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Abstract: Flutter derivatives (FDs) of the bridge deck are basic aerodynamic parameters by which
flutter analysis determines critical flutter velocity (CFV), and they are traditionally identified by
sectional model wind tunnel tests or computational fluid dynamics (CFD) numerical simulation.
Based on some wind tunnel testing results and numerical simulation data, the machine learning
models for identifying FDs of closed-box girders are trained and developed via a gradient boosting
decision tree in this study. The models can explore the underlying input–output transfer relationship
of datasets and realize rapid intelligent identification of FDs without wind tunnel tests or numerical
simulation. This method also provides a convenient and feasible option for expanding datasets of
FDs, and the distribution of FDs can be analyzed through the post-interpretation of trained models.
Combined with FD sensitivity analysis, the models can be verified by the calculation error of CFV. In
addition, the proposed method can help determine the appropriate shape of the box girder cross-
section in the preliminary design stage of long-span bridges and provide the necessary reference for
aerodynamic shape optimization by modifying the local geometric features of the cross-section.

Keywords: flutter derivative; intelligent identification; closed-box girder; machine learning; gradient
boosting decision tree; sensitivity analysis

1. Introduction

With rapid advancements in the building materials and construction techniques over
recent years, there has been an upward trend in the number of long-span bridges being
proposed to cross wide canyons, rivers, and straits [1]. Long-span bridges are characterized
by lighter weight, higher flexibility, and lower damping; hence, they are vulnerable to
wind effects and usually dominated by the wind-resistant performance in the structural
design process. To describe the wind-resistant performance of the bridge structure, the
aerodynamic parameters related to various wind-induced vibrations of the bridge girder
need to be identified. They play a vital role in the analysis of the wind-induced static
stability, flutter, vortex-induced vibration, and buffeting of the bridge. Among them, flutter
instability, which would activate violent oscillations and could result in the collapse of
bridge structures, should be prevented at all times.

In order to predict the flutter performance of bridge deck sections, the identification of
flutter derivatives (FDs) is the most critical step. Currently, the FDs can be well identified
using wind tunnel tests or numerical simulation based on computational fluid dynamics
(CFD). Based on the vibration state of the sectional model, there are three methods of
identifying FDs in the wind tunnel tests: forced vibration [2]; free vibration [3]; and random
vibration [4]. Each of these methods can be divided into two types: time domain and
frequency domain. The coupled free vibration method has commonly been the preference to
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extract the bridge FDs in wind tunnel tests due to its instrumental simplicity and operational
convenience [5–7]. A series of methods were developed over the past several decades based
on the free decay time histories of the bridge deck at various wind speeds [8,9]. CFD
methods can achieve numerical calculations for various fluid problems by solving fluid
control equations. Numerical tests require an adequate load model with a turbulent
stochastic structure and a suitable structural model for each bridge in order to describe
the wind action [10]. Borri et al. established multiple wind load models for time-domain
simulation of the wind-induced vibration of bridges [11,12]. Fang et al. modeled and
simulated extreme winds and their effects in different ways [13,14]. Similar to the wind
tunnel test, all the identification methods for FDs can be also achieved by CFD [15–17].
At present, the numerical identification of FDs is mainly based on the sub-state forced
vibration method: the structure is forced to vibrate at a certain frequency in the single DoF.
Aerodynamic forces can be obtained, and the least square method is used for the exaction
of FDs.

Although the wind tunnel test is considered to be the most effective and reliable means
for the FD identification of bridges, and the advancement of computer capacity enables
more rapid simulation of CFD, many aspects of these traditional research methods still
face challenges. Traditional wind tunnel tests have the issue of high cost and can only be
used to analyze specific bridge decks. The experimental results are not universal since
these aerodynamic parameters are bridge-deck-dependent. For numerical simulation, the
process still requires a large amount of computational resources to reach a high precision.
Although CFD analysis has its potential, certain characteristics of bluff body flutter are
not yet completely understood (for example, turbulence), and there still remain great
challenges to modeling the phenomenon solely by numerical simulation. In recent years,
as an advanced alternative technique, machine learning has provided a novel solution
for the identification of aerodynamic parameters and the wind-resistant performance
analysis of bluff body sections. Machine learning is a technique of data science that helps
computers learn from existing data to forecast unknown behaviors, outcomes, and trends.
There are already some mature open-source wind engineering databases, which have
mainly been established by wind engineering groups from Canada, China, Japan, the
USA, etc. Zhou and Kareem first established an online aerodynamic database for tall
buildings in 2003 (http://aerodata.ce.nd.edu/) (accessed on 1 September 2022) [18]. Wang
and Cheng conducted high-frequency force balance wind tunnel tests on more high-rise
building models and built a wind resistance database for them based on the expert system
(http://windexpert.ce.tku.edu.tw/) (accessed on 1 September 2022) [19]. In terms of an
aerodynamic database for low-rise buildings, Ho and Kopp built the NIST aerodynamic
database from a large number of pressure measuring tests of low-rise building models
conducted at the University of Western Ontario [20]. Quan and Tamura developed a
publicly accessible database of surface wind pressure for low-rise buildings (http://www.
wind.arch.t-kougei.ac.jp/info_center/weic.html) (accessed on 1 September 2022) [21]. The
existence of these data and databases is a prerequisite for researchers to carry out wind
resistance analysis using machine learning methods.

In the past 20 years, machine learning methods have been successfully applied to
the identification of aerostatic coefficients and flutter derivatives (FDs), as well as to the
analysis of wind-resistant stability. Jung et al. took the lead in realizing the estimation
of six FDs of a rectangular section using an artificial neural network (ANN) based on
17 sets of experimental data [22]. The ANN was utilized by Chen et al. to predict eight
FDs of bluff body sections [23]. The support vector machine (SVM) was introduced by
Lute et al. to identify FDs of the main girder before estimating the critical flutter velocity
(CFV) of cable-stayed bridges [24]. Chung et al. used CFD simulations and the forced
vibration test in a wind tunnel to estimate eight FDs of a rectangular section by the back
propagation neural network (BP neural network) [25]. The ANN model based on the
Levenberg–Marquardt algorithm was derived and trained using various geometrical and
mechanical parameters of the bridge deck cross-section, and CFV of suspension bridge with
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closed box deck sections can be predicted directly [26]. Abbas et al. used the normalized lift
force and torsional moment coefficients at current time step as the output of ANN to predict
the aeroelastic response of bridge decks [27]. Mei proposed a machine learning strategy
for flutter prediction based on four widely used machine learning algorithms [28]. Li
et al. applied ANNs to establish the relationship between aerostatic coefficients and flutter
performance for fast prediction of CFV [29]. All these studies confirm the feasibility and
effectiveness of machine learning methods in the FDs identification and flutter performance
analysis [30]. However, these attempts are not really independent of specially designed
wind tunnel tests. Current research lacks the integration and data-mining of the existing
results of wind tunnel tests or numerical simulations. Furthermore, most of the existing
research describes a direct application of common machine learning methods to a specific
scenario in parameter identification or wind resistance analysis without illustrating the
applicability of the algorithms and improving them accordingly. The existing machine
learning applications are mostly employed to build a black box, lacking the interpretation
and extension of the identification model.

