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Abstract: With increasing computational power, the regional climate modeling community is moving
to higher resolutions of a few kilometers, named convection-permitting (CP) simulations. This
study aims to present an assessment of precipitation metrics simulated with the non-hydrostatic
regional climate model RegCM-4.7.1 at CP scale for a decade-long period (2001–2010) for Bulgaria.
The regional climate simulation at 15 km grid spacing uses ERA-Interim (0.75◦ × 0.75◦) re-analysis
as the driving data and parametrized deep convection. The kilometer-scale simulation at 3 km
horizontal grid spacing is nested into regional climate simulation using parametrized shallow con-
vection only. The CP simulation is evaluated against daily and hourly datasets available for the
selected period and is compared with the coarser resolution driving simulation. The results show
that the model represents well the spatial distribution of mean precipitation at the regional and
kilometer scale for the territory of Bulgaria. However, the CP_RegCM_3km model produces too
much precipitation over the mountains and shows the largest biases in the summer season (above
100%). At the daily scale, improvements are found in CP simulation for precipitation wet-day in-
tensity and extreme precipitation in the autumn and for wet-day frequency in the summer. At the
hourly scale, the kilometer-scale simulation improved the performance of wet-hour precipitation
intensity in all seasons compared with coarse-resolution simulation (−23% vs. −46% in MAM;
−10% vs. −37% in JJA; −47% vs. −53% in SON; −54% vs. −62% in DJF) and extreme precipita-
tion in the autumn (−7% vs. −51%) and winter (−34% vs. −58%). The representation of wet-hour
frequency was improved by CP_RegCM_3km in all seasons, except summer (−3.1% vs. −6.7% in
spring; 0.5% vs. −3.8% in autumn and −7.7% vs. −11.5% in winter).

Keywords: non-hydrostatic RegCM4; convection-permitting modeling; extreme precipitation;
frequency; intensity; regional climate modeling; Bulgaria; kilometer scale

1. Introduction

About a decade ago, the development of high-performance computing systems and re-
gional climate models (RCMs) allowed long-term, very high-resolution (1–4 km) simulations,
called “convection-permitting” (CP) simulations [1–4]. The convection-permitting regional
climate models (CP-RCMs) allow the explicit representation of deep convective processes
without the use of parametrization schemes, which is considered to be a major source of
model errors and uncertainty with regard to rainfall and related precipitation [1,5–7].

The regional climate model version 4 (RegCM4) developed at the Abdus Salam In-
ternational Centre for Theoretical Physics ICTP [3,8] has been recently upgraded with
the non-hydrostatic dynamic core based on MM5, which can be used for high-resolution
applications [3]. The non-hydrostatic RegCM contributes to several large projects at the
kilometer scale, such as the European Climate Prediction system (EUCP) [9], the Coor-
dinated Regional Climate Downscaling Experiment Flagship Pilot Studies on convective
phenomena (CORDEX-FPS) [2], and it is used by a large modeling community.

Recent studies using decade-long CP regional climate simulations show that increasing
the grid spacing reduces the present-day biases in precipitation [10,11]. The results confirm
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the improved performance of convection-permitting models compared with coarser res-
olution models in simulating important characteristics of daily and hourly precipitation
and extreme events [11]. Pichelli [12] shows the first multi-model future simulations over
the Alps. The simulations show increases in future high-impact events’ frequency and
intensity of the summer and autumn precipitation. Similar studies highlighting the bene-
ficial impact of removing any parameterization of convection processes are described in
Capecchi [13], Giordani [14], Adinolfi [15], and Fosser [16]. Motivated by these results, we
use the non-hydrostatic RegCM4 model for the territory of Bulgaria. The performance of
the RegCM4 model in capturing different precipitation statistics for Bulgaria has not been
extensively investigated [17,18]. The innovative aspect of the study is that, as far as we
know, no previous study exists with regard to convection-permitting climate simulations
for the Bulgarian domain.

The aim of this study is to present an initial assessment of precipitation simulated
with the non-hydrostatic regional climate model RegCM (version 4.7.1, released in 2019) at
a regional and convection-permitting (CP) scale for a decade-long period (2001–2010) for
Bulgaria. The period was chosen following the CORDEX-FPS protocol [2].

The structure of the manuscript is as follows: Section 2 presents the model, data, and
methodology of this study; Section 3 presents the results of the assessment of precipitation
mean, intensity, frequency, and extreme precipitation; and Section 4 provides a discussion
and conclusion.

