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Abstract: Removing indoor CO2 as a pollutant via solid sorbents is a promising solution to maintain-
ing acceptable indoor air quality while minimizing the energy consumption of ventilation. Compared
to fixed-bed and fluidized-bed configurations, which require at least two beds to allow for continuous
operation, a rotary adsorber is more compact and suitable to be integrated into the ventilation systems
of buildings. In the present study, a regenerative rotary adsorber based on temperature swing adsorp-
tion was modeled to investigate continuous CO2 capture in an indoor environment. The governing
equations of heat and mass transfer processes associated with the capture were established and coded
in ANSYS Fluent software. The spatiotemporal variations of CO2 concentration and temperature in
gas and solid phases within the rotary adsorber were obtained. The key findings are: (1) adjusting
the speed mainly affects circumferential concentration and temperature distribution, but has little
impact on axial concentration and temperature; (2) Increasing desorption inlet flow rate has little
impact on adsorption outlet concentration, but significantly decreases desorption outlet concentration;
(3) Raising desorption inlet temperature can increase both adsorption and desorption outlet average
concentrations; (4) Reducing the volume proportion of the desorption sector will slightly increase
adsorption outlet concentration and slightly decrease desorption outlet concentration, but barely
affects average adsorption and desorption outlet temperatures.

Keywords: air quality; carbon dioxide adsorption; rotary wheel device

1. Introduction

Indoor air quality (IAQ) is essential to occupants’ health, comfort, and productivity [1–3].
IAQ is determined by various factors, among which the concentration of CO2 is a critical one
and is regarded as an indicator for IAQ [4]. To dilute indoor CO2, ventilation, natural or
mechanical, is the most common method [5]. However, ventilation, especially in the cooling
and heating seasons, consumes a significant amount of energy. Currently, ventilation and
related air treatment account for 40% to 60% of energy consumption in buildings [6].

The energy penalty of ventilation demands alternative solutions to IAQ. Removing
CO2 as a pollutant by using air cleaning technologies allows for acceptable indoor air
quality while reducing the energy costs associated with ventilation. However, CO2 has
a relatively low boiling point of −78.46 ◦C, making it challenging to capture at room
temperature. In recent years, the development of carbon capture technologies has been
significantly boosted to combat climate change. CO2 capture technologies include solid
adsorption, liquid absorption, membrane purification, and cryogenic distillation [7,8],
among which adsorption by porous solids has drawn enormous attention due to its lower
energy consumption for regeneration [9–11]. Various forms of adsorption units, such as
fixed bed and rotary adsorbents, have been developed to capture CO2, and extensive
research has been carried out on the optimization of adsorption materials and operation
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processes [12–14]. Kim et al. [15,16] introduced a CO2 adsorption capture device into a con-
ventional ventilation system to mitigate the deterioration of air quality caused by residential
breathing. With the advanced system, 30–60% of the ventilation energy consumption was
saved. Thermodynamically, the possibility of carbon capture technology for achieving
negative carbon was explored by Zhao et al. [17], and it was proposed that carbon capture
technology can be a potential way to promote zero carbon building to negative carbon
building. Shen et al. [18,19] combined the carbon capture system with low-grade energy
and analyzed its performance in 20 global cities. Their results demonstrated the potential
contribution of indoor carbon capture technology to carbon reduction and energy savings
in building operations.

Due to the finite adsorption capacity of adsorbers, continuous adsorption is commonly
implemented by cyclic processes such as temperature swing adsorption (TSA), pressure
swing adsorption (PSA), or a combination of these two [20,21]. These processes involve
altering the temperature or pressure conditions to control the adsorption and desorption of
the target components on an adsorbent material. Different types of adsorber configurations
were developed for the TSA and PSA processes, including fixed, rotating, and fluidized
beds. The fixed and fluidized configurations require at least two beds to seamlessly alternate
between adsorption and desorption, and they may be too cumbersome to be integrated
in HVAC (heating, ventilation, and air conditioning) systems. In comparison, a rotating
packed bed structure is more compact and has been widely used in HVAC systems for
dehumidification [22,23] and heat recovery [24]. However, to our best knowledge, no
studies have investigated the effect of a rotary adsorber on the continuous capture of indoor
CO2. In the present study, we aim to build up a coupled heat and mass transfer model to
investigate how the rotating speed, velocity, and temperature of purging gas (desorption)
and sectioning affect the outlet concentration and temperature.

