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Abstract: Lorenz rediscovered the butterfly effect, which is defined as the sensitive dependence on
initial conditions (SDIC), in 1963. In 1972, he used the term “butterfly” as a metaphor to illustrate
how a small perturbation can lead to a tornado with a complex structure. The metaphorical butterfly
effect, which celebrated its 50th anniversary in 2022, is not precisely the same as the original butterfly
effect with SDIC. To commemorate the 50th anniversary, a Special Issue was launched and invited
the submission of research and review articles that can help to enhance our understanding of both
the original and metaphorical butterfly effects. The Special Issue also sought recent developments in
idealized Lorenz models and real-world models that address multistability, multiscale predictability,
and sensitivity. The call for papers was opened 15 months prior to the completion of the Special Issue
and features nine selected papers. This editorial provides a brief review of Lorenz models, introduces
the published papers, and summarizes each one of them.

Keywords: dual nature; chaos; generalized Lorenz model; predictability; multistability

1. Introduction

A well-accepted definition of the butterfly effect is the sensitive dependence on initial
conditions (SDIC), which was rediscovered by Lorenz in 1963 (Lorenz 1963a) [1]. Usage
of the term “butterfly” appeared in 1972 when Lorenz applied a metaphor to discuss the
possibility of whether a tiny perturbation may eventually create a tornado with a three-
dimensional, organized coherent structure (Lorenz 1972 [2]). Since 1972, the metaphorical
butterfly effect has received increasing attention and has become associated with the SDIC.
Lorenz’s work in 1963 and 1972 established the foundation for chaos theory, inspiring many
studies in different fields. The metaphorical butterfly effect celebrated its 50th anniversary
in 2022 (Glick 1987 [3]; Lorenz 1993 [4]).

Although Lorenz’s 1963 theoretical model is considered a toy weather model that
cannot accurately depict weather and climate, the model’s simplicity allowed for the
identification of chaotic weather and climate, leading to the widely accepted view that
weather is chaotic. The announcement of the 2019 Nobel Physics Prize cited Lorenz’s
pioneering chaos study as a foundation for the awarded studies, which proposed physics-
based mathematical models for improving our understanding of predictability in complex
systems [5]. The proposed physics-based mathematical models are capable of revealing
crucial, fundamental physical processes, including co-existing rapidly and slowly varying
systems and the metastability of spin glass [6]. By extending Lorenz’s 1963 model in order
to improve our understanding of predictability in complex systems such as weather and
climate, which possess co-existing attractors [7], Shen et al. (2021a, b) [8,9] proposed a
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revised view in that “weather possesses chaos and order; it includes emerging organized
systems (such as tornadoes) and recurrent seasons”, in contrast to the conventional view of
“weather is chaotic”.

To celebrate the 50th anniversary of the metaphorical butterfly effect and to promote
fundamental research through the use of both theoretical and real-world modeling, as
well as modern machine learning technology, a Special Issue was established, seeking
investigations into various topics related to multistability, multiscale predictability, and
sensitivity. These topics included:

1. The validity of existing analogies and metaphors for butterfly effects.
2. The insightful analysis of various Lorenz models reveals the role of monostability with

single types of solutions and multistability with attractor co-existence in contributing
to the multiscale predictability of weather and climate.

3. The development of conceptual, theoretical, and real-world models to reveal funda-
mental physical processes and multiscale interactions that contribute to our under-
standing of the butterfly effect on the predictability of weather and climate.

4. Innovative machine learning methods that (1) classify chaotic and non-chaotic pro-
cesses and identify weather and climate systems at various spatial and temporal scales
(e.g., sub-seasonal to seasonal time scales) and (2) detect computational chaos and
saturation dependence on various types of solutions.

5. The impact of tiny perturbations on emergent pattern formation with self-organization
(e.g., stripes and rolls), the formation of high-impact weather (e.g., tornados and
hurricanes), etc.

Nine papers, covering topics related to the first four categories, were published during
the 15-month period of the Special Issue. The published papers are summarized herein
based on the four categories: (A) butterfly effects and sensitivities, (B) atmospheric dynam-
ics and the application of theoretical models, (C) predictability and prediction, and (D)
computational and machine learning methods.

To complement the contributions of the published papers to the goals of the Special
Issue, in Section 2, we first provide a brief review of Lorenz’s models between 1960 and 2008.
Further mathematical analysis of the Lorenz models can be found in a companion article
by Shen (2023) [10]. Thereafter, Section 3 provides a summary of the papers. Appendix A
briefly compares the mathematical similarities of the Lorenz 12-variable model [4] and the
many-mode model, and Appendix B documents the relationship between the logistic map
and the logistic differential equation used by Lorenz in the 1960s. For detailed definitions
of the selected concepts, please refer to Table A1 in Appendix C.

2. A Brief Review of Lorenz Models and Butterfly Effects
2.1. A Review of Lorenz Models

In this paper, we provide an overview of Prof. Lorenz’s mathematical models that
illustrate chaotic and unstable features in the atmosphere. The primary emphasis is on
models that present two key concepts, namely chaos and almost intransitivity (for further
details, please refer to Table A1 in Appendix C), both of which are related to predictability.
Lorenz published 61 papers during his lifetime, with 58 of them being single authored
(Chen 2020 [11]). Tables 1 and 2 summarize his mathematical models in the 1960s and
between 1970 and 2008, respectively.
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Table 1. A list of Lorenz models in the 1960s. * By a strict definition, the Lorenz 1969 model cannot
be categorized as a turbulence model, but it does illustrate the multiscale turbulent features of the
Atmosphere.

Year 1960 1960/62 1963 1964 1965 1969 1969

Equations 3 ODEs, 12 ODEs 3 ODEs, Logistic map 28 variables Logistic ODE 21 2nd-order
ODEs,

Origins PDE;
vorticity Eq

PDEs; a
2-layer, QG

model

PDEs;
convection

PDEs; a
2-layer, QG

model

PDE;
vorticity Eq

Features of
Solutions

oscillatory
solutions

with elliptic
functions

irregular
fluctuations chaos

steady,
periodic,

non-periodic

irregular
solutions

error growth
and

saturation
‘turbulence’ *

Table 2. A list of Lorenz models between 1970 and 2008.