2. Model, Data, and Methods

Bulgaria (see Figure 1) is located in southeastern Europe and exhibits a wide range
of climatic conditions due to its geographical position between the Mediterranean and
continental climatic regimes. The country’s terrain is characterized by mountains, valleys,
and coastal areas, presenting a challenging environment for climate models to accurately
simulate local-scale weather phenomena and associated precipitation patterns. Proper
representation of precipitation is of primary importance for various sectors, including
agriculture, water resources management, and disaster preparedness, making it crucial
to evaluate the capability of climate models to reproduce precipitation characteristics for
Bulgaria in the present and future.
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and nested domain with 3 km grid size (CP_RegCM_3km) (19.91° E–30.09° E, 39.76° N–45.32° N) 
after removing the buffer zone (red lines) from 15 and 30 grid points from each side, respectively. 
The orography is shown in (m). 
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simulation. For both simulations, CP and regional scale, we use the year 2000 as a spin-
up, and this year is removed from the analysis. We focus on different precipitation 
statistics, such as seasonal mean daily precipitation, seasonal wet-day and -hour 
intensity, seasonal wet-day and -hour frequency, and seasonal extreme precipitation 
(99th percentile of all daily and 99.9th percentile of all hourly precipitation events). The 
simulations are carried out on the Bulgarian European High Performance Computing 
Joint Undertaking (EuroHPC JU) supercomputer Discoverer, located in Sofia Tech Park 
in Sofia, Bulgaria (https://sofiatech.bg/en/petascale-supercomputer/, accessed on 15 April 
2022). Using 4 nodes and 128 computing cores of the Discoverer supercomputer, 1-
month simulation is performed in approximately 5.6 h. 

In this study, both 10-year simulations (RegCM_15km and CP_RegCM_3km) use 
the newly developed non-hydrostatic dynamic core [3] of the RegCM4 [8] model, CCSM 
radiation [20], modified Holtslag planetary boundary scheme [21], SUBEX microphysics 
scheme [22], land surface scheme BATS [23], and Zeng ocean fluxes scheme [24]. For the 
intermediate simulation, we use the Kain–Fritsch cumulus convection scheme [25,26]. 
For the convection-permitting (CP) simulations, we use the MM5 shallow cumulus 
scheme [3,27]. This configuration was chosen in a previous study [28], showing the best 
results for the studied territory. The ERA-Interim re-analysis [19] is used to provide the 
initial and lateral boundary conditions for the intermediate run at 15 km grid spacing 
updated every 6 h covering the Balkan Peninsula region, which, on the other hand, 
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the buffer zone (red lines) from 15 and 30 grid points from each side, respectively. The orography is
shown in (m).
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The CP simulation (780 km × 600 km) with a horizontal grid spacing of 3 km
(CP_RegCM_3km) is nested into regional climate simulation at 15 km grid spacing
(RegCM_15km) driven by the ERA-Interim [19] re-analysis (0.75◦ × 0.75◦) (Figure 1).
RegCM_15km simulation uses parametrized deep convection, while CP_RegCM_3km
uses parametrized shallow convection only. The kilometer-scale simulation is evaluated
against the daily (MESCAN-SURFEX (5.5 km × 5.5 km), E-OBS v25.e (0.1◦ × 0.1◦), CHIRPS
(0.05◦ × 0.05◦)) and hourly (PERSIAN PDIR-Now (0.04◦ × 0.04◦)) datasets available for
the period 2001–2010 and is compared with the coarser resolution driving simulation.
For both simulations, CP and regional scale, we use the year 2000 as a spin-up, and
this year is removed from the analysis. We focus on different precipitation statistics,
such as seasonal mean daily precipitation, seasonal wet-day and -hour intensity, seasonal
wet-day and -hour frequency, and seasonal extreme precipitation (99th percentile of all
daily and 99.9th percentile of all hourly precipitation events). The simulations are car-
ried out on the Bulgarian European High Performance Computing Joint Undertaking
(EuroHPC JU) supercomputer Discoverer, located in Sofia Tech Park in Sofia, Bulgaria
(https://sofiatech.bg/en/petascale-supercomputer/, accessed on 15 April 2022). Using
4 nodes and 128 computing cores of the Discoverer supercomputer, 1-month simulation is
performed in approximately 5.6 h.

In this study, both 10-year simulations (RegCM_15km and CP_RegCM_3km) use
the newly developed non-hydrostatic dynamic core [3] of the RegCM4 [8] model, CCSM
radiation [20], modified Holtslag planetary boundary scheme [21], SUBEX microphysics
scheme [22], land surface scheme BATS [23], and Zeng ocean fluxes scheme [24]. For the in-
termediate simulation, we use the Kain–Fritsch cumulus convection scheme [25,26]. For the
convection-permitting (CP) simulations, we use the MM5 shallow cumulus scheme [3,27].
This configuration was chosen in a previous study [28], showing the best results for the
studied territory. The ERA-Interim re-analysis [19] is used to provide the initial and lateral
boundary conditions for the intermediate run at 15 km grid spacing updated every 6 h
covering the Balkan Peninsula region, which, on the other hand, provides the initial and
lateral boundary conditions for the convection-permitting run at 3 km grid spacing.