The objective for this paper is to utilize previously measured experimental results
that contain invaluable information about flutter mechanics. Approximations based on
the cumulated existing data are expected to produce acceptable results, and imprecision
tolerance of the gradient boosting decision tree (GBDT) is a beneficial characteristic when
solving the problems of parameter identification without big data. In this study, the FDs
of closed-box girders are trained and predicted by GBDT based on a specialized bridge
wind resistance performance database, and the prediction results are applied to the related
analysis of flutter performance. Figure 1 shows the technology roadmap of this study.
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2. Identification Methods of Flutter Derivatives

This section introduces the traditional identification methods for FDs. It begins with
physical identification, including the theoretical definition of FDs and the wind tunnel
test measurement methods. This is followed by numerical identification, i.e., numerical
simulation by CFD methods to extract the FDs.

2.1. Physical Identification

For a bridge deck that is immersed in the incoming air flow, the oscillation was mainly
driven by the self-excited force. The mechanical system of flutter is described by a two
degrees of freedom (DoFs) linear oscillator, free to vibrate in heaving h(t) and pitching
θ(t) modes, as shown in Figure 2 (where U represents the incoming wind speed; L and M
represent self-excited lift force and torque, respectively).
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Based on the study performed by Scanlan and Tomko, the wind-induced linear self-
excited force on a bridge deck is modeled as the function of the vibration state, i.e., dis-
placements and velocities in two DoFs using eight FDs [31]:
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where U is the wind speed; ρ is the air density; B is the width of the bridge deck; K is the
ωB/U which is the reduced frequency of oscillation; ω is circular frequency of the coupled
mode; and H∗i and A∗i (i = 1,2,3,4) are the FDs.

In this study, the unifying least square method developed by Gu et al. [32] and
improved by Ding et al. [6], Li et al. [33] and Bartoli et al. [34] was utilized to extract the
FDs in wind tunnel tests, which was referred to as the modified unifying least square
(MULS) approach.

2.2. Numerical Identification

The FDs calculated by CFD numerical simulation in this paper are based on the forced
vibration method. It avoids solving the motion equation, which saves time and is easy
to be realized by software (ANSYS Fluent 2021 R1). The two degrees of freedom of cross-
section motion are decoupled, and the model is designated to perform vertical and torsional
motions respectively. Based on Scanlan’s theoretical framework of the superposition of
linear self-excited forces, it is assumed that the model performs multi-frequency forced
vibration of a single degree of freedom:{

h(t) = ∑n
i=1 h0 sin(2π fit)

α(t) = ∑n
i=1 α0 sin(2π fit)

, (2)

where h0 and α0 are the vertical bending and torsional amplitudes. The FDs are obtained
by identifying the amplitude of aerodynamic force and the phase difference between force
and displacement through the frequency domain method.

3. Intelligent Identification of Flutter Derivatives

The machine learning algorithm applied to predict the FDs is introduced in this section.
Typical machine learning methods mainly include decision trees, random forests, artificial
neural networks, and Bayesian learning. In the case of big data, the accuracy that can be
achieved by existing machine learning methods shows insignificant difference. However,
in the face of a small amount of data, it is necessary to compare various machine learning
algorithms before selecting the most favorable one. The comparison of various algorithms
has been performed in our previous study [35], showing that the error back propagation
(EBP) neural network presents serious danger of falling into local minimum since it is based
on a gradient descent method. Support vector regression (SVR) requires very rigorous data
pre-processing and hyperparameters tuning, so the model is difficult to check and adjust.
Gradient boosting decision tree (GBDT) has the advantages of good training effect and less
overfitting on low-dimensional data, and its framework allows post-interpreters to be run
for model representation and improvement.
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A hybrid model combining GBDT and the linear regression method is therefore used
for the training of FDs in this study. Its main idea is to use weak classifiers (decision trees)
to iteratively train input data before obtaining the optimal model. The architecture of the
model is shown in Figure 3. Input features are transformed by means of GBDT which
consists of m decision trees. The number of trees and the number of branches and leaf
nodes per tree are determined based on the amount of input data. In the construction
of the decision tree, if it cannot further improve the generalization ability of the model,
the creation of leaf nodes will be stopped. To avoid overfitting, a threshold can also be
set to limit the creation of leaf nodes, which is called to pre-pruning. After successfully
constructing a complete decision tree, the sub-trees can be checked by replacing them with
leaf nodes; then, the sub-trees will be replaced if the model can be improved with leaf
nodes, which is called post-pruning. During the whole training process of GBDT, a new tree
is added to the existing trees to reduce the residuals of the current model in the gradient
direction, and the negative gradient of the loss function is taken as the approximate value
of the residual to replace the residual. Finally, the transformed features wi (i = 0, 1, 2, . . . , n)
are trained in a linear regression model to obtain the final prediction results.

Atmosphere 2023, 14, x FOR PEER REVIEW 5 of 29 
 

 

to check and adjust. Gradient boosting decision tree (GBDT) has the advantages of good 
training effect and less overfitting on low-dimensional data, and its framework allows 
post-interpreters to be run for model representation and improvement. 

A hybrid model combining GBDT and the linear regression method is therefore used 
for the training of FDs in this study. Its main idea is to use weak classifiers (decision trees) 
to iteratively train input data before obtaining the optimal model. The architecture of the 
model is shown in Figure 3. Input features are transformed by means of GBDT which 
consists of m decision trees. The number of trees and the number of branches and leaf 
nodes per tree are determined based on the amount of input data. In the construction of 
the decision tree, if it cannot further improve the generalization ability of the model, the 
creation of leaf nodes will be stopped. To avoid overfitting, a threshold can also be set to 
limit the creation of leaf nodes, which is called to pre-pruning. After successfully 
constructing a complete decision tree, the sub-trees can be checked by replacing them with 
leaf nodes; then, the sub-trees will be replaced if the model can be improved with leaf 
nodes, which is called post-pruning. During the whole training process of GBDT, a new 
tree is added to the existing trees to reduce the residuals of the current model in the 
gradient direction, and the negative gradient of the loss function is taken as the 
approximate value of the residual to replace the residual. Finally, the transformed features 
wi (i = 0, 1, 2,…, n) are trained in a linear regression model to obtain the final prediction 
results. 

