2.
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(a) 0° (b) 45°

(c) 0° (d) 45°

Figure 6. As in Figure 5, but for the concentration fields and lateral profiles of FM2.

4.4. Comparison of FM1 and FM2

FM1 and FM2 yield similar results. Although there are slight differences in the plume
structures at 45°, the statistical performance metrics do not indicate that one model always
performs better than the other. According to the NMSE inside the canopy, FM1 is ∼40%
better at 0°, but ∼30% worse at 45°. Since FM1 explicitly parameterises turbulent fluctua-
tions in terms of the strength of the mean flow, it is plausible that it should perform worse
when turbulent fluctuations are weaker, i.e., at 45° (see [1] for analysis of the dependence
on the wind direction). Since FM2 is based on a diffusion equation, its performance should
be largely insensitive to the strength of the turbulent fluctuations. The differences between
FM1 and FM2 are also seen in the near- and far-field errors: whereas the near-field FM1
errors are smaller at 0°, the near-field FM2 errors are larger, as with the GPM.

5. Dependence on the Mean Flow
5.1. Wind Speed

The results of Section 4 were obtained using LES data for a specific reference wind
speed. We now assess whether the geometric constants and the turbulence coefficients
for the baseline configuration, i.e., Uref = 3 ms−1 (at z/H = 1), are applicable to other
reference wind speeds, namely Uref,low = 1 ms−1 and Uref,high = 9 ms−1.

The performance of the vortex method at low and high wind speeds is compared
using a spatial average within each repeating unit, i.e.,

〈·〉H,Ri =
1

ARi H

∫ H

0

∫
Ri

(·) dAdz, (20)



Atmosphere 2023, 14, 1337 14 of 30

where ARi is the area of Ri. Figure 7a shows a scatter plot of the normalised averages for
all units, i.e., 〈Uhigh〉H,Ri /〈Uref,high〉H,Ri versus 〈Ulow〉H,Ri /〈Uref,low〉H,Ri , where Ulow and
Uhigh denote the wind speeds obtained for the different reference wind speeds. The data
are tightly clustered along the diagonal, indicating that the estimated wind speeds are
largely insensitive to the reference wind speed.

(a) (b)

Figure 7. Sensitivity to low (Uref,low = 1 ms−1) and high (Uref,high = 9 ms−1) reference wind
speeds: (a) normalised averages of the estimated mean wind speeds from the vortex method; and
(b) turbulence coefficients from LES data. Each point represents averages over a specific repeating unit.

The dependence of the turbulence coefficients on the reference speed is quantified
by recalculating them (Equation (6)) using LES data for Uref,low and Uref,high. A scatter

plot of the normalised averages, i.e., 〈βRl
i,low〉Rl and 〈βRl

i,high〉Rl , is shown in Figure 7b. The
points lie close to the diagonal, indicating that the turbulence coefficients are approximately
independent of the wind speed. Statistical metrics (Table A3) indicate little difference with
respect to the baseline coefficients for Uref = 1 ms−1 (e.g., R ∼ 0.97 and NMSE ∼ 0.001);
hence, the same β

Rl
i can be used for wind speeds varying by a factor of ∼10.

The predicted concentrations from FM1 show limited sensitivity to the reference wind
speed and good agreement with Uref = 1 ms−1. There is a similar message from the statisti-
cal metrics (Table A3) and lateral profiles (Figure A3). Applying the geometric constants
and turbulence coefficients for Uref = 1 ms−1 to different reference wind speeds is justified.

The performance of FM2 is comparable. For Uref,low and Uref,high, the effective diffusiv-
ity is scaled by fixing the Peclet number (Equation (15)). Statistical metrics (Table A3) and
lateral profiles (Figure A4) confirm good agreement with the LES results for Uref = 1 ms−1.

5.2. Mean Flow Only

The reasons for the superior performance of the fast model relative to the GPM
(Figure 5) are not immediately obvious. The GPM assumes an idealised mean flow,
i.e., a constant streamwise velocity, as well as a specific form for the eddy diffusivity
(Appendix A). The contribution of the mean flow is assessed by comparing the perfor-
mance of the fast model with different prescriptions of the mean flow but no turbulence
parameterization The prescriptions include: (i) constant (height-independent) velocity,
(U0, 0, 0); (ii) uniform mean velocity profile for the entire domain, Ui(z); and (iii) uniform
mean velocity for each repeating unit, URl

i (z). In the first case, U0 = Uref, and the reference
wind speed at z/H = 5, as with the GPM; in the latter two cases, the mean profiles were
obtained using the vortex method. The abbreviation ‘FM’ is used in this section because
FM1 and FM2 are equivalent when the pollutant dispersion is driven by the mean flow only.