To assess the model’s ability to produce precipitation climatology, several statistical
indices are used (defined in Table 1). The indices are calculated as seasonal values for
all seasons: spring (March–April–May, MAM), summer (June–July–August, JJA), autumn
(September–October–November, SON), and winter (December–January–February, DJF).
The observational datasets are remapped using the distance weighted interpolation method
onto a 3 km grid for the evaluation of the kilometer-scale CP_RegCM_3km simulation and
onto a 15 km grid for the evaluation of the RegCM_15km simulation.

Table 1. Statistical indices for daily and hourly precipitation used in this study.

Statistical Indices Definition Units

Mean precipitation Daily mean precipitation. mm/day

Frequency

Wet-day/hour frequency,
defined as a percentage of the number of
wet days/hours per season; wet day/hour
is a day/hour with precipitation
≥ 1 mm/0.1 mm.

(%)

Intensity
Wet-day/hour intensity,
defined as a day/hour with precipitation
≥1 mm/0.1 mm.

mm/day; mm/hour

Heavy precipitation
(p99/p99.9)

P99 and P99.9 percentiles,
defined as the 99th/99.9th percentile of all
daily/hourly precipitation events;
percentiles are calculated using all events
(wet and dry) following Schär [29].

mm/day; mm/hour

Mean bias RegCM—Observation. mm/day; mm/hour and (%)

To analyze the spatial properties of precipitation in the models (CP_RegCM_3km
and RegCM_15km), we use the following precipitation indices: mean daily precipitation
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amount, mean wet-day/hour precipitation intensity, wet-day/hour frequency, 99th per-
centiles of all daily (wet and dry) precipitation events, and 99.9th percentiles of all hourly
(wet and dry) precipitation events. A wet day is defined as a day with precipitation larger
than or equal to 1 mm/day, while a wet hour is defined as an hour with precipitation larger
than or equal to 0.1 mm/hour (see Table 1).

A key issue when validating kilometer-scale simulation is the availability of high-
resolution and quality datasets. Precipitation measurements come from different sources,
such as in situ rain gauges, radars, and satellites. In our study, we use four different
observational datasets based on different sources available for the study period 2001–2010
(Table 2) to assess daily and hourly precipitation: E-OBS v.25e—station-based observational
ensemble mean daily precipitation data available at 0.1◦ grid spacing; CHIRPS—daily
dataset based on stations and satellites available at 0.05◦ spatial resolution; UERRA—daily
re-analysis from the MESCAN-SURFEX system (5.5 × 5.5 km); PERSIAN-PDIR-Now (PER-
SIANN Dynamic Infrared–Rain Rate)—quasi-global, infrared-based precipitation estimates
available at 0.04◦ × 0.04◦ spatial resolution from satellites for assessing hourly precipitation
metrics. Hereafter, we will refer to these datasets as E-OBS, CHIRPS, MESCAN, and PDIR
for short.

Table 2. Different observational datasets used in this study.

Name/Availability Spatial
Resolution

Temporal
Resolution

Data Source
and Region Reference

E-OBS v.25e
(1950–2021) 0.1◦ × 0.1◦ daily Station (Europe) [30]

CHIRPS
(1981–now) 0.05◦ × 0.05◦ daily Station+Satellite

(Global) [31]

MESCAN-SURFEX
(1961–2019) 5.5 × 5.5 km daily

Surface
Re-Analysis
(Europe)

[32,33]

PERSIAN-PDIR-Now
(March 2000–now) 0.04◦ × 0.04◦ hourly Satellite (Global) [34]

When dealing with observations, we should consider the uncertainties associated
with the different types of sensors for precipitation measurement. For in situ data, the
uncertainties are mostly related to the station’s density, for example, low density over
mountains, the choice of interpolation technique—which can cause underestimation of
high-precipitation intensities—problems with gauge under-catch in windy conditions [35],
and others. Radar measurements, on the other hand, present masking-effect problems
in high-latitude areas, while in the case of satellite data, the precipitation measurements
can be affected by large uncertainties linked to physical limitations and the measurement
techniques and algorithms used to derive precipitation from interferometry data [36–38].
This is the reason why different observational datasets can have different performances in
terms of precipitation climatology and can differ significantly, especially over terrains with
low data availability [35].

3. Results
3.1. Daily Precipitation Metrics

Figure 2 compares the spatial distribution of the analyzed seasonal mean precipitation
indices based on observations (CHIRPS (first column), E-OBS (second column), MESCAN
(third column)) and simulations (CP_RegCM_3km (fourth column) and RegCM_15km (last
column)) for the MAM (Figure 2a) and JJA (Figure 2b) seasons.

In the spring (Figure 2a), CP_RegCM_3km overestimates all indices, especially over
the mountains. As we can see from Figure 2, observations differ from each other, especially
CHIRPS wet-day intensity. CHIRPS shows an overestimation of precipitation wet-day
intensity compared with MESCAN and E-OBS datasets and an underestimation of wet-
day frequency. E-OBS underestimates mean and heavy precipitation (p99) compared
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with CHIRPS and MESCAN. Overall, RegCM_15km and CP_RegCM_3km capture the
spatial distribution of mean, intensity, frequency, and heavy precipitation (p99); however,
CP_RegCM_3km overestimates all indices, especially over the topography.