 
Figure 3. Architecture of GBDT. 

3.1. Negative Gradient Fitting 
GBDT is one of the widely used models under the gradient boosting framework. It 

accomplishes the task of classification by defining a logarithmic loss function for logistic 
regression. To solve the problem of measuring the approximation of the loss function, the 
gradient boosting algorithm uses the negative gradient of the loss function to fit the 
approximation of the loss and fits a classification and regression tree (CART) so that the 
loss in each round becomes as small as possible. 

The minimum value of the loss function is: 

1arg min ( , ( ) )   ( )mj i m i mjC L y f x c x R−= + ∈∑ , (3) 

Figure 3. Architecture of GBDT.

3.1. Negative Gradient Fitting

GBDT is one of the widely used models under the gradient boosting framework. It
accomplishes the task of classification by defining a logarithmic loss function for logistic
regression. To solve the problem of measuring the approximation of the loss function,
the gradient boosting algorithm uses the negative gradient of the loss function to fit the
approximation of the loss and fits a classification and regression tree (CART) so that the
loss in each round becomes as small as possible.

The minimum value of the loss function is:

Cmj = argmin∑ L(yi, fm−1(xi) + c) (x ∈ Rmj), (3)

where the function L is a logarithmic loss function; xi is the eigenvalue of the input; yi is
the output; and c is a constant. Rmj is the zone of the decision tree j domain; and i, m, j are
counting variables.
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The decision tree fitting function is:

hm(x) =
J

∑
j=1

Cmj I(x) (x ∈ Rmj), (4)

where the function I(x) is an indicator function that returns 0 when the equation in paren-
theses is false; otherwise, it returns to 1. J is the number of iterations.

The updated boosting decision tree is the sum of the previously fitting decision trees
and the latest fitting function:

f (x) = fm−1(x) + hm(x). (5)

3.2. GBDT Regression

GBDT can be used for classification and regression, and the principles of both are
similar. A weak learner is generated in each round, and a strong predictive model is
achieved through continuous accumulation. Based on the above definitions of negative
gradient loss function and update process, the entire GBDT regression process is expressed
as follows.

1. Initialize loss function:

f0(x) = argmin
N

∑
i=1

L(yi, c) =
1
2

log
1 + y
1− y

, (6)

where f 0(x) is the initial value of the algorithm; N denotes the length of the training
set; y represents the mean of outputs; and the others are defined as above.

2. For each number of iteration rounds, m = 1, 2, . . . , M.

For the training set (i = 1, 2, . . . , N,) compute the negative gradient which is also the
residual rmi:

rmi = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f (x)= fm−1(x)

. (7)

3. Fit a decision tree with rmi, obtain the leaf node region Rmj of the m-th tree.

For j = 1, 2, . . . , J, use linear search to obtain the minimum value of loss function:

Cmj = argmin∑ L(yi, fm−1(xi) + c) (x ∈ Rmj). (8)

4. Update f (x):

f (x) = fm−1(x) +
J

∑
j=1

Cmj I(x) (x ∈ Rmj). (9)

3.3. Algorithm Optimization

The GBDT model has the advantages of robustness, applicability to low-dimensional
problems, and fast tuning. In the case of small samples, GBDT has poor generalization and
usually faces the problem of overfitting. To solve this issue, a regular term is added to the
original loss function to improve the generalization of the trained model. The loss function
after adding the regular term is shown as follows:

L′ =
N

∑
n=1

L(yi, fm−1(xi) + c) + ∑
m

Ω(gm), (10)

where Ω(g) = δT + 1
2 λ‖w‖2; δ and λ are hyperparameters; T is the number of leaf nodes;

and w is a vector consisting of all leaf node values.
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4. Datasets and Data Processing for Intelligent Identification

This section begins with the introduction of a specialized wind resistance performance
database for long-span bridges. Next, two types of datasets for intelligent identification of
FDs are presented, including hybrid datasets and pure numerical simulation datasets. The
selection of wind tunnel test data from the database, the collected numerical simulation data
from literature, and the supplementary data in the hybrid datasets are introduced. Then,
the pure numerical simulation datasets obtained through CFD recalculation are described.

4.1. Bridge Wind Resistance Performance Database

Although there are some mature open-source wind engineering databases in the world,
these databases are all specific to building structures and are self-contained. Even if they
can be used for bridge wind resistance, the data types may not be matched completely.
Therefore, a specialized bridge wind resistance performance database is developed in this
study before performing the machine learning of parameters of interest. This database
collected the test data of nearly 100 long-span bridges from the wind tunnel laboratory of
Tongji University since a large quantity of wind tunnel test data for long-span bridges have
been accumulated at Tongji University up to now, and various experimental data have
been unified to the same criterion.

This database uses Microsoft Access as the underlying database system. To facilitate
the users’ visual operation, the Java programming language is adopted to establish the
foreground application interface. The connection between the underlying database and
the foreground application is driven by a local protocol to achieve platform independence
and high execution efficiency [36]. After classification, all the data are summarized into
three modules: basic information; dynamic characteristics; and aerodynamic parameters.
The basic information includes the type of bridge, span, the material of girder, the type
and size of cross-section, mass, stiffness, basic wind speed, critical velocity, amplitude, etc.
The dynamic characteristics include the natural frequency and mode of vibration of each
bridge. Aerodynamic parameters include the aerostatic coefficients and flutter derivatives
(FDs), but aerodynamic admittance is not involved.

4.2. Closed-Box Girder Dataset

This subsection introduces the hybrid datasets of closed-box girders, which include
20 sets of wind tunnel test data from the database, 20 sets of collected numerical simulation
data from the open-source literature, and 14 sets of supplementary data.