2. Materials and Methods
2.1. Materials and Governing Equations

In order to complete the wheel adsorption simulation in ANSYS Fluent 2021R2 soft-
ware, a user-defined function was written in the C language and linked to the program
interface. UDF is mainly used to calculate the source terms of the mass and energy equa-
tions. The characteristics of Zeolite 13X are taken from the data reported in the literature, as
shown in Table 1. The selected gas is a mixture of CO2 and N2, and the following reasonable
assumptions are made [12,25]:

(1) The mixed gas follows the ideal gas law;
(2) Gas flow is unsteady laminar flow;
(3) The porosity of porous media has a uniform distribution;
(4) The physical properties of the adsorbent are constant;
(5) Linear driving force model for adsorption kinetics.

Table 1. The characteristics of Zeolite 13X.

Parameter Description Value Unit Source

D Radius of rotor 1.0 m
H Height of rotor 0.2 m
ε Bed porosity 0.566 [26]

εp Particle porosity 0.143 [27]
dp Particle diameter 0.0015 m [26]
rc Crystal radius 5 × 10−10 m [27]

rpore Average pore radius 5.16 × 10−7 m [27]
ρs Particle density 1230 kg/m3 [26]

Cs
Adsorbent specific heat
capacity 900 J/kg·K [26]

λs
Adsorbent thermal
conductivity 0.2 W/m·K [26]
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Table 1. Cont.

Parameter Description Value Unit Source

qm,CO2

CO2 maximum adsorption
capacity in adsorbent 9.842 mol/kg [28]

K0,CO2

Adsorption constant at
infinite dilution 6.89 × 10−9 1/Pa [28]

∆H,CO2 The heat of adsorption 30,371 J/mol [28]
n Toth model constant 0.658 × (0.0013 × T) [28]

xCO2,ad,inlet
CO2 adsorption inlet
concentration 2000 ppm

xCO2,de,inlet
CO2 desorption inlet
concentration 400 ppm

Tad,inlet
Adsorption inlet air
temperature 293.15 K

Tde,inlet
Desorption inlet air
temperature 393.15 K

2.1.1. Mass Conservation Equation

The mass conservation equation of each species in the fluid is expressed as:

∂

∂t

(
ερ f yi

)
+∇·

(
ρ f
→
u yi

)
= ∇·

(
εDax,i∇ρ f yi

)
− (1− ε)ρs Mi

∂qi
∂t

,

where yi is the mass fraction of species i in fluid and Dax,i is the coefficient of the gas
dispersion, m2/s, and can be calculated by the following formula [29]:

ε
Dax,i

Dm,i
= 20 + 0.5SciRep,

where Dm,i is the molecular diffusivity of species i, m2/s; Sci is the Schmidt number; and
Rep is the Reynolds number.

The mass conservation equation of each species in the adsorbent can be expressed as:

∂qi
∂t

= kLDF,i(q∗i − qi)

where kLDF,i is LDF mass transfer coefficient, s−1; q∗i is equilibrium adsorption capacity in
adsorbent, mol/kg.

2.1.2. Energy Conservation Equation

The heat transfer models of porous media mainly include the local thermal equilibrium
model and the local thermal non-equilibrium model. A non-dimensional number Sp, that
is, the Sparrow number, was proposed by Minkowycz [30] for checking whether the local
thermal equilibrium is applicable or not as follows:

Sp =
2h0H2

Γe f f ,s·D
,

Pe =
cpuH
Γe f f ,s

.

Only when Sp/Pe is large enough, such as Sp/Pe > 100, is local thermal equilibrium
applicable. In this study, the value of Sp/Pe is much less than 100, so the local thermal
non-equilibrium model is used.