Year 1972 1976 1980 1984 1986 1996/2006 2005 2008

Equations turbulence
models

cubic
map

low-order
PE or QG (9
or 3) ODEs

3 ODEs 5 or 3 ODEs N ODEs N ODEs Henon map

Origins PDE based PDE based
Not
PDE

based

PDE based,
(the 1980
model)

Not PDE
based

Not PDE
based

Features of
Solutions turbulence transitivity

(modified)
shallow

water Eqs.

general
circulation,
transitivity

slow
manifolds
(w elliptic
functions)

chaos chaos chaos

2.1.1. Lorenz Models in the 1960s

In 1960, Lorenz proposed a low-order system of ordinary differential equations (ODEs)
based on a single partial differential equation (PDE) for the conservation of vorticity
(Lorenz 1960 [12]). This system, called Maximum Simplification of the Dynamic Equations,
produced oscillatory solutions as elliptic functions ([12,13]). As discussed below, Lorenz’s
1960 model also appeared as a simplified version of the Lorenz 1986 system for studying
slow variables. In the same year, Lorenz reported “irregular solutions” based on a system
of twelve ODEs, derived from the geostrophic form of the two-layer baroclinic model,
which is discussed below. The system includes two variables that represent the average
and the difference of the stream functions for the two layers. The second variable was
identified as the temperature field through the thermal wind relationship. To express
each variable, six Fourier modes with six coefficients were used, resulting in a system
of twelve ODEs with twelve mathematical variables but only two physical fields (i.e., a
stream function and temperature). The mathematical equations are presented in Equation
(A1) in Appendix A. In 1960, Lorenz presented the “irregular solutions”, which were later
published in a conference proceeding in 1962 [14], at the International Symposium on
Numerical Weather Prediction in Tokyo.

Motivated by the irregular solutions observed within the Lorenz (1960/1962) model,
Lorenz simplified the Saltzman seven-variable model [15,16] into a three-variable model,
which is known as the Lorenz 1963 model with three ODEs [1,17]. Since then, thanks to its
rich array of features, the model has been valuable in explaining the nonlinear and chaotic
dynamics of diverse fields [1,3,4].

Within a continuous dynamical system, three ODEs are required for the appearance
of chaos. While the Lorenz 1963 model represents one such simple system for producing
chaos, a simple logistic map (which is a difference equation) has also been used to illustrate
chaos (e.g., May 1976 [18]; Li and Yorke 1975 [19]). Although cited in [18], Lorenz (1964) [20],
indeed, applied the logistic map in order to illustrate irregular solutions earlier than May
(1976). Lorenz (1964) specifically reported the transition from steady-state to periodic to
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non-periodic behavior as the control parameter increases. Simply based on the findings
of Lorenz (1962, 1963a, and 1964), we may conclude that Lorenz was fully aware of the
potential of Saltzman’s model in illustrating chaos. As compared to the logistic map
in a discrete form, the continuous form of the logistic equation was applied in order to
illustrate the monotonic increase and the saturation of errors (e.g., Lorenz 1969a [21]).
The relationship between the logistic map and the logistic ODE is briefly documented in
Appendix B.

The aforementioned low-order models were constructed in order to illustrate various
atmospheric phenomena which are intrinsically nonlinear (Lorenz 1982a [22]). During
the early 1960s, numerous multi-layer models existed. One of the two-layer models was
developed by Lorenz in 1960 (Lorenz 1960 [23]). The geostrophic form of the two-layer
model was applied in order to derive the Lorenz 1962 8-variable model [24] and the Lorenz
1960/1962 12-variable model and it was subsequently changed to become a 14-variable
model for investigating vacillation in a dishpan, as described in Lorenz’s work in 1963
(Lorenz 1963b [25]). Within the eight-variable model, Lorenz was able to obtain analytical
solutions to describe essential features of the transition between the Hadley and Rossby
regimes. Building upon these endeavors, Lorenz proposed a 28-variable model in 1965 to
explore non-periodic solutions (Lorenz 1965 [26]). The four quasi-geostrophic (QG) models
are also referred to as the Lorenz 1962-8v, 1960/1962-12v, 1963-14v, and 1965-28v models.
Whilst the 1960/1962-12v model and the 1965-28v model are listed in Table 1, the Lorenz
1960 two-layer model, the 1962-8v model, and the 1963-14v model are not listed in Table 1.

The Lorenz 1965 28-variable model is a highly simplified QG model used for capturing
some of the gross features of atmospheric behavior and contains two physical variables,
the stream function (i.e., vorticity) and potential temperature. This model yielded a sig-
nificant finding of flow-dependent predictability: “The time required for errors comparable to
observational errors in the atmosphere to grow to intolerable errors is strongly dependent upon the
current circulation pattern, and varies from a few days to a few weeks.” This finding implies that
the predictability limit depends on a synoptic situation (Lorenz 1982b [27]). In fact, some
results obtained using the 28-variable model were also reported in Lorenz (1963c) [28].

While this review primarily focuses on the features of Lorenz models, it is worth
mentioning the following important “analysis method.” In Lorenz (1965), the growth of
small errors, such as during the linear stage, was analyzed using the singular value (SV)
method (Kalnay 2002 [29]; Lewis 2005 [30]). This method required the calculation of the
system’s Jacobian matrix (for a linear tangent model) and its singular values (for growth
rates). Such a method was applied to determine the local or finite-time Lyapunov exponent
over a finite time interval (Nese 1989 [31]; Abarbanel et al., 1992 [32]; Eckhardt and Yao
1993 [33]; Krishnamurthy 1993 [34]; Szunyogh et al. 1997 [35]; Yoden 2007 [36]). On the
other hand, Oseledec (1968) [37] independently proposed a general approach for calculating
the (global) Lyapunov exponent over an infinite time interval. The singular value method
was also employed in the systems of the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Molteni et al., 1996 [38]; Buizza et al., 2008 [39]). In a recent study
conducted by Cui and Shen (2021) [40], the relationship between the SV decomposition
(SVD), principal component analysis (PCA), and kernel PCA methods was documented.
Furthermore, they deployed kernel PCA to identify co-existing attractors within the phase
space. Empirical orthogonal function (EOF), which was initially introduced into the field of
meteorology by Lorenz in 1956 [41], is another term commonly used to denote PCA.

A two-layer, quasi-geostrophic model was also applied by Pedlosky in the 1970s,
referred to as the Pedlosky model (Pedlosky 1971, 1972, 1987 [42–44]), in order to derive a
low-order system to study nonlinear baroclinic waves. Although the Pedlosky and Lorenz
1963 models were derived from very different PDEs with different physical processes,
research indicates that two systems of ODEs can be mathematically identical when time-
independent parameters are properly selected (Pedlosky and Frenzen, 1980 [45]; Shen
2021 [46]). Similar to the Lorenz 1963 model, the Pedlosky model also produced three types
of solutions, including steady-state, chaotic, and limit cycle solutions.
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2.1.2. Lorenz Models between 1970 and 2008

While Lorenz 1963 has been highly cited within the nonlinear dynamics community,
the Lorenz 1969 many-mode model (Lorenz 1969b [47]) is better known by individuals
within the meteorology community. Similar to the Lorenz 1960 model, the Lorenz 1969
model was also derived based on the conservation of vorticity. Since the conservative PDE
does not include friction, as compared to the turbulence models proposed by Leith 1971 [48],
Leith and Kraichnan (1972) [49], and Lorenz himself in 1972 [50,51], the Lorenz 1969 model
is not a turbulence model. Thus, while the Lorenz 1963 model was simplified from the
Saltzman model in order to qualitatively illustrate the chaotic nature of the atmosphere,
the Lorenz 1969 model was proposed to qualitatively illustrate multiscale interactions of
the “turbulent” atmosphere. As a result of its importance, as summarized in Section 3,
detailed features of the Lorenz 1969 model have recently been documented. To illustrate
the concept of “intransitivity” highlighted in Section 2.1.3, Lorenz (1976) [52] employed a
cubic map. This cubic map can be obtained by substituting a cubic term for a quadratic
term in Equation (B4), as found in Appendix B.