4.2.1. Physical Identification Data through Wind Tunnel Tests

Specifically, FDs and the flutter performance of bridges using closed-box girder are
extracted and studied. For machine learning modeling, it is necessary to establish a
specialized sample set of closed-box girders, including the dimensions of the cross-section,
the wind attack angle, the reduced wind velocity, FDs, etc. The wind tunnel test data of
20 long-span bridges with streamlined closed-box girders are selected from the database as
mentioned above. The specific involved parameters include the dimensions of cross-section,
the FDs under different reduced wind velocities, and the airflow field conditions of wind
tunnel tests. The dimensions of the cross–section are shown in Figure 4, including the
width of deck—B, box height of beam—H, wind fairing extension length—b, wind fairing
angle—α, and inclined web slope—β. These five parameters can determine the unique
closed-box girder section, and they are independent of each other. The specific dimensions
of these 20 sets of cross-sections are illustrated in Table 1, and the FDs of these 20 sets of
cross-sections are given in Figure 5.
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Table 1. Geometric size of 20 sets of cross-sections collected for wind tunnel test.

Section No. B (m) H (m) b (m) α (◦) β (◦)

1 35.2 3.535 1.79 40 15
2 28.5 3.0 0.97 60 8
3 30.0 3.5 2.0 39 14
4 46.7 5.83 1.66 63 18
5 40.8 3.5 0.6 72 13
6 33.5 2.875 2.9 50 20
7 36.2 3.8 0.9 71 20
8 40.0 3.74 2.25 48 21
9 45.2 3.0 1.15 64.8 18.6
10 43.0 2.0 1.0 55.8 10.8
11 30.0 5.0 5.5 49 24
12 36.9 3.6 1.0 66 14
13 43.0 3.0 1.0 62 16
14 30.4 3.5 0.6 73 23
15 18.0 2.5 1.8 48 22
16 50.0 2.5 0.8 60 10
17 44.0 4.5 1.0 79 26
18 33.5 3.0 1.7 48.1 19.9
19 38.0 4.0 1.3 59 15
20 28.6 3.5 0.7 72.6 17.6

Range 18.0–50.0 2.0–5.8 0.6–5.5 39–79 8–26
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4.2.2. Numerical Identification Data Based on CFD Simulation

To improve the machine learning effect, another 20 sets of numerical simulation data
for closed-box girders from open-source literature were added as mixed datasets to jointly
drive the training process of machine learning. The involved parameters are consistent with
the wind tunnel test data. The specific dimensions of these 20 sets of data are illustrated in
Table 2, and the FDs of these 20 sets of cross-sections are given in Figure 6.

Table 2. Geometric size of the collected 20 sets of cross-sections for numerical simulation.

Section No. B (m) H (m) b (m) α (◦) β (◦)

21 [37] 38.5 4.39 1.25 65.3 12.26
22 [38] 33.9 3.0 1.8 47.7 21.14
23 [39] 12.0 2.0 0.9 50.8 22.2
24 [40] 29.7 3.9 0.15 101.4 17.84
25 [41] 27.0 4.3 2.0 53.6 27.1
26 [42] 45.2 3.1 2.44 36.4 9.8
27 [43] 35.5 3.5 3.1 34.7 18.5
28 [44] 29.9 3.0 0.8 79.1 19.95
29 [45] 26.0 2.8 1.7 40.9 15.7
30 [46] 35.5 3.5 2.18 44 21
31 [47] 35.0 3.5 1.8 48.6 20.77
32 [48] 41.0 3.5 0.5 76.7 13.12
33 [49] 23.2 3.36 1.92 48.1 19.28
34 [50] 35.3 3.54 4.2 30 15.6
35 [51] 45.2 3.0 1.152 65 19
36 [52] 31.1 2.8 1.8 43.1 16.5
37 [53] 39.0 2.0 3.0 37 18
38 [54] 38.0 3.5 1.3 59.1 17.2
39 [55] 35.5 3.54 3.12 38.2 18.15
40 [56] 35.9 3.5 1.3 59.5 11.42
Range 12.0–45.2 2.0–4.39 0.15–4.2 30–101.4 9.8–27.1
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4.2.3. Supplementary Data

This study focuses on the machine learning prediction of flutter derivatives and flutter
performance of closed-box girders. The value range of shape parameters of the cross-
sections in the sample set will have a decisive impact on the prediction results. The existing
40 sets of data are not uniform in terms of dimensions such as the width and height,
etc., of the cross-section. Moreover, considering the actual requirements of the bridge
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structure, each aerodynamic shape parameter has a concentrated distribution range, so the
representativeness of the existing data is also not good enough. For example, most of the
wind fairing angles used in projects are between 45◦ and 60◦. Most of the inclined web
slopes are between 15◦ and 25◦, and 11◦ and 32◦ are also often used in engineering [57].
Based on the above considerations, an additional 14 sets of cross-sections were added in this
study, whose size distributions remain within these concentrated distribution ranges and fill
in the gaps in some size ranges. The specific dimensions of these 14 sets of supplementary
data are illustrated in Table 3, and the FDs of these 14 sets of cross-sections are given in
Figure 7 by CFD numerical simulation. Therefore, a total of 54 sets of closed-box girder
cross-sections form a complete sample set for machine learning training. The distribution
of the whole sample set tends to be closer to a Gaussian distribution than a uniform
distribution, as shown in Figure 8, with the aim of making subsequent machine learning
applications more engineering-practical.

Table 3. Geometric size of 14 sets of supplementary cross-sections.

Section No. B (m) H (m) b (m) α (◦) β (◦)

41 30.5 3.0 1.7 57 28
42 29.5 3.0 1.5 57 17
43 34.3 3.2 1.5 50 13
44 26.2 2.8 0.7 70 20
45 25.5 3.0 1.5 51 19
46 51.4 5.0 1.5 57 14
47 54.0 5.8 2.0 65 15
48 32.8 3.2 0.6 60 12
49 39.1 4.6 2.1 53 23.5
50 42.8 4.5 2.0 53 17.5
51 41.8 4.4 2.0 53 16.5
52 58.1 4.3 1.9 43 16.5
53 56.7 4.2 1.9 43 11.5
54 59.5 4.1 1.8 37 16.5

Range 25.5–59.5 2.8–5.8 0.6–2.1 37–70 12–28
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Figure 7. 8 FDs under different reduced wind speeds of 14 sets of supplementary cross-sections. 

Figure 7. Cont.
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4.3. Two-Dimensional CFD Numerical Simulation

In this paper, it was found through preliminary trial calculations that good prediction
results could not be obtained when driven by 20 pure sets of wind tunnel test data or by
20 sets of numerical simulation data due to too little data. Under the mixed driving of
two data modes, there may be significantly different underlying mapping relationships
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between similar sections due to differences in recognition methods, making it difficult for
machine learning models to distinguish them and obtain good prediction results. Therefore,
the FDs of the existing 40 sets of cross-sections, as well as the 14 sets of supplementary
cross-sections, are recalculated by CFD numerical simulation uniformly to obtain a new
sample set more suitable for machine learning.