The energy equation of a fluid can be expressed as:

∂

∂t

(
ερ f CpTf

)
+∇·

(
ρ f Cp

→
u Tf

)
= ∇·

(
Γe f f , f∇Tf

)
+ h f s A f s

(
Ts − Tf

)
,
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where Cp is the specific heat of fluid, J/(kg·K); Γe f f , f is the effective thermal conductivity of
fluid, W/(m·K); Tf is the temperature of fluid, K; Ts is the temperature of adsorbent, K; h f s
is the heat transfer coefficient for the fluid/solid interface, W/(m·K); and A f s is interfacial
area density, that is, the ratio of the area of the fluid/solid interface and the volume of the
porous zone, m−1.

The energy equation of an adsorbent can be expressed as:

∂

∂t
[(1− ε)ρsCsTs] +∇·

[
(1− ε)ρsCsUTs

]
= ∇·

[
Γe f f ,s∇Ts

]
+ h f s A f s

(
Tf − Ts

)
− (1− ε)ρs ∑i ∆Hi

∂qi
∂t

,

where Cs is the specific heat of the adsorbent, J/(kg·K); Γe f f ,s is the effective thermal
conductivity of adsorbent W/(m·K); and ∆Hi is the heat of the adsorption, J/mol.

The interstitial volumetric heat transfer coefficient, h f s, between the fluid and matrix
can be calculated by the following formula:

h f s =
6(1− ε)h0

dp
,

where h0 is the overall heat transfer coefficient of the porous matrix:

Nu =
h0dp

λ f
= 2.0 + 1.1Rep

0.6Pr1/3.

The effective thermal conductivity of fluids and solids can be calculated using the
following formula:

Γe f f , f = ελ f ,

Γe f f ,s = (1− ε)λs,

where λ f is the thermal conductivity of fluids, W/(m·K), and λs is the thermal conductivity
of solids, W/(m·K).

2.2. Adsorption Isotherms and Kinetics

The adsorption isotherms of Zeolite 13X were estimated by the Toth model [28]:

q∗i =
qm,iKeq,i pi(

1 +
(
Keq,i pi

)n
) 1

n
,

where q∗i is the equilibrium adsorption capacity in the adsorbent, mol/kg; qm,i is the
maximum adsorption capacity in the adsorbent, mol/kg; n is the model constant; and Keq,i

is the equilibrium adsorption constant, Pa−1, which can be calculated by the following
formula:

Keq,i = K0,ie
(− ∆Hi

RTf
)
,

where K0,i is the adsorption constant at infinite dilution, Pa−1; ∆Hi is the heat of adsorption,
J/mol; R is the gas constant, J/(mol·K); Tf is the temperature of the fluid, K; and pi is
the partial pressure of species i in the fluid, Pa, which can be calculated by the following
formula:

ρ f yi =
pi

Rg,iTf
,

where ρ f is the density of the fluid, kg/m3; yi is the mass fraction of species i in the fluid;
Rg,i is the gas constant for the species i, J/(kg·K); and Tf is the temperature of the fluid, K.
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The LDF mass transfer coefficient kLDF,i consists of three parts: the film resistance, the
macropore diffusion, and the micropore diffusion.

1
kLDF,i

=
rp

3k f ,i

q0

c0
+

r2
p

15εDe f f ,i

q0

c0
+

r2
c

15Dc
,

where kLDF,i is the LDF mass transfer coefficient, s−1; rp is the radius of the adsorbent
particles, m; rc is the average radius of the adsorbent crystals, m; ε is the porosity of the
adsorbent particle; k f is the film resistance coefficient for species i, s−1; De f f ,i is the effective
diffusion coefficient, including molecular diffusion and Knudsen diffusion, m2/s; Dc is the
microporous diffusion coefficient, m2/s; and q0 is the CO2 concentration in the solid phase
at adsorption equilibrium, mol/m3, which can be obtained by the adsorption isotherm
equation; c0 is the CO2 concentration in the gas phase at adsorption equilibrium, mol/m3,
and converting the gas phase concentration units.