Based on a shallow water equation, Lorenz 1980 [53] obtained a low-order system
of nine ODEs, referred to as the nine-variable barotropic primitive-equation (PE) model
(Lorenz 1982a [22]), to describe the evolution of the velocity potential, stream function,
and the height of a free surface. By applying a quasi-geostrophic assumption, Lorenz
showed that a simplified version of the low-order system can be mathematically identical
to the Lorenz 1963 model. In 1986, by applying the Lorenz 1980 low-order system, Lorenz
(1986) [54] proposed a system of five ODEs in order to illustrate the features of the slow
manifold. Using different initial conditions, Lorenz discussed two types of solutions:
(1) a linear gravity wave solution for two fast variables and (2) a nonlinear Rossby wave
with a dependence of oscillatory frequency on the amplitude of the wave for three slow
variables, U, V, and W. As a result, the term “slow” indicates a state of the system where
time scales are sufficiently separated and fast gravity modes are effectively separated.
Both solutions are non-chaotic. Lorenz (1986) did not present the concept of co-existing
chaotic and non-chaotic solutions. For a detailed discussion on the absence of universal
slow-manifold evolution in rotating stratified fluids, the readers may find the studies by
Lorenz and Krishnamurthy (1987) [55], Lorenz (1992) [56], and McWilliams (2019) [57] of
interest. These studies delve into the subject matter and provide further insights.

Table 3 compares the “subsystem” of a Lorenz 1986 model for the three slow variables
and two simplified versions of the Lorenz 1963 model [58–60]. The first two models,
listed in the second and third columns, have closed-form solutions with elliptic functions,
showing the modulation of frequency within nonlinear periodic solutions. Although the
models can produce periodic solutions, they cannot generate limit cycle solutions because
there are no dissipative terms. A limit cycle is defined as an isolated closed orbit within
the phase space [8]. A system with U, V, and W variables (e.g., Table 3) is comparable to
Equations (15)–(17) in Lorenz (1960)l, whose solutions are also the elliptic functions dn, sn,
and cn (see Table 3).

Table 3. A comparison of the Lorenz 1986 model for slow variables with two simplified versions of
the Lorenz 1963 model (Sparrow 1982 [58]; Shen 2018 [59]).

The Lorenz (1986) Model The Limiting Equations The Non-Dissipative Lorenz Model
References Lorenz (1986) Sparrow(1982) Shen (2018)

Equations

dU
dt = −VW,
dV
dt = UW,

dW
dt = −UV.

dX
dτ = σY,

dY
dτ = −XZ,
dZ
dτ = XY.

dX
dτ = σY,

dY
dτ = −XZ + rX,

dZ
dτ = XY.

Solutions
U = U∗cn(W∗T)
V = V∗sn(W∗T)

W = W∗dn(W∗T)

X =
√

2σcn
(√

στ + 3K
)

nonlinear periodic orbits

three types of solutions, including two
types of periodic solutions and

homoclinic orbits
Remarks T = T(t) See Shen (2018) for details See Shen (2018) for details
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To depict atmospheric circulation, Lorenz (1984) [61] proposed a different system of
three ODEs, viewed as the simplest general circulation model (GCM). In the past, the model
has been applied in order to qualitatively illustrate features of the atmosphere (e.g., chaotic
winters and non-chaotic summers (Lorenz 1990 [62]), the long-term variability of the climate
(Pielke and Zeng (1994) [63]), etc.). To help readers understand the validity of the model
and related findings, the following comments are provided. Lorenz (1990) [62] documented
that (1) the system was constructed in a somewhat ad hoc manner (i.e., a lack of physical
foundations) and (2) there is no assurance that the system produces bounded solutions.
Although a recent study has provided a method to derive the Lorenz 1984 model [64,65],
transformations of variables made it difficult to interpret the physical meanings of variables
within the 1984 system. As compared to typical, fully dissipative systems where the time
change rate of the volume of the solutions is negative, the volume of the solution within the
1984 model does not necessarily shrink to zero. Specifically, Lorenz (1991) [66] stated that:
(1) We do not claim or intend that it (i.e., the Lorenz 1984 model) should reproduce atmospheric
behavior in any quantitative sense. (2) The point is not that the model is a good representation of
the atmosphere.

Until 1996/2006, as indicated by the title of Lorenz (1996, 2006) [67,68], Lorenz ac-
knowledged that the predictability problem has not been fully solved. While the Lorenz
1963 model is a forced, dissipative, but limited-scale model, the Lorenz 1969 model is a
linear, multiscale system with no dissipations. In 1996, to discuss growth rates at different
scales and their saturations, Lorenz [67] proposed a many-mode “nonlinear” model that
included dissipations and forcing terms. Lorenz (1996) was a technical report and was
later published as a book chapter in 2006 (Lorenz 2006 [68]). As shown in Equation (A2)
in Appendix A, the system contains nonlinear quadratic terms for advection and linear
terms for dissipative and forcing terms. The system produces chaotic responses. However,
without providing detailed justifications for how rescaling was performed, the coefficients
for all terms at all scales were one (e.g., Equation (1) in Lorenz 1996). As compared to the
Lorenz 1960/1962-12v model (e.g., Equation (A1) in Appendix A) and the Lorenz 1969
model, as well as the generalized Lorenz model (Shen 2019 [7]), the coupling terms (or
the nonlinear quadratic terms), which originate from mode–mode interactions, should not
have the same coefficients. Similarly, coefficients for the dissipative terms should not be
the same.

Although a new chaotic many-mode system was proposed in order to address the
predictability problem in 1996, Lorenz rescaled the variables to make the time unit (i.e., a
time scale) equal to 5 days and chose a time step of 0.05 units that is equivalent to 6 h (page
5 of Lorenz 1996). The time scale of 5 days is different from the time scale of 6 days used by
Lorenz (1969b), who determined the time scale by assuming a velocity scale of 17.2 m/s.
Thus, the impact of a selected time scale on the estimate of predictability horizons within
idealized models (that may or may not be physics based) should be examined. While
two copies of the Lorenz 1996 model (i.e., Equation (1) in Lorenz 1996 or Equation (A2) in
Appendix A) were applied in order to construct a two-layer system (i.e., Equations (2) and
(3) in Lorenz 1996), additional linear coupling terms were included, calling for additional
justifications for the choice of linear coupling terms that should be consistent with existing
nonlinear quadratic terms. Other chaotic models in Lorenz (2005) [69] shared similar pros
and cons with the 1996 model. Lorenz (2006) [70] utilized the Lorenz 1996/2005 model to
demonstrate the existence of regimes that occur when the external forcing parameter (e.g.,
F in Equation (A2)) exceeds its critical value for the onset of chaos. In the last year of his
life, Lorenz (2008) [71] published a paper based on the Hénon map which is a second-order
difference equation with a quadratic term. A PDE-based classification of Lorenz models is
provided in Table 4.