The numerical calculation domain is a two-dimensional flow field. Pointwise is used
for geometric rendering and mesh generation, and ANSYS Fluent is used for numerical
simulation. The Reynolds number of each sectional rigid model is the same as that of the
corresponding wind tunnel test. In this paper, the FDs at 0◦ wind attack angle of each
cross-section are calculated, and all the numerical simulation results are compared with the
wind tunnel test results or calculation results by other researchers in the literature to check
the validity of the data.

Figure 9 shows the results of 8 FDs for two of the 54 sets of cross-sections changing
with the reduced wind speed under 0◦ wind attack angle. Figure 9a shows the comparison
between the numerical simulation results and the wind tunnel test results of cross-section 1
from the database (as shown in Table 1). Figure 9b shows the comparison between the
numerical simulation results in this study (CFD1) and other researcher’s calculation results
(CFD2) of cross-section 21 from the literature (as shown in Table 2) [37]. It can be seen from
the figures that the numerical simulation results of these two closed-box girders are in good
agreement with the wind tunnel test results and those of other researcher’s calculations.
This verification process is applicable to all other collected cross-sections. In the following,
these numerical simulation data will be used for machine learning training and prediction
so as to form an intelligent identification method for FDs of closed-box girders.
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Figure 9. Cont.
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Figure 9. Trend of FDs changing with reduced wind speed: (a) the comparison between the numerical
simulation results and the wind tunnel test results of cross-section 1; (b) the comparison between the
numerical simulation results in this study (CFD1) and other researcher’s calculation results (CFD2) of
cross-section 21.

5. Intelligent Identification for FDs of Closed-Box Girders

This section focuses on the intelligent identification of FDs by GBDT. Firstly, the input
and output of the machine learning model are introduced, and the data division pattern is
also explained. Next, the training and prediction results of the model are presented. Finally,
a post-interpretation is provided to further validate the effectiveness of the model.

5.1. Input and Output

When the machine learning method is used to study the aerodynamic characteristics
of the bridge, the section geometry is a key factor, and the geometric dimensions of the
cross-section must be used as the input for the neural network. For a closed-box girder, as
shown in Figure 3, five parameters determine the unique cross-section, including B, H, b,
α, and β. Since the amount of data is not big in this study, without being able to increase
the amount of data significantly, the dimensionality of the input parameters should be
reduced as much as possible. Considering that FDs are dimensionless parameters that are
only related to the shape of the cross-section and are independent of the absolute size of
the cross-section, four shape feature parameters (B/H, b/H, α, β), as well as reduced wind
velocity, are finally used as input parameters for the model. The outputs of the model are
FDs, but only one FD at a single reduced wind velocity is output each time. In addition, all
inputs and outputs need to be pre-processed for normalization to reflect the essence of the
data and avoid numerical problems before conducting machine learning training.

A regression analysis was performed before the machine learning training by creating
an equation to determine how the dependent variable varies with multiple independent
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variables and testing the equation and parameters for statistical significance. The T-test
is used here for significance testing of the parameters, which can also be regarded as a
parameter sensitivity analysis. When judging the regression analysis results, the effect of
the corresponding variable is significant when |t| > 2, and the probability of error will not
exceed 0.05. If |t| is much greater than 2, the probability of error is even smaller. Table 4
gives the t-statistics of each input feature for the output parameter (FD). It can be seen that
most of the values of |t| are greater than 2, which proves that when the machine learning
method is used to study the aerodynamic characteristics of bridges, the dimensions of
cross-section and wind velocity are very important factors, and they must be used as inputs
of the model.

Table 4. T-test of regression analysis.

t-Statistic A*
1 A*

4 H*
1 H*

4 A*
2 A*

3 H*
2 H*

3

B/H 2.539 1.237 −2.950 −3.798 −3.066 2.635 3.267 −2.977
b/H −2.351 1.601 1.573 2.648 2.468 −1.829 −1.812 1.989

α −4.517 1.407 1.632 2.681 2.802 −1.210 −1.079 1.277
β 4.147 −2.478 −1.033 −1.609 −2.339 0.847 0.380 −0.815

U/fB 115.834 47.381 −82.835 −27.241 −37.922 38.996 5.875 −37.282

5.2. Model Construction and Trial Calculation

The GBDT method used to identify FDs in this study is based on Python and its
toolkit. The programming process is conducted on Jupyter Notebook which is a web-based
interactive computing platform. After establishing the preliminary model, 20 sets of pure
wind tunnel test data and 54 sets of hybrid data were used for trial calculations to evaluate
the basic performance of the GBDT model. One of the evaluation indices of the model is
fitting degree (R2 statistic), which is defined as follows:

R2(y, ŷi) = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 , (11)

where yi is the true value of the sample; ŷi is the predicted value; and n is the number of
samples. R2 reflects the proportion of the variation in the dependent variables that can be
explained by the independent variables through the regression relationship, and R2 takes a
value between [0,1]. The larger the R2, the better the model.

To judge the prediction effect of trained machine learning models, the extrapolation
ability of the test cross-section should also be evaluated, which is also called the generaliza-
tion ability evaluation. The prediction accuracy can be reflected by the mean relative error
(MRE), which is defined as follows:

MRE(y, ŷ) =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, (12)

where yi is the true value of the sample; ŷi is the predicted value; and n is the number of
samples. The smaller the value of MRE, the more accurate the prediction.

Taking cross-section 1 as the test section, Figures 10 and 11 show the fitting degree
and generalization ability of the model under two different datasets, and Table 5 gives
the specific prediction errors. It can be seen that the GBDT model struggles to capture the
potential distribution pattern of FDs under only 20 sets of wind tunnel test data. It is still
unable to achieve very satisfactory prediction results under 54 sets of hybrid data after
repeated hyperparameters tuning. To further test and improve the performance of the
GBDT model, pure numerical simulation data is considered for subsequent model training
and optimization.
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Figure 10. Fitting degree of training set: (a) based on 20 sets of wind tunnel test data; (b) based on 54 
sets of hybrid data. 
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Figure 11. Prediction results of cross-section 1: (a) based on 20 sets of wind tunnel test data (model 
1); (b) based on 54 sets of hybrid data (model 2). 
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Figure 11. Prediction results of cross-section 1: (a) based on 20 sets of wind tunnel test data (model
1); (b) based on 54 sets of hybrid data (model 2).
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Table 5. Prediction errors of cross-section 1.