Figure 8 compares spatially and temporally averaged concentration fields at 0° for
the different cases. In all cases, the plumes are too narrow compared to LES; this can
be attributed to the neglect of turbulent diffusion, which causes the scalar to spread in
directions other than that of the mean flow. For the constant velocity (panel a), downstream
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variations are relatively weak inside the canopy. For the uniform velocity profile (panel b),
the lateral profile (panel d) shows a slight asymmetry between the leeward and windward
walls and little downstream decay. Allowing the mean profiles to vary between repeating
units (panel c) leads to higher concentrations near the windward wall, in agreement with
the LES (Figure 4). Moreover, concentrations near the centre of the plume decrease more
rapidly than in cases with a horizontally uniform velocity field. Nevertheless, the spanwise-
averaged lateral profiles still decay too slowly.

Retaining horizontal dependence in the mean velocity field is essential if satisfactory
performance is to be obtained from the fast model. Statistical metrics (Table A4) confirm
that inside the canopy the FM agrees best with LES when URl

i (z) is used: although the
NMSE in this case is O(1), which is large but acceptable according to standard air quality
acceptance criteria [35], it increases by two to three orders of magnitude larger when the
horizontal dependence of the mean flow is neglected. These results are consistent with
those of [36], who found that the pollutant dispersion from a unit-aspect-ratio street canyon
is largely controlled by the mean flow.

(a) (b)

(c) (d)

Figure 8. Fast model results at 0° for different specifications of the mean flow but no turbulence
parameterisation. Mean concentration fields (averaged temporally and vertically): (a) constant
(height-independent) streamwise velocity, U0; (b) uniform mean velocity profiles for the entire
domain, Ui(z); (c) identical mean velocity profiles within each repeating unit, URl

i (z). The corre-
sponding lateral profiles (spanwise-averaged and plotted with respect to downwind distance from
the source) are plotted in (d), with the LES baseline represented by the green line.

6. Sensitivity to the Turbulence Parameterisations

The standard configurations of FM1 and FM2 may be not optimal. The sensitivity to
the specification of the turbulent fluctuations and effective diffusion is examined below.

6.1. FM1

Two key choices were made in the definition of the default FM1 configuration. First,
we chose to update the turbulent fluctuations in FM1 at every timestep, with ∆tFM ∼ 0.2 s
being equal to the LES timestep, ∆tLES. The validity of this prescription is not guaranteed
as the appropriate turbulence timescale may differ from the numerical timestep. From the
(temporal) autocorrelations,
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rRl
i (τ) =

〈u′i(t + T)u′i(t)〉Rl

(σ
Rl
ij )

2
(21)

the timescale of the fluctuations, TRl
i , may be estimated from the e-folding timescale,

rRl
i ∼ exp(−τ/TRl

i ). (22)

(Values of TRl
i are listed in Table A8). Second, we chose the spatially averaged turbulence

coefficients, β
Rl
i,canopy and βi,above, for the canopy and overlying region, Equation (7).

The effects of these two choices are now assessed. First, we consider vertical profiles of
the turbulence coefficients, β

Rl
i (z) (Figure A5a). Figure 9a shows that the spatial structure

of the mean concentration field at 0° is essentially unchanged from that for the standard
configuration with β

Rl
i,canopy and βi,above (Figure 5a). Since the differences between β

Rl
i (z) and

β
Rl
i,canopy, βi,above are not very large (e.g., the maximum relative error is ∼50%), FM1 should

not be especially sensitive to the inclusion of the vertical dependence of the turbulence
coefficients. Indeed, the NMSE is 0.25 using β

Rl
i,canopy, βi,above (Table 1) and 0.51 with β

Rl
i (z)

(Table 2). It should be noted, however, that performance does not improve when the vertical
dependence is specified. The reasons for this are unclear, but the change in the averaging
region (from the canopy or overlying atmosphere to individual vertical levels) may play a
role. The assumption that the turbulent fluctuations are linearly proportional to the mean
velocity components (Equation (6)), which underlies the definition of the β, may break
down on smaller vertical scales due to overfitting. Furthermore, the β(z) values are more
subject to sampling effects.

(a) βi = βRl
i (z) (b) Tupdate,i = TRl

i (c)

Figure 9. Sensitivity to FM1 configuration at 0°. Mean concentration fields for (a) turbulent fluc-
tuations updated at every time step and vertical profiles of turbulence coefficients (Tupdate,i = ∆t

and βi = βRl
i (z); and (b) turbulent fluctuations updated every e-folding timescale and constant

turbulence coefficients within and above the canopy (Tupdate,i = TRl
i and βi = βRl

i,canopy or βi,above).
(c) Lateral profiles for the standard FM1 configuration and the configurations of panels (a,b).