Atmosphere 2023, 14, 1279 7 of 22

Table 4. The PDE-based classification of Lorenz models.

Quasi-geostrophic (QG) System 1962-8v, 1960/1962-12v, 1963-14v, 1965-28v
Conservative Vorticity Equation 1960, 1969

Rayleigh Benard Convection Equations 1963 (& Generalized Lorenz Models)
Shallow Water Equations 1980, 1986

No PDEs 1984, 1996, 2005
(Discrete) Maps 1964 (Logistic), 1976 (Cubic), 2008 (Henon)

2.1.3. Transitivity, Intransitivity, and Almost Intransitivity

While chaos with SDIC and linearly unstable solutions for multiscale predictability
have been well explored using Lorenz’s original models, the concept of “intransitivity”
has been suggested and explored using different models since the 1960s (Lorenz, 1968 [72],
1975 [73], 1976 [52], 1982c [74], 1990 [62], and 1997 [75]). The idea of “intransitivity”
addresses whether or not a specific type of weather or climate regime may last forever.
In mathematical terms, the relation is classified as transitive if, whenever it establishes
a link between A and B, as well as a separate link between B and C, a connection is
implied between A and C. Thus, a relation is called intransitive if it is not transitive. When
examining a system with two distinct states or regimes (such as warm and cold weather
characterized by positive and negative temperature anomalies, respectively), if either warm
or cold weather indefinitely persists, the system demonstrates “intransitivity”. In other
words, transitions from one state to another state are impossible. On the other hand, if the
two weather regimes are alternate, the system exhibits “transitivity”. The third scenario,
known as “almost intransitivity”, occurs when a regime change is possible but happens
infrequently, falling between the two aforementioned scenarios.

Therefore, drawing from the preceding information, we can observe that “transitivity”,
“almost intransitivity”, and “(complete) intransitivity” are demonstrated by the occurrence
of “frequent”, “rare”, and “no” changes in the signs of solutions (i.e., oscillations between
two distinct regimes), correspondingly. As shown in Figure 1, these features were effectively
illustrated by Lorenz (1976), who applied a cubic map, Xn+1 = α

(
3Xn − 4X3

n
)

(i.e., a cubic
finite difference equation, e.g., Holmes (1979) [76] and May (1984) [77]). The parameter
α symbolizes a combined effect of linear forcing and dissipations, referred to as effective
linear forcing. Additionally, the ratio between the coefficients of linear and nonlinear
components determines the level of nonlinearity.
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As shown in Figure 2 for the bifurcation diagram of the cubic map, when the parameter
α is greater than 1/3, the model displays a pitchfork bifurcation that introduces two non-
trivial equilibrium points. Such non-trivial equilibrium points become unstable when α
is greater than 2/3. Then, each critical point experiences period doubling bifurcations,
yielding a chaotic attractor (De Oliveira et al., 2013 [78]). Transitivity arises from the merger
of two chaotic attractors [79,80] when α exceeds the critical threshold αc =

√
3/2. Lorenz

(1976) suggested that while transitivity arises when α is greater than αc, almost intransitivity
occurs when α slightly surpasses αc.
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In the chaotic regime of the Lorenz 1963 model, which consists of one saddle point
and two unstable equilibrium points, as evidenced by the presence of a persistent chaotic
solution, the model demonstrates “transitivity” in the phase space. According to Devaney’s
definition of chaos [81], topological transitivity, SDIC (sensitive dependence on initial con-
ditions), and dense periodic orbits are the three conditions that define chaos. In comparison,
the concept of “intransitivity” and “almost intransitivity” emerges as an intriguing topic
within systems that allow for the co-existence of two chaotic attractors associated with
two non-trivial equilibrium points (such as the Lorenz 1976 cubic map), the co-existence of
two oscillatory solutions (like the Lorenz 1984 model), and/or various types of attractor
co-existence (such as the generalized Lorenz model [7]).

For example, given time-independent parameters, co-existing attractors may occupy
different portions of the phase space. In such cases, both transitivity and “almost intransi-
tivity” become possible when one or more parameters change over time. According to the
following description of an intransitive system by Lorenz (1968) [72]:

“There are two or more sets of long-term statistics, each of which has a greater-than-zero
probability of resulting from randomly chosen initial conditions”

the intransitivity and the final state sensitivity (Grebogi et al. (1983) [82]; Table A1)
are related. On the other hand, considering the presence of chaotic solutions within a
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transitive regime, such as those observed in the Lorenz 1963 model, whether or not “almost
intransitivity” could manifest during a specific time period is an intriguing question.

When the concepts of “intransitivity” and “almost intransitivity” were initially in-
troduced to explore the potential longevity of different climate regimes, if they exist,
investigating regime changes on weather or short-term climate scales may also be valuable.
For instance, Charney and DeVore (1979) [83] proposed that the presence of multiple,
stable steady-state solutions in a low-order QG system could lead to the emergence of
atmospheric blocking in the form of a stable steady-state solution (e.g., Chen and Xiong
2016 [84]). This phenomenon arises from the interplay of nonlinearity and mechanical
and thermal forcing. Understanding the factors that govern the transitions between zonal
and blocked atmospheric circulations, as well as the persistence of these regimes, remains
an active area of research (Faranda et al., 2016 [85]; Dorrington and Palmer 2023 [86]).
At longer time scales, transitions between El Niño and La Niña events exhibit varying
durations for each regime ([87], Wallace et al. [88]), which raises scientific inquiries regard-
ing the factors influencing the frequency and duration of these transitions. This prompts
the exploration of whether the notions of “almost intransitivity” or “transitivity” can be
applicable in describing such transitions and understanding the conditions (i.e., nonlinear
and/or chaotic dynamics) that govern them.

2.1.4. Analogues and Recurrence

Lorenz’s models revealed the potential existence of multiple attractors, such as co-
existing chaotic attractors in Lorenz (1976) and co-existing periodic oscillations in Lorenz
(1984). However, despite these findings, the prevailing assumption regarding the presence
of a single dominant chaotic attractor has been implicitly applied in order to explain why
identical weather systems are rare (e.g., Van Den Dool 1989 and 1994 [89,90]). Such an
explanation gained widespread acceptance due to the fact that neighboring trajectories in
chaotic systems, such as the Lorenz 1963 model, do not interact within the phase space.