MRE A*
1 A*

4 H*
1 H*

4 A*
2 A*

3 H*
2 H*

3 Mean

Model 1 0.1656 0.5174 0.1491 0.4644 0.2105 0.2171 0.6673 0.2825 0.3342
Model 2 0.0595 0.2033 0.1150 0.2750 0.1480 0.1624 0.5310 0.1702 0.2081

5.3. Model Optimization and Validation

The ultimate goal of machine learning is to deploy trained models into real environ-
ments with the hope that the models can achieve good prediction effect in real scenarios.
In this subsection, the training and prediction of GBDT models are based on pure numer-
ical simulation data, and further analysis of GBDT model performance is given through
complete cross validation.

5.3.1. Data Division

The sample set of machine learning is usually divided into three parts: training set;
validation set; and test set. In this paper, cross validation is used to evaluate the accuracy
and stability of the model through different data division patterns. Each sample will be
used, in turn, as the training set, validation set, and test set. The cross validation method
can help to monitor the changes of training effect under different patterns and avoid
overfitting problems.

There are a total of 54 sets of pure numerical simulation data in this study. Since four
samples were far from the mean of the datasets (samples in the dashed box in Figure 8,
i.e., cross-section 10, 16, 24, and 37), they were removed from the sample set according
to the statistical results. A total of 50 sets of data were available in the sample set. These
50 sets of data were used as the test set by turns, resulting in 50 working conditions. Under
each working condition, we can take any one of the remaining 49 sets of samples as the
validation set, and then all the remaining sets as the training set, resulting in 49 working
conditions. This will ultimately result in a total of 50 × 49 = 2450 working conditions. The
GBDT models are trained under all working conditions, from which the best and worst
working conditions are displayed below to verify the applicability of the existing sample
set for machine learning modeling under all working conditions.

5.3.2. Fitting Accuracy of Training Set

According to the data division pattern mentioned above, machine learning models
were trained under 2450 working conditions. It can be found that the GBDT model always
fits the training set with a high accuracy, regardless of the data division pattern used. The
average training effect of FDs are shown in Figure 12. It can be seen from the figure that all
the models can obtain the potential input–output transfer relationship of the training set.
All values of R2 are larger than 0.9 except for H∗2 and H∗4 .
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5.3.3. Generalizability of Test Set

To verify the generalizability of models for the test cross-sections, the predicted value
is compared with the true value, and Figure 13 gives the best and worst prediction outcomes
for all test sets (predicted value means the predicted FD by the trained model; true value
means the recalculated CFD result). Table 6 gives the specific errors of the best and worst
predictions. It shows that the machine learning models are able to predict the distribution
of FDs to a large extent under the current data condition.
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Table 6. Prediction errors of test set.

MRE A*
1 A*

4 H*
1 H*

4 A*
2 A*

3 H*
2 H*

3 Mean

Best 0.0584 0.1745 0.0662 0.1924 0.0985 0.1089 0.2042 0.0833 0.1233
Worst 0.1755 0.4128 0.0910 0.1851 0.1411 0.1573 0.2400 0.1730 0.1970

5.4. Model Interpretation

The process of machine learning is often considered a “black box”. The output is only
obtained from the input, and the middle training process is difficult to explain. To express
the machine learning model in some explicit way, the Shapley additive explanation (SHAP)
is applied here. SHAP is an additive model interpreter constructed by Lundberg and Lee
and inspired by cooperative game theory, which focuses on calculating the SHAP values
of each feature as a reflection of how much the feature contributes to the prediction of the
model [58]. SHAP interprets the predictive value of the model as the sum of SHAP values
of each input feature:

ŷ = f0 +
M

∑
i=1

fi, (13)

where ŷ is the predictive value; fi is the SHAP value of each feature; and f0 is the mean
predictive value of all training samples. SHAP reflects the impact of each feature on the
final prediction and can show the positivity and negativity of the impact, increasing the
interpretability of the model. It also provides powerful data visualization functions to
show the model and the prediction results, which are widely used to explain models with
complex algorithms.

Figure 14 shows the SHAP values of shape parameters of the cross-section mentioned
above (H, B, b, α, and β) for the prediction results of the model. They are ranked from top
to bottom according to the effect magnitude on each FD. Overall, except H∗2 , the influence
of these shape parameters on the other FDs is obvious. H, α, and β play a major role in the
FDs, but the influence direction and the contribution degree of different shape parameters
to the FDs are different. For A∗1 ∼ A∗4 , H has the greatest effect on them. They have the
same change direction as H. his means A∗1 ∼ A∗4 increase with the height of beam, but
A∗1 , A∗2 , and A∗3 are more likely to be positive, and A∗4 is more likely to be negative. For
H∗1 ∼ H∗4 , the impact of β is large. Except that the situation of H∗2 is unclear, H∗1 , H∗3 , and
H∗4 all change in the opposite direction to β, i.e., H∗1 , H∗3 , and H∗4 all decrease as the inclined
web slope increases, and it is more likely that they are all negative. The specific contribution
degree of these shape parameters to the FDs is given in a semi-quantitative form (SHAP
values). SHAP analysis enables the interpretability of black box models, and it can even
provide the necessary reference for further explicit representation of the training process of
machine learning.
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6. Prediction to Flutter Performance Analysis

The existing data-driven model can perform the identification of FDs out of physical
and numerical wind tunnel tests to some extent. It can also provide a convenient and feasi-
ble option for expanding datasets of aerodynamic parameters. The FDs are dimensionless
parameters related to the shape of the cross-section. When the shape of the cross-section
changes, the FDs will inevitably be affected. In the process of calculating the CFV of a
long-span bridge, by modifying the local size of the cross-section, the influence of the
section shape on the CFV can be evaluated. At the same time, the machine learning model
can be reasonably verified and optimized.

6.1. Intelligent Identification of Flutter Derivatives

This paper takes the Runyang Yangtze River Bridge (south branch) as an example,
which is a suspension bridge with the main span of 1490 m. Figure 15 shows the cross-
section diagram of main girder, and it is a steel streamlined closed-box girder with a height
of 3 m and a width of 36.9 m.
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The trained GBDT models under the best working condition are used to obtain the
FDs of this main girder cross-section. The comparison of predictions with CFD calculations
and experimental results are shown in Figure 16, and the specific prediction error (MRE) is
shown in Table 7.

Table 7. Prediction error of Runyang Bridge.