Second, the turbulent fluctuations are updated at the e-folding timescale,
i.e., Tupdate,i = TRl

i . From the mean concentration field at 0° (Figure 9b), downwind dis-
persion is greatly reduced and the prediction is clearly worse. This is confirmed by the
statistical metrics (Table 2): for example, NMSE increases from 0.25 (Table 1) to 1.96 when
the turbulent fluctuations are updated at a time interval of TRl

i rather than ∆t. Evidently
choosing Tupdate,i to be as short as possible improves the prediction. This is plausible
inasmuch as the SDE, Equation (8), is equivalent to a diffusion equation only in the limit of
white noise, i.e., a vanishing correlation timescale [22]. Physically, defining the turbulence
timescale from the e-folding timescale, like the related integral timescale [37], amounts
to specifying a length scale; however, the SDE, or more generally Brownian motion, has
no spatial dependence or spatial scales. The choice Tupdate,i = TRl

i effectively imposes an
artificially large length scale, which may be inconsistent with turbulent diffusion at the
smallest possible scales.
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Table 2. Statistical performance measures inside the canopy at 0° for modified configurations of FM1
and FM2. Parameters modified with respect to the standard configuration of FM1 (∆T = ∆t, βRl

i,canopy
and βi,above) are highlighted.

FB MG N MSE VG R FAC2

FM1, ∆T = ∆t, βRl
i (z)

Near field 0.54 1.59 0.57 1.42 0.93 0.57
Far field 0.25 1.24 0.26 1.24 0.46 0.92

Entire field 0.38 1.30 0.51 1.27 0.92 0.92

FM1, ∆T = Ti, βRl
i,canopy and βi,above

Near field 0.99 3.20 1.61 5.71 0.82 0.34
Far field 1.60 11.87 7.41 830.99 0.39 0.0

Entire field 1.28 9.22 1.96 317.36 0.87 0.07

FM1, ∆T = ∆t, β
Rj

i,canopy(0°), βi,above(0°)
Near field 0.42 1.38 0.42 1.30 0.90 0.76
Far field 0.07 1.04 0.19 1.20 0.44 0.99

Entire field 0.23 1.10 0.37 1.22 0.90 0.95

FM1, ∆T = ∆t, βi,canopy

Near field 0.71 1.96 0.82 1.94 0.86 0.51
Far field 0.38 1.44 0.43 1.43 0.29 0.58

Entire field 0.53 1.53 0.74 1.52 0.86 0.57

FM2, κRl
ij (z)

Near field 0.42 1.32 0.57 1.23 0.91 0.86
Far field 0.04 0.98 0.12 1.13 0.61 1.0

Entire field 0.20 1.03 0.46 1.15 0.91 0.97

FM2, κRl
ij,canopy(0°) and κij,above(0°)

Near field 0.34 1.21 0.45 1.18 0.92 0.98
Far field −0.12 0.83 0.13 1.17 0.59 0.94

Entire field 0.07 0.90 0.37 1.17 0.91 0.96

FM2, κij,canopy

Near field 0.39 1.33 0.48 1.24 0.89 0.98
Far field −0.01 0.92 0.12 1.14 0.63 1.0

Entire field 0.17 0.99 0.39 1.16 0.91 1.0

The lateral profiles (Figure 9c) confirm the preceding findings. Prescribing the vertical
profile of the turbulence coefficients, βi = β

Rl
i (z) yields nearly identical results to the

standard configuration, Tupdate,i = ∆t and βi = β
Rl
i,canopy, βi,above. Updating the turbulent

fluctuations less frequently, i.e., Tupdate,i = TRl
i , causes the profile to decay too rapidly

with downwind distance. For brevity, the results for Tupdate,i = TRl
i and βi = β

Rl
i (z) are

not shown because they are very similar to those for the preceding case, Tupdate,i = TRl
i

and βi = β
Rl
i,canopy, βi,above.

Aside from the vertical structure and correlation timescale, assumptions were also
made about the horizontal structure and applicability to other wind directions. The de-
pendence of β

Rl
i,canopy on the wind direction is illustrated in Figure 10a. Values are not

independent of the angle. To assess the validity of the choice of 45° for the standard con-
figuration, the turbulence coefficients for 0° (Table A9) are applied to an FM1 calculation
for 0°. The scalar field (Figure A6a) shows enhanced cross-stream dispersion compared
with the standard configuration; the lateral profile (Figure A6c) shows enhanced contrast
between the windward and leeward walls. A slight degradation of the performance is seen
in the statistical performance measures (Table 2), e.g., the NMSE increases from 0.25 to 0.37.
Using the turbulence coefficients for the same wind direction does not necessarily help.

The sensitivity to the spatial variation of the β
Rl
i,canopy is assessed by considering the

same turbulence coefficients for all repeating units βi,canopy. Compared with β
Rl
i,canopy(0°),

there are lower concentrations at the leeward walls (Figure A6b) and the concentra-
tion decays more rapidly in the downwind direction (Figure A6d). Neglecting the spa-
tial variation of the turbulence coefficients has a negative impact: the NMSE increases
from 0.25 to 0.74 (Table 2). Nevertheless, the sensitivity to the spatial variation of the tur-
bulence coefficients is much smaller than that to a spatially varying mean flow.
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Figure 10. Dependence of βRl
i,canopy and κ∗Rl

ij,canopy on wind angles. (a) βRl
i,canopy; (b) κ∗Rl

ij,canopy.