In the summer (Figure 2b), CP_RegCM_3km shows a significant overestimation of
heavy precipitation (p99), especially over the mountains. CHIRPS overestimates wet-day
intensity and p99 compared with E-OBS and MESCAN. Compared with the MESCAN
dataset, both models show a more realistic distribution of mean daily precipitation and
wet-day frequency than E-OBS and CHIRPS. CHIRPS underestimates wet-day frequency
and overestimates wet-day intensity and heavy precipitation (p99) compared with the
E-OBS and MESCAN datasets.

Figure 3 compares the spatial distribution of the analyzed seasonal mean precipitation
indices based on observations (CHIRPS (first column), E-OBS (second column), MESCAN
(third column)) and simulations (CP_RegCM_3km (fourth column) and RegCM_15km (last
column)) for the SON (Figure 3a) and DJF (Figure 3b) seasons.

In the autumn season (Figure 3a), the models and observations show similar spa-
tial distribution of daily mean precipitation. However, CP_RegCM_3km overestimates
precipitation over the mountains, while RegCM_15km underestimates it compared with
observations. CP_RegCM3km and MESCAN show similar spatial distribution of wet-day
intensity; RegCM_15km underestimates wet-day precipitation intensity compared with
the three observations. CHIRPS overestimates wet-day intensity and underestimates wet-
day frequency compared with E-OBS and MESCAN. Both models overestimate wet-day
frequency; CP simulation overestimates heavy precipitation (p99), especially over the
mountains, while RegCM_15km underestimates extreme precipitation (p99) compared
with MESCAN and CHIRPS.
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Figure 2. Spatial distribution of analyzed indices. From top to bottom for each panel: mean daily pre-
cipitation, wet-day precipitation intensity, wet-day precipitation frequency, and heavy precipitation,
defined as the 99th percentile of all daily precipitation events based on observations (CHIRPS (first
column), E-OBS (second column), MESCAN-SURFEX (third column)) and simulations (CP_RegCM_3
km (fourth column) and RegCM_15 km (last column)) for the spring, MAM (a) and summer, JJA (b).
The domain grid size is 19.91◦ E–30.09◦ E, 39.76◦ N–45.32◦ N.

In the winter season (Figure 3b), CP_RegCM_3km overestimates all indices over the
mountains. RegCM_15km overestimates wet-day frequency over the mountains compared
with the three observational datasets. CP simulation shows a similar spatial distribution of
wet-day intensity compared with the CHIRPS and MESCAN datasets. In the case of heavy
precipitation (p99), RegCM_15km and E-OBS overestimate it, MESCAN underestimates it,
and the results are similar to the CHIRPS dataset, while kilometer-scale simulations show
similar spatial distribution with MESCAN data, but MESCAN overestimates p99 over high
peaks in the mountains.

The comparison among the datasets confirms that the uncertainty associated with
precipitation observational data can be large, especially when dealing with precipitation
intensity and extremes. The CHIRPS dataset, for example, shows a significant overes-
timation of wet-day precipitation intensity in JJA (Figure 2b) and SON (Figure 3a) and
heavy precipitation (p99) in the summer (Figure 2b) compared with other observational
datasets and also an underestimation of wet-day precipitation frequency in these seasons
(Figures 2b and 3a). On the other hand, E-OBS underestimates heavy precipitation (p99) in
all seasons compared with other observational datasets.

For additional information, Figures 4–6 show the spatial distribution of seasonal
mean biases of daily mean precipitation (first row), wet-day precipitation intensity (second
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row), wet-day precipitation frequency (third row), and heavy precipitation, defined as the
99th percentile of all daily precipitation events (fourth row), between CP_RegCM_3km
and E-OBS (Figure 4a), RegCM_15km and E-OBS (Figure 4b), CP_RegCM_3km and
CHIRPS (Figure 5a), RegCM_15km and CHIRPS (Figure 5b), CP_RegCM_3km and MES-
CAN (Figure 6a), and RegCM_15km and MESCAN (Figure 6b). From left to right, the
seasons are defined as spring (MAM), summer (JJA), autumn (SON), and winter (DJF) for
each panel.

Compared with the E-OBS dataset (Figure 4a,b and Table 3), the biggest biases in the
kilometer-scale simulation (Figure 4a) were found in JJA for wet-day intensity and heavy
precipitation (p99) and over the mountains for all indices. RegCM_15km underestimates
wet-day intensity in all seasons (Figure 4b), while CP_RegCM_3km overestimates intensity
in MAM and JJA and over the mountains in SON and DJF. Compared with the E-OBS data,
CP_RegCM_3km shows a large overestimation of extreme precipitation (p99), especially
in the spring and summer (above 100%). Compared with the E-OBS data, we found im-
provements in kilometer-scale simulation for summer wet-day frequency (9.8% vs. 11.6%)
and for autumn wet-day intensity (1.3% vs. 22%) compared with the coarse-resolution
simulation (Table 3).

