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Abstract: We show theoretically that the mean turbulent dynamics can be described by a kinetic
theory representation with a single free relaxation time that depends on space and time. A proper
kinetic equation is constructed from the Klimontovich-type kinetic equation for fluid elements, which
satisfies the Navier–Stokes hydrodynamics exactly. In a suitably averaged form, the turbulent kinetic
energy plays the role of temperature in standard molecular thermodynamics. We show that the
dynamics of turbulent fluctuations resembles a collision process that asymptotically drives the mean
distribution towards a Gaussian (Maxwell–Boltzmann) equilibrium form. Non-Gaussianity arises
directly from non-equilibrium shear effects. The present framework overcomes the bane of most
conventional turbulence models and theoretical frameworks arising from the lack of scale separation
between the mean and fluctuating scales of the Navier-Stokes equation with an eddy viscous term. An
averaged turbulent flow in the present framework behaves more like a flow of finite Knudsen number
with finite relaxation time, and is thus more suitably described in a kinetic theory representation.

Keywords: turbulence modeling; kinetic theory; finite Knudsen flows

1. Introduction

Turbulent flows differ from laminar flows fundamentally via the appearance of large
fluctuations on scales much larger than the microscale thermal fluctuations [1]. The effect
of turbulent fluctuations on the mean flow has been modeled as an eddy viscosity since
Boussinesq [2] and Reynolds [3], based on the analogy to thermal fluctuations of molecules
in a gas; see also Prandtl [4]. These eddy-viscosity ideas have been a pillar of theoretical
and engineering models of turbulence to this day. It has, however, been clear for some
time that eddy viscosity is largely a metaphor, and that more faithful physics is required
for proper turbulence modeling. One hope had been that the limitations of eddy viscosity
could be circumvented by starting with the Boltzmann equation [5], but that approach
has been unsuccessful for reasons to be described shortly [6]. Instead, by starting with the
Klimontovich-type kinetic equation [7], whose average is the exact Navier–Stokes equation,
we obtain a BGK-type relaxation equation for one-point probability density function (pdf)
of turbulent fluctuation. This is the major contribution of this paper. Eddy viscosity as well
as all higher order corrections for the Reynolds stress are determined by this only unknown
parameter in the present framework.

As noted already, essentially all conventional turbulence models describing the mean
turbulent flow dynamics have been based on the Navier–Stokes equation with an eddy
viscosity together with the regular molecular viscosity. Specifically, one writes

∂tU + U · ∇U = −∇ p̄ + ν∇2U +∇ · (νeddyS̄), (1)
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where ν and νeddy are the molecular and the eddy viscosities, respectively. The latter is
a consequence of modeling the (deviatoric part of) the Reynolds stress term of turbulent
fluctuations by an eddy-viscosity term according to the Boussinesq approximation

〈δuδu〉 ≈ −νeddyS̄, (2)

where “〈 〉” denotes an ensemble average. In Equations (1) and (2), U denotes the average
flow velocity, δu the fluctuation, and S̄ the rate-of-strain tensor of the mean flow.

It is well recognized that underlying the concept of eddy viscosity is the requirement
of a separation of scales between the mean and fluctuating fields. But simple estimates [8]
reveal that the effective mean free path of eddies (e.g., Prandtl’s mixing length [4]) is
comparable to the characteristic scale of the mean flow. Nevertheless, because of its
simplicity, eddy viscosity remains the foundation of most models of the Reynolds averaged
Navier–Stokes (RANS) type, as well as large eddy simulations (LES) [9].

There have been extensions beyond the framework of eddy viscosity to nonlinear
models [10–13], but the level of empiricism increases substantially. Alternatively, it may
appear at first sight that the lack of separation of scales in turbulence can be accounted
for more naturally by seeking a description in terms of the kinetic theory. Indeed, the
mean dynamics generated by averaging the Boltzmann equation has flow features with
finite Knudsen number (a measure of the ratio of the mean free path of molecules to the
characteristic flow length scale). Using an expansion in small Knudsen number [14] one
can typically obtain non-Newtonian terms, whose transport coefficients agree with the
above nonlinear turbulence models. In fact, one can formally generate equations for the
turbulent velocity as well as turbulent kinetic energy [6,15,16], and match the conditions
to some known turbulent eddy-viscosity model. But this approach has a difficulty of
principle. If we agree that turbulence is a property of the Navier–Stokes equations, the
averaged equations arising from the Boltzmann equation are “imposed” instead of being a
description of turbulence from first principles.