6.2. FM2

The default FM2 configuration also relies on spatial averages over the canopy and the
overlying region to determine the effective diffusivities at 45°. Different specifications of
the effective diffusivities are now applied to simulations for 0°.

First, prescribing the vertical profiles, κ
Rl
ij (z) (Figure A5b), has a small effect on

the scalar field (Figure A7a) and lateral profile (Figure A7d). The statistical metrics in-
dicate a small degradation when the vertical profiles are used (e.g., NMSE increasing
from 0.40 to 0.46; Table 2), as with FM1. Second, the effective diffusivities are defined
using another wind direction. The assumption that κ

Rl
ij,canopy is independent of the angle

is not accurate (Figure 10b). Hence, κ
Rl
ij,canopy(0°) and κij,above(0°) (Table A9) are tested in

place of the effective diffusivities at 45°. The scalar field (Figure A7b) and lateral pro-
file (Figure A7e) show higher downwind concentrations and the errors decrease slightly
(Table 2). Third, horizontally averaged diffusivities, κij,canopy, are used for all repeating
units inside the canopy. Neglecting the spatial dependence lowers the concentrations along
the leeward walls in the near-field region (Figure A7c) and weakens concentration gradients
(Figure A7f). However, the statistical performance measures do not show much change
(e.g., the NMSE decreases from 0.40 to 0.39).

The sensitivity to κ
Rl
ij in FM2 is weaker than the sensitivity to β

Rl
i in FM1. Not only

does FM1 show great sensitivity to the correlation time, neglecting the dependence on
the repeating units degrades performance. A possible explanation is that κ

Rl
ij only affects

diffusion, while β
Rl
i affects advection and induces turbulent diffusion, which could lead to

less robust behaviour.
The standard configuration of FM2 is limited to diagonal components of the effec-

tive diffusivity tensor, κij. Referring to the “microscopic” definition of the diffusivity,
Equation (11), diagonal components, i = j, refer to motions arising from aligned fluctua-
tions in the same direction. For a homogeneous medium and isotropic fluctuations, the
off-diagonal components vanish, κij = 0, i 6= j = 0, as with the molecular viscosity of a
Newtonian fluid, but this is not necessarily true for an inhomogeneous medium or one
with boundaries. Hence it is possible that a better parameterisation could be obtained if the
effective diffusivity included off-diagonal contributions.

Off-diagonal components can be calculated in the same way as the diagonal compo-
nents (i.e., using Equations (10) and (11) with Tij = ∆T). Values for 0° and 45° are listed
in Table A10. The sensitivity to the inclusion of off-diagonal components is illustrated
in Figure 11: at 0°, the scalar field is asymmetric along the centreline, while at 45°, there
are minimal differences with respect to the standard configuration. The asymmetric ap-
pearance for 0° may be related to the Kxy and Kyx components, which are always positive
for repeating units inside the canopy: these components introduce correlations between
x and y fluctuations in the scalar field, i.e., anisotropy. The inclusion of the off-diagonal
components clearly degrades performance at 0°; the effects are much smaller at 45°. This is
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confirmed by the statistical metrics (e.g., the NMSE inside the canopy increases from 0.40
to 0.74 in the former case and from 0.60 to 0.68 in the latter case; Table A5).

(a) 0° (b) 45°

(c) 0° (d) 45°

Figure 11. Mean concentration fields and lateral profiles for FM2 with off-diagonal components of
the effective diffusivity tensor: (a,c) 0°; (b,d) 45°.

The negative impact of the off-diagonal components is perhaps surprising inasmuch as
a parameterisation that takes fuller account of the turbulence statistics and does not require
isotropy should perform better. A likely explanation is that the off-diagonal elements are
assumed to be spatially uniform over a repeating unit. However, the non-zero off-diagonal
components should be closely related to the local building geometry, which induces an
inhomogeneous response. At 0°, u′v′ differs in sign from one lateral boundary of a canyon
unit to another (e.g., [38]); hence, Kxy and Kyx should be defined accordingly. Another
contributing factor is sampling: at 45°, the values for the canyon and channel units are not
identical, and the differences are comparable to or greater than those for the off-diagonal
elements at 0°.

7. Discussion

The relatively good performance of the fast model can be attributed to the inclusion of
spatially varying mean wind profiles. When it is assumed that the mean velocity is the same
within all repeating units, the NMSE within the canopy is two to three orders of magnitude
higher. Since air quality acceptance criteria (e.g., FAC2 & 0.5, FB . 0.3, NMSE . 0.3; [35])
are satisfied when the mean flow differs between repeating units, we conclude that the
representation of the coarse-grained spatial variation of the mean flow is of primary
importance. One may expect similar behaviour for domains that show comparable levels of
spatial inhomogeneity. A simpler representation could be sufficient for an idealised street
canyon; however, the importance of intersections to flow and dispersion within real cities
is widely recognised [39].