The effective diffusion coefficient De f f ,i in the adsorbent particles can be calculated by
the following equation:

1
De f f ,i

= τ

(
1

DK,i
+

1
Dm,i

)
,

where τ is the tortuosity factor and DK,i is the Knudsen diffusion coefficient of species i,
m2/s, which is obtained by the following formula:

DK,i =
2rpore

3

(
8RT
πMi

)0.5
,

where rpore is the average radius of the adsorbent crystals, m; Dm,i is the molecular diffusion
coefficient of species i, m2/s; and Mi is the molecular weight of species i, kg/mol.

The film resistance coefficient k f .i can be obtained using the following formula:

k f ,i =
ShiDm,i

dp
.

The Sherwood number can be calculated using the following formula:

Shi = 2.0 + 1.1Rep
0.6Sci

1/3.

The Reynolds number Rep, the Schmidt number Sci, and the Prandtl number Pr can
be obtained using the following formulas:

Rep =
ρ f dp|u|

µ
,

Sci =
µ

ρ f Dm,i
,

Pr =
cpµ

λ f
.

2.3. Boundary and Initial Conditions
2.3.1. Boundary Conditions

Only the heat and mass transfer process of the rotor is considered, and the heat and
mass exchange with the outside world is not considered. Therefore, the temperature
gradient and concentration gradient on the inlet and outlet boundaries and the inner and
outer walls of the rotor are both zero. The temperature, velocity, and CO2 concentration of
the adsorption inlet are the values of typical indoor scenes (such as classrooms), while the
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desorption inlet concentration selects the most common atmospheric CO2 concentration
value. The expression of boundary conditions is shown in Table 2.

Table 2. Boundary conditions.

At the Inlet At the Outlet On the Inner and Outer Walls

Tf = Tf ,in
dTf

dz
= 0

dTf

dr
= 0

dTs

dz
= 0

dTs

dz
= 0

dTs

dr
= 0

u = u f ,in
du f

dz
= 0

ur = 0

yi = yi,in
dyi
dz

= 0
dyi
dz

= 0

dqi
dz

= 0
dqi
dz

= 0
dqi
dz

= 0

2.3.2. Initial Conditions

Assuming that the rotor has reached a balanced and stable state with the ambient air
before operation, the initial gas phase and solid phase temperatures in the rotor are both
ambient temperatures, the initial gas phase concentration is the ambient CO2 concentration,
and the initial adsorption amount is the equilibrium adsorption amount corresponding to
the ambient CO2 concentration. Therefore, the initial conditions are determined as shown
in Table 3.

Table 3. Initial conditions.

Temperature Species Mass Fraction Adsorbed Amount

Ts,0 = Tenv yi,0 = yi,env

qi,0 = q∗i,0 =
qm,iKeq,i,0 pi,0(

1 +
(

Keq,i,0 pi,0

)n) 1
n

Tf ,0 = Tenv
Keq,i,0 = K0,ie

(−
∆Hi
RTf ,0

)

ρ f yi,0 =
pi,0

Rg,iTf ,0

2.4. Solve the Settings and Grid Independence Test

The ideal gas law was used to calculate the density of the mixed gas. To calculate
the thermal conductivity and dynamic viscosity of the mixed gas, the mass-weighted
mixing law was applied. The ANSYS Fluent solver incorporated the mass conservation
equation of the adsorbent through User-Defined Scalars. The pressure-velocity coupling
field was solved using the SIMPLE algorithm. The gradient term and convection term were
discretized using the least squares cell-based scheme and the second-order upwind scheme,
respectively. A grid independence test was conducted, and based on accuracy and compu-
tational cost considerations, a grid size of 262,000 was chosen for the calculations. Figure 1a
illustrates the variations in average CO2 concentration and temperature at the adsorption
outlet. Figure 1b displays the mesh used in the computational analysis conducted in
this study.
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3. Results and Discussion
3.1. Temperature and Concentration Distribution in the Wheel