MRE A*
1 A*

4 H*
1 H*

4 A*
2 A*

3 H*
2 H*

3 Mean

CFD 0.0082 0.1401 0.1383 0.3958 0.0746 0.0435 0.2094 0.0109 0.1520
Experiment 0.1606 0.2113 0.1950 0.2174 0.1812 0.1828 0.2070 0.1445 0.1875

6.2. Sensitivity Analysis of Critical Flutter Velocity

This subsection analyzes the influence of FD prediction error on FCV calculation error
and further analyzes the main source of error via sensitivity analysis of eight FDs.
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6.2.1. Prediction Error of Flutter Derivatives

As there are some errors in the FDs predicted by machine learning; we need to deter-
mine the extent to which these errors affect the CFV calculations before the aerodynamic
shape sensitivity analysis. Using the predicted FDs of Runyang Bridge for the 2-D 3-DoF
numerical analysis [59], the CFV of this structure at 0◦ wind attack angle can be obtained.
Actually, several machine learning models based on different types of datasets (pure wind
tunnel test datasets, pure numerical simulation datasets, hybrid datasets, etc.) were trained
in this study. The FDs prediction results with different errors can be obtained by different
trained models. These errors are ultimately reflected in the CFV calculation, as shown in
Figure 17. It can be seen that even with an error of up to 25% in FDs prediction, the error
in CFV calculation is only 10%. When the prediction error of FDs can be reduced to less
than 15%, the calculation result of CFV is very close to the true value (measured by wind
tunnel test), and the calculation error is less than 2%. This is due to the fact that different
FDs have a major and minor effect on the CFV. If the prediction accuracy of important
FDs is high, the CFV with high calculation accuracy can be obtained. It means there is
no need to predict every FD accurately in the case of limited computing resources. This
analysis further demonstrates that it is entirely feasible to identify FDs and perform flutter
performance analysis by machine learning methods.
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6.2.2. Sensitivity Analysis of Flutter Derivatives

For the cross-section shown in Figure 15, we can further analyze which FDs have a
major impact on CFV by changing the magnitude of the FD sequentially. As shown in
Figure 18, the horizontal axis represents the change ratio of FDs. R > 1 indicates the FD
increases, and R < 1 indicates the FD decreases. The longitudinal axis indicates the change
of CFV caused by parameter change. RV > 1 indicates that the CFV increases after parameter
change, and RV < 1 indicates that the CFV decreases. It can be seen from the figure that the
main factors affecting the CFV are A∗1 , A∗2 , A∗3 , and H∗3 . This conclusion is consistent with
the test and analysis results of Hong from Tongji University [60]. A∗1 and H∗3 represent the
coupled vertical motion speed excited by the aerodynamic lift generated by the torsional
motion displacement and the aerodynamic damping formed by the aerodynamic moment
caused by the feedback. They make the torsional vibration modal damping decrease from
positive to negative, indicating that flutter has reached the critical state. A∗2 represents
the aerodynamic damping formed by the aerodynamic moment directly generated by
the torsional motion speed, and the increase in A∗2 with the increase in velocity will be
beneficial to the stability of the system. The change of A∗3 also affects the CFV, but the
influence is smaller than A∗1 , A∗2 , and H∗3 . The CFV decreases with the increase in A∗1 , A∗3 ,
and H∗3 and increases with the increase in A∗2 . The other FDs have almost no effect on
the CFV. The conclusion above is not universal. It is only for the given cross-section and
cross-sections with a similar shape and dimension.

Atmosphere 2023, 14, x FOR PEER REVIEW 23 of 26 
 

 

0 5 10 15 20 25

0

2

4

6

8

10

12

C
al

cu
la

tio
n 

er
ro

r o
f C

FV
 (%

)

Prediction error of FDs (%)  
Figure 17. Error analysis. The x value of the blue dot represents the average error of the predicted 
FDs of each model, while the y value represents the calculation error of the corresponding CFV. The 
red dashed line indicates the overall trend of the CFV calculation error change with the FDs predic-
tion error. 

6.2.2. Sensitivity Analysis of Flutter Derivatives 
For the cross-section shown in Figure 15, we can further analyze which FDs have a 

major impact on CFV by changing the magnitude of the FD sequentially. As shown in 
Figure 18, the horizontal axis represents the change ratio of FDs. R > 1 indicates the FD 
increases, and R < 1 indicates the FD decreases. The longitudinal axis indicates the change 
of CFV caused by parameter change. RV > 1 indicates that the CFV increases after parame-
ter change, and RV < 1 indicates that the CFV decreases. It can be seen from the figure that 
the main factors affecting the CFV are *

1A , *
2A , *

3A , and *
3H . This conclusion is consistent 

with the test and analysis results of Hong from Tongji University [60]. *
1A  and *

3H  rep-
resent the coupled vertical motion speed excited by the aerodynamic lift generated by the 
torsional motion displacement and the aerodynamic damping formed by the aerodynamic 
moment caused by the feedback. They make the torsional vibration modal damping de-
crease from positive to negative, indicating that flutter has reached the critical state. *

2A  
represents the aerodynamic damping formed by the aerodynamic moment directly gen-
erated by the torsional motion speed, and the increase in *

2A  with the increase in velocity 
will be beneficial to the stability of the system. The change of *

3A  also affects the CFV, but 
the influence is smaller than *

1A , *
2A , and *

3H . The CFV decreases with the increase in *
1A

, *
3A , and *

3H  and increases with the increase in *
2A . The other FDs have almost no effect 

on the CFV. The conclusion above is not universal. It is only for the given cross-section 
and cross-sections with a similar shape and dimension. 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

A*
2

A*
1

H*
3

R
V

R

 A*
1   H*

1

 A*
2   H*

2

 A*
3   H*

3

 A*
4   H*

4

A*
3

 
Figure 18. Influence of FDs on CFV. 

  

Figure 18. Influence of FDs on CFV.

6.3. Sensitivity Analysis of Aerodynamic Shape

The main factors affecting the flutter stability of bridges can be divided into two cate-
gories: (1) the aerodynamic shape of the cross-section, such as the width-to-height ratio,
wind fairing angle, and inclined web slope; (2) the dynamic characteristics of the structure,
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such as mass and frequency. The impact of these factors on the CFV is uncertain, and any
parameter change can cause a change in the CFV.

This study does not consider the impact of dynamic characteristics on flutter stability
currently, but only focuses on the impact of aerodynamic shape on flutter stability. Since
CFV calculation can be combined with the machine learning prediction of FDs and high
calculation accuracy can be obtained, the relationship between the shape of the cross-section
and the CFV can be analyzed by the trained machine learning models. The analysis results
can provide a reference for the aerodynamic shape optimization of the closed-box girder.