The performance of the fast model is mostly insensitive to the choice of turbulence
parameterisation. Temporally and spatially averaged fields from FM1 and FM2 show
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relatively small differences, as do the statistical metrics, when the correlation timescale is
sufficiently short. Despite their different formulations, the models are largely equivalent:
FM1 parameterises turbulent fluctuations directly; FM2 parameterises the turbulent diffu-
sion arising from the turbulent fluctuations. Both approaches assume characteristic scales
(e.g., the βi of FM1 and κ∗ij of FM2 are normalised) and neglect off-diagonal diffusivity
or turbulent velocity fluctuations associated with a mean velocity component in another
direction. The general insensitivity to their precise specification, as demonstrated by the
sensitivity tests of Section 6, suggests that the assumptions underlying them are robust;
however, the approaches are formally equivalent only in the limit of a vanishing timestep.
FM1 and FM2 could deviate significantly for large timesteps, but the need to maintain a
small Courant number helps ensure that the differences between them are small in practice.
A small timestep mitigates differences associated with FM1 introducing fluctuations in the
velocity field (which could introduce a drift over short time interval).

The fast model has two inherent limitations. First, it requires calibration to determine
the geometric constants for the estimation of the mean velocity profiles and the coefficients
for the turbulence parameterisations. This necessitates additional calculations, preferably
from reference CFD simulations for a specific wind direction, which could limit the model’s
applicability to other wind directions. The sensitivity tests for 0° and 45°, however, suggest
that the turbulence coefficients and effective diffusivity for one wind direction can be ap-
plied to another. In any case, some form of calibration is almost unavoidable for simplified
models that do not solve the governing equations: adjustable parameters are present in
the GPM, as well as in fast dispersion models SIRANE [9] and QUIC [6]. Second, the
spatial dependence of the mean velocity field inside each repeating unit is neglected while
the turbulent fluctuations are spatially uncorrelated. The performance of the fast model
suggests, however, that, at least for the cubic building array, fine-grained spatial structure
is not essential. Averaging over repeating units should be an acceptable approximation so
long as the spatial variability of the flow within them is not too great.

Although this study is limited to idealised configurations, its key components should
be robust. The vortex method for the mean flow has already been extended to realistic
building geometries [15]: the flow inside deep canopies is typically controlled by a few
vortex sheets, which also facilitates calibration. The turbulence parameterisations have
yet to be tested for more realistic domains, but they should perform comparably if the
relationship between turbulent fluctuations and the mean flow does not differ significantly
(cf. Equation (5)).

The fast model is unlikely to work well for a more realistic configuration if the nature
of the turbulence should change from that for the cubic building array. One such scenario
is unstable stratification (e.g., ground heating), for which convective plumes induce qualita-
tive changes in the mean circulation and turbulence statistics [40]. Another is non-cuboidal
buildings or ones with complex facade features for which the local turbulence will not
be determined by the spatial average over a repeating unit. Nevertheless, the fast model
should apply to realistic urban areas if the buildings are approximately cuboidal and the
flow is neutral or stable.

8. Conclusions

The main finding of this study is that the dispersion of a passive scalar inside a cubic
building array can be effectively modelled by combining estimated mean velocity profiles
from a vortex method with a parameterization for turbulent diffusion based on introducing
velocity fluctuations or specifying an effective diffusivity. Compared to reference LES
simulations at 0° and 45°, the spatial structure of the steady (time-averaged) scalar field
is largely captured while air quality acceptance criteria are satisfied. Although there is a
relatively modest sacrifice in accuracy, computational efficiency is greatly increased. Table 3
compares the computational performance of both versions of the fast model with LES. FM1
and FM2 are ∼40–50 times faster than LES; the speed-up would be even greater if the LES
spin-up were included in the comparison. FM2 is more computationally efficient because



Atmosphere 2023, 14, 1337 21 of 30

the numerical solution does not require the introduction of random fluctuations everywhere
in the domain; moreover, sampling issues potentially arising from a finite timestep are
avoided. Given its greater computational efficiency and simpler implementation, as well as
the close agreement with FM1, FM2 is the better choice for most applications.

Table 3. Comparison of computational time required to simulate scalar dispersion at 0° for 5000 s.
The total CPU time consumed is given by product of the number of computational cores and the time
elapses. The computational speed-up is calculated relative to the total CPU time for LES.

LES FM1 FM2

Number of computational cores 80 24 24
Time elapsed 96 h 8 h 6 h

Computational speed-up 1 40 53

The most important implication is that urban pollutants can be modelled using a
representation of the coarse-grained mean flow and turbulence. On one hand, this rep-
resents a significant simplification compared to direct CFD; on the other hand, the flow
is represented far more accurately than in the Gaussian plume model or network models
such as SIRANE [9] or MUNICH [10]. Any simplified or intermediate dispersion model
necessarily involves simplification. In the fast model, dispersion inside the canopy is driven
by the mean flow and turbulence varying on the scale of the building geometry. This is
a multiscale modelling strategy which assumes that the flow is approximately constant
over a finite region and that turbulent diffusion can be parameterised in terms of the mean
velocity components: the use of the vortex method for the mean flow or the FM1 and
FM2 turbulence parameterisations are not strictly required. Moreover, its applicability
should extend beyond the cubic building array. While real urban canopies do not have
repeating units, subdomains over which the mean flow and turbulence are approximately
homogeneous could be defined empirically, though at the cost of added technical com-
plexity. Nevertheless, the fast model should still work well for approximately grid-like
neighbourhoods.