In the adsorption wheel device, the adsorbent wheel is subjected to cooling and heat-
ing through the airflow passing through the adsorption and desorption zones, respectively.
Concurrently, the adsorbent material undergoes successive adsorption and desorption
processes as the wheel rotates in a clockwise manner, opposite to the Y-axis direction,
thereby completing the cycle for CO2 capture. As depicted in Figure 2, the fluid concen-
tration distribution (Figure 2a), fluid temperature distribution (Figure 2b), adsorbed CO2
distribution within the adsorbent (Figure 2c), and solid-phase temperature distribution
within the adsorbent (Figure 2d) are illustrated. The findings reveal that the fluid concen-
tration distribution displays stratification into distinct zones, exhibiting a gradient in the
rotational direction. Notably, the energy content of the fluid and solid phases differs solely
in terms of adsorption heat, with the gas-solid heat transfer coefficient being relatively
high and the adsorption heat being minimal. Consequently, the gas-phase and solid-phase
temperatures exhibit a comparable distribution pattern. Furthermore, the distribution of
solid-phase concentration is influenced by both the temperature and partial pressures of
the components.
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Figure 2. Distributions of molar concentration of CO2 (a); fluid temperature (b); adsorption amount
of CO2 (c); and adsorbent temperature (d). (13X ω = 0.5 r/min, Tad,in = 293.15 K, Tde,in = 393.15 K,
Vad,in = 1 m/s, Vde,in = 1 m/s).
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3.2. Effect of Rotating Speed

Figure 3 shows the results of gas-phase CO2 concentration and temperature distri-
bution under different rotational speeds. It is evident that the average concentration and
temperature at the adsorption outlet exhibit a gradient change along the rotational direction.
As the rotational speed increases from 0.5 r/min to 2 r/min, the concentration gradient at
the adsorption outlet in the rotational direction gradually decreases, and the maximum
concentration value decreases as well. The temperature follows a similar pattern, gradually
decreasing along the rotational direction. This is because as the rotation speed increases, the
gas-solid contact time in the adsorption sector decreases, resulting in a smaller concentra-
tion difference at the outlet gas flow. The temperature change is similar. At higher rotation
speeds, the outlet temperature distribution in the adsorption sector is more uniform with a
lower extreme difference. Similar phenomena were observed in Tang et al.’s study [12].
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Figure 3. Contour of the mole fraction of CO2 (left) and temperature (right) on the adsorption outlet
at different rotating speeds: (a) 0.5 r/min; (b) 1 r/min; and (c) 2 r/min. (13X Tad,in = 293.15 K,
Tde,in = 393.15 K, Vad,in = 1 m/s, Vde,in = 1 m/s).

Figure 4 shows the variation in outlet concentration and temperature at different rota-
tional speeds. For the concentration distribution, although Figure 3 shows that increasing
rotation speed made the outlet concentration distribution more uniform, Figure 4 shows
that the average outlet concentrations for the rotating speed ranging from 0.5 to 3 r/min
eventually converged to the same level. This may be because the axial flow velocity of
the process air entering the wheel is the same for all conditions. Therefore, the contact
time with the adsorbent in the axial direction during passage through the wheel device is
the same, resulting in consistent average outlet concentrations, while the rotation speed
only affects the circumferential concentration distribution and does not impact the average
concentration value. However, the different circumferential concentration distributions
can also be utilized by properly arranging the gas flow channels at the outlet to obtain air
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streams with desired CO2 concentrations [12]. For temperature distribution, the average
adsorption and desorption outlet temperatures are almost the same for different rotation
speeds, with very small temperature fluctuations caused by different speeds. This is be-
cause when the rotation speed is high enough, the adsorption outlet surface is dominated
by the rotation effect. The inlet air flow of the desorption sector on the same side is affected
by the rotation, causing changes in the adsorption outlet temperature and making it closer
to the desorption inlet temperature. Similarly, the desorption outlet temperature will also
be very close to the adsorption inlet temperature.
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Figure 4. Effect of the rotating speed on the concentration of CO2 and temperature at the outlet
(13X Tad,in = 293.15 K, Tde,in = 393.15 K, Vad,in = 1 m/s, Vde,in = 1 m/s).