For closed-box girders, there are not many factors affecting the aerodynamic shape
without considering the influence of the ancillary facilities on the CFV in the construction
stage. It is time consuming, and it may not lead to better calculation results if every detail of
the cross-section is taken into account. Therefore, this study only discusses three important
parameters: width-to-height ratio; wind fairing angle; and inclined web slope.

6.3.1. Width-to-Height Ratio

The width-to-height ratio of a closed-box girder varies greatly. The width of cross-
section varies from 30 m to 50 m and the height ranges from 2 m to 5 m. Taking the Runyang
Bridge with the width-to-height ratio of 12.3 as an example, to reduce the workload of
numerical calculation, it is assumed that the CFVs are proportional to different wind fairing
angles and inclined web slopes, so the wind fairing angle and inclined web slope are kept
unchanged. The width-to-height ratio is adjusted only by changing the width of the cross-
section. The FDs with different width-to-height ratios are identified by the trained machine
learning model, and the CFV under different width-to-height ratios is calculated by two-
dimensional flutter numerical analysis. The result shows that the CFV decreases with the
increase in the width-to-depth ratio, which is consistent with the conclusion obtained by
Zhang of Chang’an University [61]. The variation law of CFV with the width-to-depth
ratio and the comparison with Zhang’s analysis are shown in Figure 19a. In this study, it
can also be found that the CFV decreases sharply when the width-to-height ratio is lower
than 11, and the decrease trend of CFV gradually slows down with the increase in the
width-to-depth ratio when the ratio is greater than 11.
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6.3.2. Wind Fairing Angle

Figure 19b shows the CFV changing with the wind fairing angle. It can be seen that
the CFV first increases and then decreases with the increase in the wind fairing angle and
reaches the peak at around 60◦. Xian and Liao designed several wind fairings with different
angles for a closed-box girder and analyzed the impact of the wind fairing angle on the
CFV based on wind tunnel test [62]. The result showed that the CFV first increased and
then decreased with the increase in wind fairing angle (α) (i.e., from 30◦ to 60◦). This trend
is consistent with the results obtained in this study (40◦ < α < 90◦). The experimental result
of a wind fairing angle larger than 60◦ is not given by Xian and Liao. Since the shape
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dimensions of the closed-box girder in their study are somewhat different from those in this
paper, the optimal wind fairing angles are also different. Although the conclusion is limited,
which is only applicable to the closed-box girder section with a specific width-to-depth
ratio and inclined web slope, the influence regularity of the wind fairing angle on CFV can
still be used as a reference for the optimization of aerodynamic shape.

6.3.3. Inclined Web Slope

Li et al. studied the influence of inclined web slope on CFV by wind tunnel tests [63].
The conclusion is that for a closed-box girder with the width-to-depth ratio of 11, the
larger the inclined web slope is, the smaller the CFV is. For the closed-box girder with
the width-to-depth ratio of 7, the influence of inclined web slope on CFV is very small.
The width-to-depth ratio of the prototype structure in this paper (the main girder cross-
section of Runyang Bridge shown in Figure 15) is 12.3. When the inclined web slope is
changed from 10◦ to 25◦, the influence regularity of inclined web slope on CFV is shown in
Figure 19c. It can be seen that the CFV decreases with the increase in inclined web slope,
which is consistent with Li’s research, and this trend is almost linear. However, during
the actual design and construction, the specific inclined web slope should be determined
according to the actual engineering because it will significantly increase the manufacturing
difficulty if the inclined web slope is too small.

7. Conclusions

In this paper, based on a database of flutter derivatives obtained by wind tunnel tests
and numerical simulation, the flutter derivatives of closed-box girders are identified by
machine learning methods. Modeling is implemented with a gradient boosting decision
tree algorithm. The model is trained and analyzed under different data division patterns,
and model interpretation after training is realized. The sensitivity of flutter derivatives
and the influence of the geometric shape of the cross-section on critical flutter velocity are
also analyzed, which provides a reference for aerodynamic shape optimization and further
verifies the validity of the models. Some conclusions are summarized as follows:

• The model trained by gradient boosting decision tree is able to predict the flutter
derivatives under different data division patterns with the mean relative error of less
than 0.2. The machine learning prediction error of flutter derivatives will be weakened
in the numerical calculation of critical flutter velocity. If the prediction error of flutter
derivatives can be reduced to less than 15%, the calculation result of critical flutter
velocity will be very close to the true value (i.e., the calculation error is less than 2%).

• For closed-box girders, A∗1 , A∗2 , A∗3 , and H∗3 have great influence on critical flutter
velocity. The critical flutter velocity decreases with the increase in A∗1 , A∗3 , and H∗3 and
increases with the increase in A∗2 . The other flutter derivatives almost do not affect the
critical flutter velocity. This conclusion is not universal; it is only applicable for the
prototype structure in this study or for cross-sections with similar shape dimensions.

• The critical flutter velocity decreases with the increase in the width-to-depth ratio of
the closed-box girder. In the range of 40◦–90◦ of wind fairing angles, the critical flutter
velocity first increases and then decreases with the increase in angle and reaches the
peak at around 60◦. The critical flutter velocity decreases with an increase in inclined
web slope and is almost linear for a particular width-to-height ratio.

The machine learning method proposed in this paper can provide a new means of
identifying flutter derivatives and rapidly evaluating flutter stability in the preliminary
wind-resistant design stage. However, this study has some limitations:

• The proposed methods are only applicable to closed-box girder cross-sections, and the
sensitivity analysis of the critical flutter wind speed with the shape of cross-sections
only focuses on three feature dimensions: width-to-height ratio; wind fairing angle;
and inclined web slope. In the future, we expect to implement more refined research
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on the change of shape and even on the ancillary facilities of the main girder and
expand the research to other types of main girder cross-sections.

• The identification method of flutter derivatives proposed in this paper can achieve
rapid evaluation of flutter stability without physical and numerical wind tunnel tests,
but a good prediction effect can only be achieved based on pure numerical simulation
data at present. It is necessary to further improve the accuracy and robustness of
intelligent identification and achieve machine learning predictions based on complete
wind tunnel test data, which depends on larger datasets and better data conditions.

• The existing data and proposed methods only achieve the identification of eight flutter
derivatives and two-dimensional flutter stability analysis. In the future, more works
on three-dimensional flutter stability analysis based on the predicted eighteen flutter
derivatives via machine learning methods will also be needed.
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