However, it is important to note that nearby oscillatory trajectories, which eventually
reach a steady state, do not intersect prior to reaching their final destination. Additionally, as
illustrated in Figure 3 in Faghih-Naini and Shen (2018) [91], who applied the non-dissipative
five-dimensional Lorenz model, a quasi-periodic solution with multiple incommensurate
frequencies does not form a closed orbit but rather a torus. Therefore, when considering
the temporal and spatial variations of forcing and dissipation processes, which are often
neglected in autonomous systems, it becomes essential to consider “recurrence” instead
of “periodicity”. As defined in Thompson and Stewart (2002) [92] and studied using high-
dimensional Lorenz models by Reyes and Shen (2019, 2020) [93,94], recurrence refers to
a trajectory returning to the vicinity of its previous location. Recurrence can be seen as
a more inclusive concept that encompasses quasi-periodicity with multiple frequencies
and chaos.

In fact, the idea of recurrence can be compared to the quasi-periodicity introduced
in Lorenz’s earlier studies during the 1960s (e.g., Lorenz 1963a and 1963c [28]). Lorenz
defined a “quasi-periodic flow” as:

“A flow with no transient component eventually comes arbitrarily close to assuming a
state which it has assumed before, and the history following the latter occurrence remains
arbitrarily close to the history following the former.”

Additionally, the notion of “recurrence” aligns well with Lorenz’s concept of “ana-
logues” (Lorenz 1969a [21], 1973 [95]), defined as follows:

“Analogues are two states of the atmosphere that exhibit resemblance to each other. Either
state in a pair of analogues can be considered equivalent to the other state plus a small
superposed ‘error’.”

While weather may not repeat itself exactly, the idea of “analogues” or “recurrence” is
also consistent with the classification of various weather systems such as quasi-biennial
oscillations (QBOs), atmospheric blocking, African Easterly Waves (AEWs), and others
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(Shen et al., 2021a,b and references therein). The natural occurrence of analogues, i.e.,
similar weather situations, has been applied as an empirical approach for estimating
growth rates (Lorenz 1969c [96]). When two states are comparable, their differences are
viewed as an error, and the growth of the error can be estimated by observing the evolution
of the two states. Lorenz (1969a) reported both quasi-exponentially growing and decaying
systems. While Lorenz’s analogue approach in a follow-up study (Lorenz 1973) suggested
a predictability horizon of at least 12 days for instantaneous weather patterns, recent
advances in nonlinear dynamics, including attractor co-existence and almost intransitivity,
can serve as a basis for understanding the potential for studying predictability at sub-
seasonal, seasonal, or climate scales.

2.1.5. Simplifications and Generalizations of Lorenz Models

The three primary categories of chaotic systems include Hamiltonian systems (such as
the three-body problem of Poincare [97,98]), forced and dissipative differential ODEs, and
difference equations (like May 1976 and Li and Yorke 1975). Lorenz models can be cate-
gorized as belonging to the second and third categories. As such, numerous studies have
been conducted over the past five decades, drawing inspiration from Lorenz’s previously
mentioned models. These studies have explored mathematical and physical simplifications
and the generalizations of Lorenz models (e.g., Curry 1978 [99]; Curry et al., 1984 [100];
Howard and Krishnamurti 1986 [101]; Hermiz et al., 1995 [102]; Thiffeault and Horton
1996 [103]; Musielak et al., 2005 [104]; Roy and Musielak 2007a, b, c [105–107]; Moon et al.,
2017 [108]), resulting in various noteworthy findings. Some of these include mathematical
equivalence amongst the non-dissipative Lorenz 1963 model, the Korteweg–de Vries (KdV)
equation in the traveling wave coordinate, the nonlinear Schrodinger equation for the
amplitude of a traveling wave, the SIR model with weakly nonlinear assumptions, and
the inviscid Pedlosky model (Shen 2020, 2021 [46,60]; Paxson and Shen 2022 [109]). SIR
represents the three categories of individuals: susceptible (S), infected (I), and recovered (R)
in that order. Consequently, such simplified systems have proven effective in revealing the
dynamics of solitary waves, homoclinic orbits, epidemic waves, and nonlinear baroclinic
waves. As a result of orbital instability and the unique sensitivity to initial conditions
exhibited by homoclinic orbits, one could argue that the conservative, non-dissipative
Lorenz 1963 model generates limited chaos.

Recently, Saiki et al. (2017) [110] proposed mathematical unification of the Lorenz
1963, 1984, and 1996 models. These systems, whether of dimension 3 or N, share quadratic
characteristics and possess a generalized Lyapunov function that ensures bounded tra-
jectories, with all trajectories entering a bounded trapping region. Furthermore, in terms
of generalizing the Lorenz 1963 model, Shen (2019a, b) [7,111] proposed an expanded
version that incorporates the following features: (1) any odd number of state variables
greater than three, (2) the presence of three common types of solutions (steady-state, chaos,
and limit cycle solutions), (3) two kinds of attractor co-existence, (4) aggregated negative
feedback, (5) hierarchical spatial scale dependence, and (6) energy conservation under the
dissipationless condition.

The presence of two types of attractor co-existence makes the generalized model
suitable for investigating transitivity and intra-transitivity. Revealing the predictability
of different attractors can be achieved through the effective detection of attractors, which
involves determining their boundary (referred to as the basin boundary; Cui and Shen
2021 [40]). The concept of “edge of chaos” suggests that the interplay of chaos and order
could lead to complexity as well as the emergence of self-organized phenomena [112,113].
The simplest system for illustrating the edge of chaos is the self-adjusting logistic map [114],
i.e., a logistic map with a time-varying control parameter. Thus, the generalized Lorenz
model with time-varying parameters can be applied to illustrate the transition between
regular and chaotic solutions.

The Lorenz 1963 model revealed not only SDIC (i.e., chaos) but also the intriguing
discovery of fractal geometry within its solution (Lorenz 1963a, 1993; Gleick 1987; Palmer
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2009 [115]; Emanuel 2011 [116]; Feldman 2012 [117]). Fractals represent geometric objects
that exhibit self-similarity. Various techniques exist for calculating fractal dimensions,
employing diverse mathematical definitions and types of fractal dimensions (Grassberger
and Procaccia 1983 [118]; Nese et al., 1987 [119]; Ruelle 1989 [120]; Zeng et al., 1992 [121]).
One such measure is the Kaplan–Yorke dimension (Kaplan and Yorke 1987 [122]), which
requires the computation of Lyapunov exponents (Wolf et al., 1985 [123]; Shen 2014 [124]).
Consequently, these dimensions are influenced by system parameters, such as the Rayleigh
parameter. By considering typical parameter values (e.g., Shen 2014 and 2015 [125]),
the fractal dimension of the Lorenz 1963 model was determined to be 2.06, indicating
a dependence amongst the three selected Fourier models. The five-, six-, and seven-
variable Lorenz models were derived by extending the nonlinear feedback loop, incor-
porating five, six, and seven Fourier modes, respectively (commonly referred to as the
five-, six-, and seven-dimensional Lorenz models, Shen 2014, 2015, and 2016 [124–126]).
These higher-dimensional Lorenz models exhibit fractal dimensions, and the 7D or higher-
dimensional Lorenz models clearly demonstrate hierarchical scale dependence (Shen 2016
and 2017 [126,127]).