Compared with the CHIRPS dataset (Figure 5a,b and Table 3), we found improve-
ments in the kilometer-scale simulation (Figure 5a) for precipitation intensity in all sea-
sons (−1.2% vs. −35% in MAM; −24% vs. −56% in JJA; −37% vs. −52% in SON; and
−8% vs. −31% in DJF) in summer wet-day frequency (16.9% vs. 18.2%) and in autumn
extreme precipitation (p99) (15% vs. −35%). We found different behaviors when simu-
lating mean precipitation in SON and DJF, where CP_RegCM_3km overestimated and
RegCM_15km underestimated the daily mean precipitation. Additionally, when simulat-
ing heavy precipitation, CP_RegCM_3km overestimated heavy precipitation (p99) in all
seasons, especially in the summer and spring, while RegCM_15km underestimated the p99,
especially in the summer and autumn (Figure 5b). Both models overestimated wet-day
frequency compared with the CHIRPS data.
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Figure 4. Spatial maps of seasonal mean biases of daily mean precipitation (first row), wet−day
precipitation intensity (second row), wet−day precipitation frequency (third row), and heavy pre-
cipitation, defined as the 99th percentile of all daily precipitation events (fourth row), between
(a) CP_RegCM_3 km and E-OBS; and (b) RegCM_15 km and E−OBS. From left to right, for each
panel, the seasons are defined as spring (MAM), summer (JJA), autumn (SON), and winter (DJF). The
domain grid size is 19.91◦ E–30.09◦ E, 39.76◦ N–45.32◦ N.
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DJF, while RegCM_15km underestimates wet-day intensity in all seasons. Compared 
with the MESCAN dataset, we found improvements in CP simulation for wet-day 
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Figure 6. Same as Figure 4, but between (a) CP_RegCM_3 km and MESCAN; and (b) RegCM_15 km
and MESCAN. The domain grid size is 19.91◦ E–30.09◦ E, 39.76◦ N–45.32◦ N.

Table 3. Area average mean and biases for daily precipitation metrics. The improvements in CP
simulation are marked in bold.

DAILY CHIRPS MESCAN E−OBS RCM3 RCM15 RCM3−
CHIRPS

RCM15−
CHIRPS

RCM3−
MES-
CAN

RCM15
−MESCAN

RCM3−
E−OBS

RCM15−
E−OBS

MEAN PRECIPITATION mm/d
MAM 1.9 1.9 1.5 3.2 1.8 1.3 −0.1 1.3 −0.1 1.9 0.4
JJA 1.8 2.3 1.6 3.5 2.1 1.7 0.3 1.2 −0.2 2.2 0.7
SON 2 2.1 1.8 2.5 1.5 0.5 −0.5 0.4 −0.6 0.8 −0.3
DJF 2 1.9 1.6 2.5 1.7 0.5 −0.4 0.6 −0.3 1.0 0.1
INTENSITY mm/d
MAM 8.6 6.3 6 8.4 5.6 −0.1 −3.0 2.1 −0.7 2.6 −0.3
JJA 15.4 7.4 7.8 11.7 6.9 −3.7 −8.6 4.3 −0.5 4.2 −0.9
SON 12.5 8.2 7.9 8 6.1 −4.6 −6.5 −0.3 −2.1 0.1 −1.7
DJF 7.4 6.6 5.9 6.8 5.1 −0.6 −2.3 0.2 −1.5 0.9 −0.8
FREQUENCY %
MAM 21.6 28.3 25.2 35.1 29.3 13.8 8.1 6.8 1.2 11.9 5.9
JJA 11.4 29.4 20.1 28 29.1 16.9 18.2 −1.4 −0.1 9.8 11.6
SON 16.2 24.7 23.1 29.6 22.3 13.6 6.1 4.9 −2.5 8.2 0.2
DJF 27.3 27.8 27.8 34.7 30.5 7.5 3.3 6.8 2.6 8.1 3.4
HEAVY PRECIPITATION P99 mm/d
MAM 22.1 21.5 15.0 39.0 20.4 17.2 −1.5 17.5 −1.0 26.3 6.5
JJA 33.6 26.1 18.2 55.0 24.7 22.0 −8.5 28.9 −1.3 40.5 8.1
SON 32.0 27.7 20.3 36.5 20.8 4.8 −11.2 8.8 −6.9 17.6 1.2
DJF 20.1 22.6 14.8 29.2 18.4 9.1 −1.8 6.7 −4.2 15.0 3.6