A secondary implication is that the fast model can be applied to time-critical ap-
plications such as operational air quality prediction or emergency dispersion modelling.
Although calibration using reference CFD simulations is time-consuming, this could be
performed in advance for problems in which the region of interest (e.g., a densely pop-
ulated neighbourhood) is known, allowing for the FM’s computational efficiency to be
realised in practice. If the building geometry were approximately uniform, as with the cubic
building array, calibration could be limited to a small number of directions (or perhaps just
a single one) as the turbulence coefficients and effective diffusivities should show minimal
sensitivity to the wind direction.

There are several directions for future work. Most obviously, the method should
be tested for more realistic geometries and flow configurations. As explained in the
Discussion, there are good reasons for expecting the fast model’s applicability to extend
beyond idealised flow over a cubic building array. Nevertheless, the extent of applicability
needs to be determined. Furthermore, the turbulence parameterisations could be improved.
A clear weakness of the fast model is that cross-stream dispersion is underpredicted for FM1
and FM2. This shortcoming could be partially ameliorated in the context of FM2 by allowing
for correlations between turbulent fluctuations in different directions, which would amount
to a proper specification of the off-diagonal components. For FM1 a more realistic stochastic
parameterisation could be adopted [22]. Finally, more computationally efficient methods
for solving the advection–diffusion equation could be explored. A Lagrangian stochastic
method would be a natural choice for FM1.
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Appendix A. Gaussian Plume Model (GPM)

The GPM yields a solution for the advection–diffusion equation given a pollutant
emission rate (for a point source), atmospheric stability, wind speed and direction. The
main assumptions are as follows:

• The velocity is a constant, ~u = (u, 0, 0).
• The eddy diffusivities, Ki(x), are isotropic and functions of the downwind

distance x only.
• Diffusion is weak compared to advection in the streamwise (x) direction.
• The pollutant does not penetrate the ground.
• There are Dirichlet boundary conditions at the lateral edges, C(0, y, z) = 0,

C(∞, y, z) = 0, C(x,±∞, z) = 0, C(x, y, ∞) = 0.
• There is a Neumann boundary condition ∂C

∂z (x, y, 0) = 0 at the ground.
• The source is located at a height H ≥ 0.

The steady solution for the concentration may be written as

C(x, y, z) =
Q

2πuσyσz
exp(− y2

2σ2
y
)

[
exp(− (z− H)2

2σ2
z

) + exp(− (z + H)2

2σ2
z

)

]
. (A1)

The standard deviations, σ2
y and σ2

z , depend on the atmospheric stability. Assuming
neutral stability, σy = axb, σz = cxd + f , where a = 156, b = 0.89, c = 108.2, d = 1.098
and f = 2.0 [41].

Appendix B. Validation of the LES Model

Appendix B.1. Velocity Statistics

The mean streamwise velocity predicted by the LES model described in Section 3.2
is validated against wind-tunnel measurements of flow over a regular array of cubic
buildings [42]. Vertical profiles of the mean streamwise velocity measured at the center
of canyon units are compared in Figure A1. There is good agreement above the ground,
i.e., z/H > 0.1.

Statistical performance measures (Appendix C) confirm that the LES model simulates
the mean wind profile accurately (Table A1). The NMSE and FB are close to 0 and the
correlation coefficient is close to 1.

Table A1. Statistical performance measures corresponding to Figure A1. the temporally averaged
streamwise velocity. The mean streamwise velocity and rms streamwise velocity fluctuation at the
centre of a canyon unit are compared to the wind-tunnel data of [42].

FB MG N MSE VG R FAC2

Streamwise velocity u −0.060 0.951 0.050 1.011 0.970 0.960
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Figure A1. Validation of mean streamwise velocity predicted by LES (dotted line) against wind-tunnel
data of Uehara et al. (2000) (blue stars) [42].

Appendix B.2. Concentration Statistics

Concentration statistics generated by a point source located at the centre of a unit-
aspect-ratio street canyon are validated using experimental data [43]. The lateral profiles
show good agreement (Figure A2). This is confirmed by the statistical metrics (Table A2).
Hence, we conclude that the LES model is also capable of simulating the dispersion from a
point source.

(a)

-4 -2 0 2 4
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τ
/Q

LES

Wind tunnel

(b)
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τ
/Q

Figure A2. Lateral concentration profiles generated by a point source within a street canyon:
LES (dashed-dotted line) is compared to the wind-tunnel data of Hildemann and Chong 2007
(blue dots) [43]. (a) (x− xs) = 2H, z = 0.25H. (b) (x− xs) = 6H, z = 0.25H.