2.1.6. Error Growth Analysis Using the First- and Second-Order ODEs

Throughout his entire career, Lorenz employed the logistic differential equation (e.g.,
Equation (A3) in Appendix B) in order to examine errors, which became known as the
Lorenz error growth model (Lorenz 1969a [21], 1982 [27]; Nicolis 1992 [128], Zhang et al.
(2019) [129]). This equation is a first-order ODE containing a quadratic nonlinear term (e.g.,
X2, with X representing a variable). Lorenz (1969a) provided explanations for this nonlinear
term and referred to his assumption as the quadratic hypothesis. While his analogue
approach resulted in a doubling time of 8 days (Lorenz 1969a), the logistic ODE yielded
an estimated doubling time of 2.5 days. To account for the disparities, he substituted the
quadratic term (X2) with a cubic term (X3), which produced a different doubling time of
5 days. However, Lorenz remained cautious and acknowledged that the choice of the cubic
term had less justification. In fact, later, Lorenz (1982a) suggested that results with the
quadratic hypothesis are “reasonable but not readily verifiable”. Apart from discrepancies
arising from different nonlinear terms (such as quadratic and cubic terms), variations can
also emerge when applying different types of ODEs (with the same initial growth rate),
including first and second-order ODEs.

For instance, whilst incorporating nonlinearity within a single first-order ODE can
generate new equilibrium points, first-order ODEs can only exhibit a “monotonic” evolution
between successive equilibrium points (Alligood et al., 1996 [130]; Meiss 2007 [131]; Strogatz
2015 [132]). The classical logistic ODE cannot reveal both quasi-exponentially growing
and decaying errors reported using the analogue approach in Lorenz (1969b). In contrast,
introducing nonlinearity within a single second-order ODE can yield different outcomes,
leading to homoclinic orbits and/or oscillatory solutions. The X (or Z) component of
the non-dissipative Lorenz 1963 model is, indeed, a second-order ODE with a cubic (or
quadratic) nonlinear term.

Recent studies have documented differences in error representation between first-order
and second-order ODEs using the linear system (such as the logistic equation without the
quadratic term), the logistic equation (i.e., the Lorenz error growth model), and the KdV-SIR
equation, which is a second-order ODE with a cubic nonlinear term (Paxson and Shen 2022
and 2023 [109,133]). Mathematically, the KdV-SIR equation is identical to the Z component
of the non-dissipative Lorenz 1963 model and the Kortewegde Vries (KdV) equation in the
traveling wave coordinate; it represents the epidemic SIR model under a weakly nonlinear
assumption. The classical SIR model, proposed by Kermack and McKendrick (1927) [134],
describes the evolution of susceptible (S), infected (I), and recovered (R) individuals. Using
real-world models, the presence of oscillatory root-mean-square averaged forecast errors in
ensemble runs was previously reported when oscillatory solutions prevailed over specific
regions or time periods (Liu et al., 2009 [135]). Shen et al. (2010) [136] documented oscilla-
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tory correlation coefficients in 30-day simulations of multiple African easterly waves using
a global mesoscale model (Shen et al., 2006a, b, [137,138]).

2.2. A Review of Butterfly Effects within Lorenz Models

Over the past five decades, various types of butterfly effects (BEs) have impacted
our lives in direct or indirect ways. However, misunderstandings and misinterpretations
of these effects are prevalent. In order to provide clarity and to support the goals of the
Special Issue, Shen et al. (2022b) [139] define and describe the three major kinds of BEs: the
sensitive dependence on initial conditions (SDIC), the ability of small disturbances to create
large-scale circulation, and the hypothetical role of small-scale processes and/or instability
in contributing to finite predictability [140]. These three kinds of BEs are referred to as BE1,
BE2, and BE3, respectively (see Table A1 in Appendix C). In order to prevent inaccurate
generalizations, understanding the physical source of energy through a brief exploration
can aid in the appropriate application of related discoveries. One of the major limitations
of a linear model is that its instability remains unchanged over time.

The following folklore has been a popular analogy for SDIC (i.e., the BE1) (e.g., [3,141]):

For want of a nail, the shoe was lost.
For want of a shoe, the horse was lost.
For want of a horse, the rider was lost.
For want of a rider, the battle was lost.
For want of a battle, the kingdom was lost.
And all for the want of a horseshoe nail.

As illustrated by Shen et al., 2022b [139], such an analogy is not accurate (e.g., Lorenz
2008 [142].) because the verse does not indicate boundedness.

2.3. A Review of Lorenz’s Perspective on the Predictability Limit

In relation to the origin of the inherent limit to predictability in the atmosphere (e.g.,
Charney et al. [143], GARP 1969 [144], Lorenz 1969a, b, c, d, e, 1982a, b, 1984b, 1985,
1993, and 1996 [145–148]; Smagorinsky (1969) [149]; Lighthill 1986 [150]; Lewis 2005 [30];
Rotunno and Synder 2008 [151]; Durran and Gingrich 2014 [152]; Reeve 2014 [153]; and
Zhang et al., 2019 [129]), a recent literature review was conducted by Shen et al., 2023 [154]
to present the following perspective as proposed by Lorenz:

A. The Lorenz 1963 model qualitatively revealed the essence of finite predictability within
a chaotic system, such as the atmosphere. However, the Lorenz 1963 model did not
determine a precise limit for atmospheric predictability.

B. In the 1960s, using real-world models, the two-week predictability limit was originally
estimated based on a doubling time of 5 days. Since then, this finding has been
documented in Charney et al. (1966) [143] and has become a consensus.

Further examination of predictability within the Lorenz 1963 and 1969 models was
carried out by Shen et al. (2022a), with a summary provided in Section 3.

3. Overview of the Published Papers

Our summary of the papers published in the Special Issue covers four topics: (A) butterfly
effects and sensitivities, (B) atmospheric dynamics and the application of theoretical models,
(C) predictability and prediction, and (D) computational and machine learning methods.

3.1. (A) Butterfly Effects and Sensitivities

Saiki and Yorke (2023) [155] challenged the notion that a positive Lyapunov exponent is
a necessary condition for the occurrence of a butterfly effect, which is defined as temporary
exponential growth resulting from a small perturbation. A positive Lyapunov exponent
refers to the rate at which two infinitesimally close trajectories diverge from each other
(Wolf et al., 1985 [123]; Shen 2014 [124]). Using simple linear map models, the paper
demonstrated that a butterfly effect can occur even without chaos or a positive Lyapunov
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exponent. Specifically, the authors examined a 24-dimensional version of the map, which
exhibits a significant butterfly effect despite having a Lyapunov exponent of 0.