Compared with the MESCAN dataset (Figure 6a,b and Table 3), the kilometer-scale
simulation shows wet biases for mean daily precipitation (68.4% in MAM; 52.2% in JJA;
19% in SON; 31.6% in DJF) and p99 (81.4% in MAM; 110.4% in JJA; 32.4% in SON; and
29.6% in DJF) in all seasons (Figure 6a), while the coarse-scale simulation shows dry
biases for mean and heavy precipitation in all seasons (Figure 6b), except in the moun-
tains. CP_RegCM_3km shows significant overestimation of wet-day intensity and heavy
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precipitation (p99), especially in the summer, and wet-day frequency in SON and DJF,
while RegCM_15km underestimates wet-day intensity in all seasons. Compared with the
MESCAN dataset, we found improvements in CP simulation for wet-day intensity in the
autumn (−3.7% vs. −26%) and winter (3% vs. 23%) and mean precipitation in the autumn
(19% vs. −29%) (Table 3). The overestimation of precipitation in CP_RegCM_3km is at least
partly reduced, accounting for the underestimation of precipitation in observations due to
gauge under-catch and the unrepresentative height distribution of the rain gauges. The
overestimation of heavy precipitation intensity has also been reported in some previous
studies and may also be due to the fact that the models do not fully resolve convection [6].

The results for daily precipitation indices for all seasons are summarized in Table 3 as
area-averaged means and biases. The improvements in the kilometer-scale simulation are
marked in bold.

3.2. Hourly Precipitation Metrics

To analyze the spatial properties of hourly precipitation in the models, we use the
following precipitation metrics (Table 2): wet-hour precipitation intensity, wet-hour fre-
quency, and 99.9th percentiles of all (wet and dry) hourly precipitation events. A wet hour
is defined as an hour with precipitation larger than or equal to 0.1 mm/hour. For assessing
the precipitation metrics, we use satellite data PDIR-Now available at 0.04 degree spatial
resolution (Table 1).

In the spring (Figure 7a), CP_RegCM_3km underestimates wet-hour intensity and
overestimates wet-hour frequency and extreme precipitation p99.9, especially over the
mountains. RegCM_15km underestimates all precipitation metrics compared with the
PDIR data. In the summer (Figure 7b), CP_RegCM_3km overestimates p99.9 and wet-
hour frequency and underestimates wet-hour intensity. RegCM_15km underestimates
precipitation intensity and p99.9 and overestimates precipitation frequency compared with
the PDIR data. The weaker RegCM_15 wet-hour intensity of precipitation and higher
wet-hour frequency in the summer (Figure 7b) indicates persistent light rain, which is
consistent with previous studies [6].
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Figure 7. Spatial distribution of analyzed indices. From top to bottom for each panel: wet-hour 
precipitation intensity (mm/h), wet-hour precipitation frequency (%), and heavy precipitation 
(mm/h), defined as the 99.9th percentile of all hourly precipitation events (wet and dry) based on 
observation (PDIR-Now (0.04° × 0.04°grid spacing) (first column)) and simulations 
(CP_RegCM_3km (second column) and RegCM_15km (third column)) for the (a) MAM and (b) 
JJA seasons. The domain grid size is 19.91° E–30.09° E, 39.76° N–45.32° N. 

In the autumn (Figure 8a) and winter (Figure 8b), CP_RegCM3km and 
RegCM_15km underestimate wet-hour intensity compared with the PDIR data. CP 
simulation overestimates SON and DJF wet-hour frequency, especially over the 
mountains, and overestimates SON heavy precipitation (p99.9). RegCM_15km 
underestimates all precipitation metrics (compared with the PDIR data (last column for 
each panel)). 

Figure 7. Spatial distribution of analyzed indices. From top to bottom for each panel: wet-hour pre-
cipitation intensity (mm/h), wet-hour precipitation frequency (%), and heavy precipitation (mm/h),
defined as the 99.9th percentile of all hourly precipitation events (wet and dry) based on observation
(PDIR-Now (0.04◦ × 0.04◦grid spacing) (first column)) and simulations (CP_RegCM_3km (second
column) and RegCM_15km (third column)) for the (a) MAM and (b) JJA seasons. The domain grid
size is 19.91◦ E–30.09◦ E, 39.76◦ N–45.32◦ N.

In the autumn (Figure 8a) and winter (Figure 8b), CP_RegCM3km and RegCM_15km
underestimate wet-hour intensity compared with the PDIR data. CP simulation overesti-
mates SON and DJF wet-hour frequency, especially over the mountains, and overestimates
SON heavy precipitation (p99.9). RegCM_15km underestimates all precipitation metrics
(compared with the PDIR data (last column for each panel)).
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Figure 8. Same as Figure 7, but for (a) SON and (b) DJF. The domain grid size is 19.91° E–30.09  E, 
39.76° N–45.32° N. 
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seasons (except JJA), and dry biases for extreme precipitation (p99.9) in all seasons 
(except in the mountains in JJA) (Figure 9b). 