3.3. Effect of Desorption Inlet Velocity

Figures 5 and 6 depict the average concentration and temperature at the outlets
under different desorption inlet flow rates. As the desorption inlet velocity increased, the
average temperature at the desorption outlet also increased. This is because as the flow rate
increases, the heat transfer area per unit mass flow rate decreases, resulting in reduced heat
transfer performance of the rotary wheel and the desorption outlet temperature getting
closer to the desorption inlet temperature. As to the adsorption outlet temperatures, except
for the case of 1 m/s, they were around 391 K (close to the desorption inlet gas temperature)
regardless of the desorption inlet velocity. Since the adsorption inlet velocity is 1 m/s, with
a desorption inlet velocity higher than 1 m/s, the overall heat accumulating in the rotary
wheel would increase. Therefore, the high temperature region below in Figure 7 will be
much larger than the low temperature region above. Additionally, due to the rotation,
the temperature distribution on the same side will be more uniform, i.e., the temperature
distribution shows axial layering. The adsorption outlet sector will also be affected by the
desorption inlet sector on the same plane, making the adsorption outlet temperature close
to the desorption inlet temperature.

The desorption outlet concentration decreased significantly as the desorption inlet
velocity increased. This is because the increase in desorption inlet velocity reduced the
gas-solid contact time in the desorption sector and also elevated the temperature in the
desorption sector. It is known from the characteristics of adsorption isotherms that the
higher the temperature, the lower the adsorption capacity. As the desorption outlet tem-
perature increases with the desorption flow rate, the temperature difference between the
desorption inlet and outlet diminishes, resulting in a smaller working capacity of the
adsorbent released and thus a lower average concentration at the desorption outlet.
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Figure 5. Variation of the outlet averaged concentration of CO2 and temperature at the outlet with
different desorption inlet velocities. (13X ω = 2 r/min, Tad,in = 293.15 K, Tde,in = 393.15 K, Vad,in = 1 m/s).
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Figure 6. Contour of the mole fraction of CO2 (left) and temperature (right) on the desorption
outlet at different desorption inlet velocities: (a) 1 m/s; (b) 1.5 m/s; (c) 2 m/s. (13X ω = 2 r/min,
Tad,in = 293.15 K, Tde,in = 393.15 K, Vad,in = 1 m/s).
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Figure 7. Axial distribution of temperature. (13X ω = 2 r/min, Tad,in = 293.15 K, Tde,in = 393.15 K,
Vad,in = 1 m/s, Vde,in = 2 m/s).

3.4. Effect of Desorption Air Temperature

Figures 8 and 9 depict the variations in average temperature and concentration at
the adsorption outlet in response to different temperatures of desorption airflow. Notably,
an increase in the desorption inlet temperature yields a significant rise in the average
temperature observed at the adsorption outlet. As mentioned before, this is mainly due
to the rotation of the wheel, given that the adsorption outlet and desorption inlet are on
the same plane. Consequently, the real-time temperature at the adsorption outlet closely
approximates the temperature of the desorption inlet airflow. Similarly, the temperature
at the desorption outlet exhibits a similar proximity to the temperature observed at the
adsorption inlet. In addition, the increase in the desorption temperature also led to more
heat entering the rotary wheel device, raising the overall temperature of the wheel. The
temperature increase reduces the CO2 adsorption capacity of the adsorbent, resulting in
a higher outlet concentration for the adsorption sector and more desorbed CO2, giving
a higher desorption outlet concentration. Similar phenomena were also observed in a
previous study [31].
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Figure 8. Effect of the desorption inlet air temperature on the adsorption amount and temperature at
the adsorption outlet (13X ω = 2 r/min, Tad,in = 293.15 K, Vad,in = 1 m/s, Vde,in = 1 m/s).



Atmosphere 2023, 14, 1307 12 of 16

Atmosphere 2023, 14, x FOR PEER REVIEW 12 of 16 
 

 

Figure 8. Effect of the desorption inlet air temperature on the adsorption amount and temperature 
at the adsorption outlet (13X ω = 2 r/min, Tad,in = 293.15 K, Vad,in = 1 m/s, Vde,in = 1 m/s). 