The paper introduced a linear “infected mosquito” model to illustrate how off-diagonal
matrix entries can contribute to a finite-time growth rate. The authors suggested that the
degree of instability in a system can be better characterized by its finite-time growth rate,
which takes into account the impact of off-diagonal matrix entries. The study’s findings
indicated that in higher-dimensional systems, off-diagonal matrix entries may have a more
significant impact on a system’s behavior than Lyapunov exponents. The paper concluded
that understanding the dynamics of simpler, non-meteorological models can shed light
on additional aspects of the butterfly effect. By focusing on the finite-time growth rate,
valuable insights into a system’s behavior can be gained, even in linear systems that lack
chaos or positive Lyapunov exponents.

The study by Chou and Wang (2023) [156] investigated the sensitivity of the ventilation
coefficient parameterization to the life span of a simulated storm. The authors modified
the parameterization of the ventilation coefficient for different precipitation particles,
such as rain, snow, and hail, and compared the results to their previous study where the
ventilation effect of precipitation particles was either halved or doubled as a whole. The
results indicated that changing the ventilation coefficient of rain, snow, or hail categories
leads to different storm evolution paths. It was found that reducing the ventilation effect
of rain leads to quick dissipation, whereas enhancing the ventilation effect of rain or
snow/hail leads to the development of multicellular storms. The study additionally
demonstrated the impact of changes in cloud microphysical parameterization on larger-
scale dynamical processes.

3.2. (B) Atmospheric Dynamics and the Application of Theoretical Models

The study of Lewis and Lakshmivarahan (2022) [17] focused on the challenge of data
assimilation in chaotic and non-chaotic regimes, specifically the placement of observa-
tions to induce convexity of the cost function in the space of control. The authors used
Saltzman’s spectral model of convection, which has both chaotic and non-chaotic regimes
controlled by two parameters, to examine this problem. They simplified the problem by
stripping the seven-variable constraint to a three-variable constraint and used the forecast
sensitivity method (FSM) to deliver sensitivities within the placement. The authors used
the observability Gramian to locate observations at places that force the Gramian positive
definite, and the locations were chosen such that the condition number of VˆT V was small
and guaranteed convexity in the vicinity of the cost function minimum. Four numerical
experiments were executed, and the results were compared with the structure of the cost
function independently determined through arduous computation over a wide range of
the two non-dimensional numbers. The authors reported good results based on a reduction
in the cost function value and a comparison with the cost function structure.

Shen et al. (2022a) [157] compared similarities and differences between the Lorenz
1963 and 1969 models, both of which suggested finite predictability. The two models
represent different physical systems—one for convection and the other for barotropic
vorticity—and have different mathematical complexities. The Lorenz 1963 model is limited
scale and nonlinear, while the Lorenz 1969 model is closure based, physically multiscale,
mathematically linear, and numerically ill-conditioned.

The authors highlighted that the existence of a saddle point at the origin is a common
feature that produces instability in both systems. Within the chaotic regime of the 1963
nonlinear model, unstable growth is constrained by nonlinearity and dissipation, leading
to time-varying growth rates along an orbit, and a dependence of finite predictability on
initial conditions. In comparison, within the 1969 linear model, multiple unstable modes at
various growth rates appear, and the growth of a specific unstable mode is constrained by
imposing a saturation assumption, also leading to a time-varying system growth rate.

Shen et al. (2022a) concluded that while both the Lorenz 1963 model with SDIC and
the Lorenz 1969 model with ill-conditioning have been collectively or separately applied
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to qualitatively reveal the nature of finite predictability in the weather and climate, only
single-type solutions were examined. Moreover, the 1969 system easily captures numerical
instability. Thus, an estimate of the predictability limit using either of the models, with or
without additional assumptions (e.g., saturation), should be interpreted with caution and
should not be generalized as an upper limit for atmospheric predictability.

Zeng (2023) [158] investigated the interaction between tropical clouds and radiation
and its connection to atmospheric instability and oscillations. He used a very low-order
system to derive criteria for instability and explained distinct timescales observed in atmo-
spheric oscillations and suggested that the instability of boundary layer quasi-equilibrium
leads to the quasi-two-day oscillation, that the instability of radiative-convective equilib-
rium leads to the Madden–Julian oscillation (MJO), and that the instability of radiative-
convective flux equilibrium leads to the El Niño–southern oscillation. The paper introduced
a novel cloud parameterization for weather and climate models and suggested that models
can predict oscillations if they properly represent cirrus clouds and convective downdrafts
within the tropics.

His low-order system revealed that the atmosphere exhibits predictability through
limit cycles when its parameters are understood. Conversely, when parameters slowly vary
with time, bifurcations associated with the limit cycle may introduce a new level of uncer-
tainty in atmospheric predictability. The incorporation of a conceptual model featuring
limit cycles and bifurcations, as a particular instance, aligns with the notion of co-existing
determinism and chaos within the atmosphere (Shen et al., 2021a; Shen et al., 2022c).

3.3. (C) Predictability and Predictions

By extending the studies of Shen (2021a, b) [8,9], Shen et al. (2022c) [159] further
explored the dual nature of chaos and order in weather and climate using the Lorenz
1963 and 1969 models. While a conventional view in previous research has shown that the
weather and climate are chaotic, a revised view was previously proposed to suggest that the
atmosphere possesses both chaos and order with distinct predictability. The revised view
is supported by attractor co-existence, which suggests limited predictability for chaotic
solutions and unlimited predictability for non-chaotic solutions. Real-world examples
of non-chaotic weather systems were also provided to support the revised view. The
concept of attractor co-existence (to be specific, the first kind of attractor co-existence) was
first documented using the Lorenz 1963 model by Yorke and Yorke (1979) [160]. Using
kayaking and skiing as analogies, the paper discussed multistability and monostability,
respectively, for attractor co-existence and single-type solutions. The paper also emphasized
the predictable nature of recurrence for slowly varying solutions and the less predictable
or unpredictable nature of emerging solutions. The paper concluded, with a refined view,
that the atmosphere possesses chaos and order, including emerging organized systems
from favorite environmental conditions (such as tornadoes) and time-varying forcing from
recurrent seasons.

In “Predictability and Predictions”, Anthes (2022) [161] described his experience with
predictability theory and weather prediction. The essay discussed various historical figures
who attempted to predict the future through occult methods, as well as more modern
attempts to predict complex systems based on mathematics and physics. The author
described his early experiences as a meteorologist working at the then U.S. Weather Bureau,
where he noticed some predictability in thunderstorms initiated by daytime heating over the
Blue Ridge Mountains in Virginia, propagating eastward toward the coast. He then became
interested in numerical simulations and developed a simple nonlinear one-dimensional
gravity wave model while studying at the University of Wisconsin. Later, he worked at the
National Hurricane Research Laboratory in Miami, where he developed the first nonlinear,
baroclinic, three-dimensional model of tropical cyclones.

The essay also discussed Lorenz’s classical 1963 paper, which laid the theoretical
foundation for modern predictability theory for nonlinear fluid dynamics. Lorenz’s work
has been applied conceptually to numerical prediction of the atmosphere and oceans, as
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well as to other complex systems, including human societies. The author noted that the
lack of infinite predictability of chaotic nonlinear systems has come to be known as the
“butterfly effect”.