Compared with the PDIR data, improvements were found in kilometer-scale 
simulation for wet-hour intensity in all seasons compared with coarse-resolution 
simulation (−23% vs. −46% in MAM; −10% vs. −37% in JJA; −47% vs. −53% in SON; −54% 
vs. −62% in DJF) (Table 4), for wet−hour frequency in the spring (−3.1% vs. −6.7%), 
autumn (0.5% vs. −3.8%), and winter (−7.7% vs. −11.5%), and for extreme precipitation 
(p99.9) in the autumn (−7% vs. −51%) and winter (−34% vs. −58%). 

Figure 8. Same as Figure 7, but for (a) SON and (b) DJF. The domain grid size is 19.91◦ E–30.09◦ E,
39.76◦ N–45.32◦ N.

Figure 9 shows the spatial distribution of models’ mean hourly precipitation biases for
intensity (mm/h), frequency (%), and heavy precipitation (p99.9) (mm/h) for Bulgaria for
all seasons. CP_RegCM_3km shows dry biases for precipitation wet-hour intensity in SON
and DJF, wet biases for wet-hour frequency in JJA and SON, dry biases for precipitation
frequency in MAM and DJF (except in the mountains). CP simulation overestimates extreme
precipitation (p99.9) in MAM and JJA and underestimates p99.9 in SON and DJF (Figure 9a).
On the other hand, RegCM_15km shows dry biases for wet-hour intensity in all seasons, wet
biases for precipitation wet-hour frequency in all seasons (except JJA), and dry biases for
extreme precipitation (p99.9) in all seasons (except in the mountains in JJA) (Figure 9b).
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and PDIR−Now; and (b) RegCM_15km and PDIR−Now. From left to right, the seasons are defined 
as spring (MAM), summer (JJA), autumn (SON), and winter (DJF) for each panel. The domain grid 
size is 19.91° E–30.09° E, 39.76° N–45.32° N. 
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kilometer-scale simulation are marked in bold. 

Table 4. Area average means and biases for the hourly precipitation. The improvements in CP 
simulation are marked in bold. 

HOURLY PDIR RCM3 RCM15 
RCM3− 
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RCM15− 
PDIR 

INTENSITY mm/h     
MAM 1.3 1.0 0.8 −0.3 −0.6 
JJA 1.9 1.7 1.2 −0.2 −0.7 
SON 1.7 0.9 0.8 −0.8 −0.9 
DJF 1.3 0.6 0.5 −0.7 −0.8 
FREQUENCY %     

Figure 9. Spatial distribution of models’ mean hourly precipitation biases for intensity (mm/h),
frequency (%), and heavy precipitation (p99.9) (mm/h) for Bulgaria between (a) CP_RegCM_3 km
and PDIR−Now; and (b) RegCM_15km and PDIR−Now. From left to right, the seasons are defined
as spring (MAM), summer (JJA), autumn (SON), and winter (DJF) for each panel. The domain grid
size is 19.91◦ E–30.09◦ E, 39.76◦ N–45.32◦ N.

Compared with the PDIR data, improvements were found in kilometer-scale simu-
lation for wet-hour intensity in all seasons compared with coarse-resolution simulation
(−23% vs. −46% in MAM; −10% vs. −37% in JJA; −47% vs. −53% in SON; −54% vs. −62%
in DJF) (Table 4), for wet−hour frequency in the spring (−3.1% vs. −6.7%), autumn
(0.5% vs. −3.8%), and winter (−7.7% vs. −11.5%), and for extreme precipitation (p99.9) in
the autumn (−7% vs. −51%) and winter (−34% vs. −58%).

Table 4. Area average means and biases for the hourly precipitation. The improvements in CP
simulation are marked in bold.

HOURLY PDIR RCM3 RCM15 RCM3−
PDIR

RCM15−
PDIR

INTENSITY mm/h
MAM 1.3 1.0 0.8 −0.3 −0.6
JJA 1.9 1.7 1.2 −0.2 −0.7
SON 1.7 0.9 0.8 −0.8 −0.9
DJF 1.3 0.6 0.5 −0.7 −0.8
FREQUENCY %
MAM 15.8 12.7 9.1 −3.1 −6.7
JJA 5.8 8.0 7.0 2.2 1.2
SON 11.4 11.9 7.6 0.5 −3.8
DJF 23.6 15.9 12.0 −7.7 −11.5
HEAVY PRECIPITATION P99.9 mm/h
MAM 8.3 12.4 5.2 4.1 −3.1
JJA 8.6 19.9 6.1 11.3 −2.5
SON 10.8 10.0 5.3 −0.7 −5.5
DJF 9.5 6.3 4.0 −3.2 −5.5

The results for hourly precipitation metrics in MAM, JJA, SON, and DJF are sum-
marized in Table 4 as the area-averaged means and biases. The improvements in the
kilometer-scale simulation are marked in bold.
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4. Discussion and Conclusions