Table A2. Statistical performance measures corresponding to Figure A2. The scalar statistics comprise
spanwise profiles at x1 = xs + 2H and x2 = xs + 6H, where xs is the source location.

FB MG N MSE VG R FAC2

Passive scalar c(x1, z = 0.25H) 0.067 0.944 0.020 1.128 0.987 0.902
c(x2, z = 0.25H) −0.039 0.848 0.014 1.094 0.990 0.972
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Appendix C. Statistical Performance Measures

Appendix C.1. Definitions

In order to validate the simulation data (Ds) against measurements (De), we calculate
the following statistical performance measures [35]: fractional bias (FB),

FB =
(De − Ds)

0.5(De + Ds)
, (A2)

geometric mean bias (MG),

MG = exp(ln De − ln Ds), (A3)

normalized mean square error (NMSE),

NMSE =
(De − Ds)2

DeDs
, (A4)

geometric variance (VG),

VG = exp[(ln De − ln Ds)2], (A5)

correlation coefficient (R),

R =
(De − De)(Ds − Ds)

σDe σDs

, (A6)

and fraction of data within a factor of two (FAC2),

FAC2 =
1
N

N−1

∑
i=0

χi, where χi =

{
1, for 0.5 ≤ De/Ds ≤ 2.0,
0, otherwise.

(A7)

The overbar represents average over the dataset and σDe , σDs are the standard devia-
tions. For a perfect validation, FB = NMSE = 0.0 and MG = VG = R = FAC2 = 1.0.

Appendix C.2. Application to Lateral Profiles

Table A3. Statistical evaluation of FM performance at 0° inside the canopy (with respect to the LES
baseline) for low and high reference wind speeds.

FB MG N MSE VG R FAC2

FM1, Uref,low = 1 ms−1
Near field −0.06 0.83 0.21 1.21 0.91 0.91
Far field 0.17 1.24 0.21 1.21 0.68 0.86

Entire field 0.05 1.14 0.34 1.21 0.91 0.87

FM1, Uref,high = 9 ms−1
Near field 0.33 1.25 0.30 1.2 0.93 0.90
Far field 0.21 1.22 0.21 1.20 0.60 0.93

Entire field 0.27 1.22 0.29 1.20 0.92 0.92

FM2, Uref,low = 1 ms−1
Near field 0.22 1.05 0.38 1.18 0.91 0.98
Far field 0.06 1.10 0.14 1.18 0.70 0.93

Entire field 0.14 1.09 0.33 1.18 0.88 0.94

FM2, Uref,high = 9 ms−1
Near field 0.27 1.10 0.42 1.17 0.91 0.98
Far field −0.21 0.74 0.14 1.24 0.66 0.84

Entire field −0.01 0.80 0.35 1.22 0.91 0.86
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Table A4. As in Table A3, but the FM performance of different mean flow prescriptions is evaluated.

FB MG N MSE VG R FAC2

Constant streamwise wind speed −1.95 1.15 1374.54 42.12 0.09 0.15
Uniform velocity profile −1.91 0.38 782.84 24.89 0.10 0.45

Different velocity profile within each repeating unit −0.32 0.94 1.31 2.51 0.48 0.45

Table A5. As in Table A3, but for FM2 with an effective diffusivity tensor containing off-diagonal
components.

FB MG N MSE VG R FAC2

FM2

0°
Near field 0.62 1.64 0.91 1.45 0.93 0.55
Far field 0.21 1.16 0.19 1.16 0.59 1.0

Entire field 0.39 1.24 0.74 1.21 0.92 0.91

45°
Near field 0.55 1.56 1.06 1.45 0.19 0.84
Far field −0.02 0.93 0.09 1.09 0.82 1.0

Entire field 0.21 1.03 0.68 1.15 0.68 0.96

Appendix D. Additional Tables and Figures

Table A6. Dimensionless turbulence coefficients for FM1.

βRl
i,canopy, z/H ∈ [0, 1] βi,above,

z/H ∈ [1, 5]

θ i Channel Unit Intersection Unit Canyon Unit Above Canopy

0°
x 0.14 0.15 0.58 0.01
y 0.98 0.96 0.89 0.98
z 0.95 0.95 0.77 0.98

45°
x 0.33 0.48 0.56 0.05
y 0.56 0.48 0.33 0.05
z 0.78 0.75 0.78 0.93

Table A7. Normalised effective diffusivities for FM2.

κRl∗
ij,canopy, z/H ∈ [0, 1]

κ∗ij,above,
z/H ∈ [1, 5]

θ ij Channel Unit Intersection Unit Canyon Unit Above Canopy

0°
xx 0.0145 0.0153 0.0053 0.0168
yy 0.0033 0.0058 0.0105 0.0102
zz 0.0043 0.0048 0.0050 0.0082

45°
xx 0.0041 0.0047 0.0033 0.0167
yy 0.0029 0.0055 0.0040 0.0127
zz 0.0032 0.0045 0.0036 0.0075
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Table A8. Turbulence correlation timescales, TRl
i , determined from LES data for 0° and 45°.