 
Figure 9. Contour of the mole fraction of CO2 (left) and temperature (right) on the adsorption outlet 
at different desorption air temperatures: (a) 333 K; (b) 348 K; (c) 363 K; (d) 378 K; and (e) 393 K. (13X 
ω = 2 r/min, Tad,in = 293.15 K, Vad,in = 1 m/s, Vde,in = 1 m/s). 

  

Figure 9. Contour of the mole fraction of CO2 (left) and temperature (right) on the adsorption outlet
at different desorption air temperatures: (a) 333 K; (b) 348 K; (c) 363 K; (d) 378 K; and (e) 393 K.
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3.5. Different Proportion of Desorption Zone

Figures 10 and 11 provide a visual representation of the average concentration and
temperature at the outlets, considering two distinct desorption zone ratios. It should be
noted that the adsorbents in Figures 10 and 11 have an average particle diameter of 0.002 m
compared to 0.0015 m in previous figures, and different mass transfer coefficient values
are given. The findings reveal that, while maintaining identical adsorption and desorption
airflow rates, a slight increase in the average concentration at the adsorption outlet and a
marginal decrease in the average concentration at the desorption outlet are observed when
the desorption zone ratio shifts from 1/2 to 1/4. Conversely, the average temperature at the
outlets remains nearly constant for both zone configurations. The primary consequence of
altering the desorption zone ratio from 1/2 to 1/4 is an augmented desorption inlet airflow
rate combined with a diminished adsorption inlet airflow rate. As discussed earlier, the
desorption inlet airflow rate significantly influences the concentration at the desorption
outlet, resulting in a lower average concentration relative to the 1/2 zone configuration.
A similar principle can account for the slight increase in average concentration at the
adsorption outlet, which is attributed to the reduction in the adsorption inlet airflow rate.
Consequently, the disparate rates of change in outlet velocities engender different rates of
change in outlet concentrations.
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Figure 10. Variation of the outlet average concentration of CO2 and temperature at the outlet with
different proportions of the desorption zone. (13X ω = 2 r/min, Tad,in = 293.15 K, Tde,in = 393.15 K;
Vad,in = 3 m/s; and Vde,in = 1.5 m/s when the proportion of desorption zone is 1/2, or Vad,in = 2 m/s
and Vde,in = 3 m/s when the proportion of desorption zone is 1/4).

Similarly, in line with the impact of rotational speed, when the wheel’s rotational speed
reaches 2 r/min, the average temperature at the desorption outlet closely approximates the
temperature at the adsorption inlet. Given the same inlet airflow rate, the heat flow into
and out of the fluid should remain equal. When the desorption outlet temperature aligns
with the adsorption inlet temperature, it becomes evident that the average temperature
at the adsorption outlet should also be comparable. Since the desorption inlet average
temperatures are equivalent for both zone configurations, it follows that the average
temperature at the adsorption outlet should likewise exhibit similarity.
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4. Conclusions

The present study investigated a regenerative rotary adsorber for indoor CO2 capture
by modeling the coupled heat and mass transfer processes within the adsorber. The key
findings are:

(1) In the rotation speed range of 0.5–3 rpm, adjusting the speed mainly affects cir-
cumferential concentration and temperature distribution but has little impact on axial
concentration and temperature;

(2) Increasing desorption inlet flow rate has little impact on adsorption outlet con-
centration but significantly decreases desorption outlet concentration. Increasing the
desorption inlet flow rate also significantly raises the desorption outlet temperature but
has little impact on the adsorption outlet temperature when the desorption inlet flow rate
is 1.5 m/s or higher;

(3) Raising the desorption inlet temperature increases both adsorption and desorption
outlet average concentrations. Increasing desorption inlet temperature also significantly
increases adsorption outlet temperature but has little impact on desorption outlet temperature;
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(4) Reducing the volume proportion of the desorption sector slightly increases adsorp-
tion outlet concentration, slightly decreases desorption outlet concentration, but barely
affects average adsorption and desorption outlet temperatures.
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