This study presents an assessment of precipitation metrics for Bulgaria of non-hydrostatic
RegCM4 [3] in climate simulation at the kilometer scale carried out as part of the Bulgarian
National Science Fund project KP-06-М57/3 and is grateful for access to the EuroHPC JU
Discoverer supercomputer. A convection-permitting simulation (CP_RegCM-3km) at a hori-
zontal resolution of 3 km was conducted for the Bulgarian domain (780 km × 600 km) over
a 10-year-long period (2001–2010). The assessment was performed against high-resolution
observations and the driving coarse-resolution simulation (RegCM_15km) at 15 km grid
spacing, forced by ERA_Interim re-analysis. We analyzed the following precipitation metrics:
mean daily precipitation, precipitation wet-day/hour intensity, wet-day/hour frequency, and
heavy precipitation (the 99th percentile of all daily precipitation events and the 99.9th per-
centile of all hourly precipitation events). The comparison among the datasets confirms the
large uncertainty associated with precipitation observational data, especially when dealing
with precipitation intensity and extremes.

In general, the models represent well the spatial distribution of mean precipitation at
the regional and kilometer scale for the territory of Bulgaria. However, the CP_RegCM_3km
model produces too much rainfall over the mountains and shows the largest biases in the
summer season. At the daily scale, compared with the CHIRPS dataset, we found improve-
ments in the kilometer-scale simulation for precipitation wet-day intensity in all seasons,
in summer wet-day frequency, and in autumn extreme precipitation (p99). Compared
with MESCAN, improvements were found in CP simulation for wet-day intensity in the
autumn and winter seasons. Both models show a more realistic distribution of mean daily
precipitation and wet-day frequency compared with MESCAN than E-OBS and CHIRPS.
The observational datasets, CHIRPS and E-OBS, show similar distributions for mean precip-
itation, but the CHIRPS dataset shows extremely high precipitation intensities, especially in
the summer and autumn. Additionally, the CHIRPS dataset underestimates precipitation
wet-day frequency compared with the E-OBS data in the summer and autumn, and it
overestimates heavy precipitation (p99) in the summer.

At the hourly scale, the improvement in precipitation wet-hour intensity in the CP sim-
ulation is clearer than at the daily timescale. Compared with the PDIR data, improvements
were found in the kilometer-scale simulation for wet-hour intensity in all seasons com-
pared with coarse-resolution simulation (−23% vs. −46% in MAM; −10% vs. −37% in JJA;
−47% vs. −53% in SON; −54% vs. −62% in DJF) (Table 4), for wet−hour frequency in the
spring (−3.1% vs. −6.7%), autumn (0.5% vs. −3.8%), and winter (−7.7% vs. −11.5%), and for
extreme precipitation (p99.9) in the autumn (−7% vs. −51%) and winter (−34% vs. −58%).

CP_RegCM_3km shows an overestimation of all heavy precipitation indices over the
mountains in the summer. The overestimation of precipitation in the CP simulation is at
least partly reduced, considering the underestimation of precipitation in observations due
to gauge under-catch and the unrepresentative height distribution of the rain gauges. The
overestimation of extreme precipitation has also been reported in previous studies and may
also be due to the fact that the models do not fully resolve convection [6]. Stocchi et al. [11]
show that CP simulations with the RegCM4 model considerably improve precipitation
extremes, intensity, and frequency biases at the hourly timescale for Italy, France, and
Germany and report the largest biases for Switzerland, the Carpathians, and Greece during
the summer season. They show that, at the hourly scale, the improvement in CP simulation
for precipitation intensity, extreme indices, and spatial distribution is clearer than at the
daily scale.

Our results—based on a newly developed non-hydrostatic RegCM4 model at a kilome-
ter scale [3] and a set of high-resolution observational datasets—are in line with previous
applications of convection-permitting regional climate models [1,2,7,10,11] and confirm the
improved performance of CP models with respect to coarser resolution ones in simulating
important characteristics of daily and hourly precipitation and extremes. As far as we
know, convection-permitting regional climate modeling at such a high spatial resolution,
specifically for the territory of Bulgaria, has not been performed before.
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The availability of high-resolution observational datasets of high quality is paramount
for evaluating high-resolution models, and often, such observations are not available.
Uncertainties regarding in situ data are mainly linked to low station density, especially over
mountain regions, and the choice of gridded techniques [35]. In the case of satellite data,
the precipitation measurements can be affected by large uncertainties linked to physical
limitations and measurement techniques. This is the reason why different observational
datasets can have different performances of precipitation metrics and can differ significantly,
especially over areas with low station availability [35]. Another aspect to consider is that
many processes, which occur at the sub-kilometer scale, are still parametrized in CP models
and may still require additional modifications for use at the kilometer scale. Additionally,
kilometer-scale models still operate in the gray zone of turbulent motion, which means that
convection is not fully resolved.

In conclusion, despite the measurement issues and persistent biases present, the
convection-permitting regional climate modeling approach shows promising and encour-
aging results, and it is a very useful tool for future climate change studies. Our future
plans are linked to climate change simulations at a convection-permitting scale and the
assessment of intensity, frequency, and extreme precipitation events in the territory of
Bulgaria under an RCP8.5 scenario.
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