TRl
i,canopy, z/H ∈ [0, 1] Ti,above,

z/H ∈ [1, 5]

θ i Channel Unit Intersection Unit Canyon Unit Above Canopy
(s) (s) (s) (s)

0°
Tx 5.7 5.2 6.0 5.0
Ty 5.0 5.2 7.0 5.0
Tz 5.0 5.1 6.3 5.4

45°
Tx 5.8 5.3 6.3 5.1
Ty 4.9 5.3 6.9 5.0
Tz 5.0 5.1 6.3 5.4

Table A9. Turbulence coefficients, βRl
i,canopy, and normalised effective diffusivities, κ∗Rl

ij for 0° and 45°.

βRl
i,canopy, z/H ∈ [0, 1] βi,above,

z/H ∈ [1, 5]

θ i Channel Unit Intersection Unit Canyon Unit Above Canopy

0°
βx 0.14 0.15 0.58 0.01
βy 0.98 0.96 0.89 0.98
βz 0.95 0.95 0.77 0.98

45°
βx 0.33 0.48 0.56 0.05
βy 0.56 0.48 0.33 0.05
βz 0.78 0.75 0.78 0.93

0°
κ∗xx 0.0145 0.0153 0.0053 0.0168
κ∗yy 0.0033 0.0058 0.0105 0.0102
κ∗zz 0.0043 0.0048 0.0050 0.0082

45°
κ∗xx 0.0041 0.0047 0.0033 0.0167
κ∗yy 0.0029 0.0055 0.0040 0.0127
κ∗zz 0.0032 0.0045 0.0036 0.0075

Table A10. Normalised effective diffusivity tensors, κ∗ij,canopy and κ∗ij,above. Note that all nine compo-
nents are included for each entry.

κ∗Rl
ij,canopy, z/H ∈ [0, 1]

Rl Channel Unit Intersection Unit Canyon Unit

0°

 0.0145 0.0008 −0.0001
0.0008 0.0033 −0.0008
−0.0001 −0.0008 0.0043


 0.0153 0.0003 −0.0004

0.0003 0.0058 −0.0013
−0.0013 −0.0004 0.0048


 0.0053 0.0003 −0.0014

0.0003 0.0105 0.0011
−0.0014 0.0011 0.0050


45°

0.0041 0.0008 0.0002
0.0008 0.0029 −0.0008
0.0002 −0.0008 0.0032


 0.0047 −0.0017 −0.0003
−0.0017 0.0055 −0.0017
−0.0003 −0.0017 0.0045


 0.0033 −0.0005 −0.0001
−0.0005 0.0040 −0.001
−0.0001 −0.001 0.0036


κ∗ij,above, z/H ∈ [1, 5]

Above canopy

0°

 0.0168 −0.0024 −0.0018
−0.0024 0.0102 0.0010
−0.0018 0.0010 0.0082


45°

 0.0167 0.0016 −0.0025
0.0016 0.0127 −0.0017
−0.0025 −0.0017 0.0075
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(a) (b)

(c) (d)

Figure A3. Mean concentration fields (top) and lateral profiles (bottom) at low and high reference
wind speeds for FM1 and 0°: (a,c) Uref,low = 1 ms−1; (b,d) Uref,high = 9 ms−1. In all cases, the baseline
turbulence coefficients for Uref = 3 ms−1 were used.

(a) (b)

(c) (d)

Figure A4. As in Figure A3, but for FM2. (a,c) Uref,low = 1 ms−1; (b,d) Uref,high = 9 ms−1. κRl
ij for

Uref = 3 ms−1 is used for Uref = 1 ms−1 and Uref = 9 ms−1.
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Figure A5. Vertical profiles of fast model parameters at 45°: (a) turbulence coefficients, βRl
i ;

(b) normalised effective diffusivities, κ∗Rl
ij . Rl labels the repeating units, i.e., channel (R1), inter-

section (R2) and canyon (R3).

(a) (b)

(c) (d)

Figure A6. Mean concentration fields and lateral profiles for FM1 at 0° using modified configurations:
(a,c) Turbulence coefficients obtained at 0° (rather than 45°), βRl

i (0°); (b,d) turbulence coefficients are
the same for all repeating units, βi,canopy.



Atmosphere 2023, 14, 1337 29 of 30

(a) (b) (c)

(d) (e) (f)

Figure A7. Mean concentration fields and lateral profiles for FM2 at 0° using modified configurations:
(a,d) effective diffusivity is a function of height, κRl

ij (z); (b,e) effective diffusivity is calculated at 0°,

i.e., κRl
ij,canopy(0°) and κij,above(0°); (c,f) effective diffusivity is horizontally averaged over the repeating

units, κij,canopy.
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