Finally, the essay touched on the author’s friendship with Fred Sanders, a leading
synoptic meteorologist from MIT. They sailed together from Miami to Marblehead, Mas-
sachusetts, discussing weather predictability, including Laplace’s demon which argued for
the possibility of unlimited prediction.

The essay concluded by noting that while predictability theory and predictions have
made great strides in recent decades, the author believed that there will always be an
element of uncertainty in weather prediction and other complex systems.

Wang et al. (2022) [162] presented a study that used the Cloud-Resolving Storm
Simulator (CReSS) to forecast the rainfall of three landfalling typhoons in the Philippines:
Mangkhut (2018), Koppu (2015), and Melor (2015). By applying a time-lagged strategy for
ensemble simulations, the study verified the track and quantitative precipitation forecasts
(QPFs) against observations at 56 rain-gauge sites at seven thresholds up to 500 mm. The
predictability of rainfall was found to be highest for Koppu, followed by Melor and the
lowest for Mangkhut. The study found that at lead times of 3–7 days before typhoon
landfall in the Philippines, there is a fair chance to produce decent QPFs with useful
information on rainfall scenarios for early preparation. The QPF results were found to be
encouraging and comparable to the skill level for typhoon rainfall in Taiwan.

3.4. (D) Computational and Machine Learning Methods

Tseng (2022) [163] presented a study that compared traditional principal component
analysis (PCA) and isometric feature mapping (ISOMAP) for the classification and detection
of El Niño and La Niña events based on sea surface temperature (SST) data. ISOMAP is a
nonlinear dimensionality reduction method that measures the distance between two data
points based on the geodesic distance, which more accurately reflects the actual distance
in a nonlinear space. The results indicated that the classification based on ISOMAP-
reconstructed SST data points outperformed traditional PCA-reconstructed data points
in terms of accurately differentiating between points in different events and measuring
differences amongst points in the same event. The study additionally determined that the
trajectories of the leading three temporal eigen components of the SST ISOMAP were similar
to the Lorenz 63 model within a phase space, which could have implications for tracing
NWP perturbations. The paper also included a comparison of the spatial eigenmodes
between traditional PCA and ISOMAP.
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Appendix A. The Lorenz (1960/1962) Model and the Lorenz (1996/2006) Model

For the readers’ convenience, the original mathematical symbols are used to display
the Lorenz (1960/1962) model with 12 ODEs for 12 variables, written as:

dXi
dt

= ∑
m,n

aimnXmXn + ∑
m

bimXm + ci. (A1)

In the above equation, the nonlinear terms aimnXmXn represent nonlinear advection.
The linear terms bimXm represent the effects of friction and part of the effects of heating.
The constant terms ci are only non-zero in the last six equations. For the 12 variables, 6
variables represent amplitudes of the averaged stream function, and 6 variables indicates
the amplitudes of temperature.

In comparison, the Lorenz (1996) model is written as follows:

dXk
dt

= −Xk−2Xk−1 + Xk−1Xk+1 −Xk + F, (A2)

which contains K ODEs for K variables, and F is a constant. On the right-hand side,
the nonlinear quadric terms represent advection, while the linear terms (−Xk) and F
represent thermal or mechanical damping (or dissipation) and external forcing, respectively.
Additional conditions used in Lorenz (1996) and Lorenz (2005, p 1575) are provided as
follows: for n < 1 (or n > N) Xn indicate Xn+N (or Xn−N).

Appendix B. The Logistic Map and Logistic ODE

The relationship between the logistic map and the logistic ODE is illustrated below.

dX
dτ

= rX(1−X). (A3)

Here, τ, X, and r represent the time variable, time-dependent variable, and a parameter,
respectively. Applying the Euler method, we obtain:

Xn+1 −Xn
∆τ

= rXn(1−Xn), (A4)

where ∆τ represents the time step and Xn = X(t = n∆τ), and n indicates the number of
time integrations. After defining a new variable Yn and a new parameter ρ, the following
applies:

Yn =
r∆τXn

1 + r∆τ
, (A5a)

and
ρ = 1 + r∆τ. (A5b)

Equation (A4) yields the following equation:

Yn+1 = ρYn(1− Yn). (A6)

Equation (A6) is called the logistic map, which is a discrete version of the logistic
differential equation in Equation (A3). The logistic map is a type of quadratic map, defined
by the recurrence relation:

Zn+1 = aZ2
n + bZn + c, (A7)

where a, b, and c are constant coefficients. While Lorenz (1964) applied the quadratic map
in Equation (A6), Lorenz (1969d) [145] utilized the following quadratic map:

Zn+1 = 1.64− Z2
n (A8)
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to illustrate the dependence of solutions on initial conditions. The cubic map that was
used in Lorenz 1976 can be obtained by substituting a cubic term for a quadratic term in
Equation (A6).

Appendix C. Definitions of Selected Concepts in the Special Issue

Table A1. Definitions of the selected concepts included in the Special Issue.

Name Definitions Recommendations

First kind of attractor
co-existence The co-existence of chaotic and steady-state solutions. [7–9,160]

Second kind of attractor
co-existence

The co-existence of nonlinear oscillatory and
steady-state solutions. [7–9]

Analogues Analogues are two states of the atmosphere that exhibit
resemblance to each other. [21]

Attractor
The smallest attracting point set that, itself, cannot be
decomposed into two or more subsets with distinct

basins of attraction.
[8]

Butterfly effect (BE), general

The phenomenon in that a small alteration in the state of a
dynamical system will cause subsequent states to differ

greatly from the states that would have followed without the
alteration.

[4]

BE of the first kind
(BE1) The sensitive dependence on initial conditions (SDICs). [1,4,139]

BE of the second kind (BE2) The capability of a small disturbance to create an organized
circulation at large distances. [2,4,139]

BE of the third kind (BE3)
(1) The hypothetical role of small-scale processes in con-

tributing to finite predictability;
(2) Ill-conditioning and instability.

[139,140,157]

BE in
Saiki and Yorke (2023) Instability in high-dimensional linear systems. [155]

Chaos Bounded aperiodic orbits exhibit
a sensitive dependence on ICs. [4,159]

Final state sensitivity Nearby orbits settle to one of multiple attractors for a
finite but arbitrarily long time. [82]

Intransitivity A specific type of solution lasts forever. [52,72]

Monostability The appearance of single-type solutions. [159]

Multistability A system with multistability contains more than one
bounded attractor that only depends on ICs. [159]

Quasi-periodicity
A quasi-periodic solution consists of two or more

incommensurate frequencies, the ratios of which are
irrational.

[91]

Recurrence This refers to a trajectory returning to the vicinity of its
previous location. [92,93]

Sensitive dependence
The property characterizing an orbit if most other orbits that
pass close to it at some point do not remain close to it as time

advances.
[4]

Ventilation coefficient parameterization
A parameter used in numerical models of atmospheric
convection to represent the effect of environmental wind

on convective updrafts.
[156]
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