Another way of deriving continuum equations from the Boltzmann equation was first
attempted over two decades ago by successively averaging the regular Boltzmann equation
to remove small scales [17]. Unfortunately, this attempt was unsuccessful: among other
problems, the main issue is that the resulting averaged equilibrium distribution contains the
temperature in the same place as the turbulent kinetic energy. Hence, the thermal molecular
effects cannot be removed via some successive averaging procedure. The fundamental
reason for this bottleneck is that molecules move approximately with the speed of sound
(∼
√

T), so that no naive averaging procedure can pick out the tiny hydrodynamic velocity
from a microscopic velocity distribution of molecules, which is essentially isotropic with a
standard deviation of

√
T. As a consequence, the resulting eddy viscosity is erroneously

dependent on (thermal) temperature as opposed to turbulent hydrodynamic properties
alone. The existence of dimensional quantities other than molecular viscosity, outside of the
intrinsic turbulent flow properties, is also inconsistent with turbulent scaling properties in
the limit of infinite Reynolds number (vanishing molecular viscosity). Therefore, the regular
Boltzmann equation is at least an inconvenient starting point, if not an inappropriate one;
or, one could say that there is a need for a fundamentally different averaging process.

In the current study, we take an alternative starting point. Instead of averaging the
Boltzmann equation for molecules, we start from the framework of a micro-kinetic equation
known as the Klimontovich equation [7]. For a turbulent flow that comprises an infinite
number of fluid elements of infinitesimal sizes, the Klimontovich equation describes the
evolution of the probability density function of such fluid elements. This equation is
exactly the (unaveraged) Navier–Stokes equation. As we will show below, averaging the
Klimontovich equation leads to a desired kinetic equation, without suffering from the
mixing of dynamic scales with the micro thermal temperature. Equally important, the
resulting kinetic equation provides a new framework for understanding the nature of
turbulent fluctuations and turbulent eddies. This new formulation also puts the long-
standing and heuristic analogy of turbulent eddies with molecules on better theoretical
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grounds and offers deeper insights into the nature of turbulent fluctuations and their effects
on the averaged turbulent hydrodynamics.

The formulation described in Sections 2–5 is followed by a discussion of its implications
in Section 6.

2. Basic Formulation

For a particle that moves exactly according to the Navier–Stokes equation, in the
description of Klimontovich, the pdf of particles, f = f (x, v, t), obeys the equation of
motion given by

∂t f + v · ∇ f + a · ∇v f = 0. (3)

If the fluid flow is self-consistently generated by the motion of such particles, we have∫
dv f (x, v, t) = 1, (4)

corresponding to the normalization of the pdf for an incompressible flow. We also have∫
dvv f (x, v, t) = u(x, t), (5)

where u(x, t) is the fluid velocity. Note here that the “particles” are not the actual molecules
that makes up the fluid, but an ensemble of infinitesimal fluid elements. Integrating
Equation (3) and using Equation (5), we obtain

∂tu +∇ · (uu)− a = 0. (6)

In the above, we have used the relation

uu =
∫

dvvv f , (7)

reflecting the fact that a particle is moving exactly according to the fluid flow field. Equiv-
alently, it also indicates that the pdf f (x, v, t) of fluid elements has zero temperature (i.e.,
root-mean-square (rms) deviation of local fluid velocity), in contrast to the pdf of molecules
corresponding to thermal temperature.

Equation (6) recovers the exact Navier–Stokes equation if the body-force term a is
defined by

a = −∇p + ν∇2u, (8)

where ν is the molecular viscosity, and the pressure p(x, t) is determined by the incompress-
ibility constraint.

Now let us consider an ensemble averaged (or a coarse-grained) pdf, F(x, v, t) ≡
〈 f (x, v, t)〉. Obviously, the normalization condition remains valid as∫

dvF(x, v, t) = 1. (9)

The averaged pdf gives the averaged velocity field, i.e., U(x, t) ≡ 〈u(x, t)〉, so we have∫
dvvF(x, v, t) = U(x, t). (10)

Taking the average over Equation (3), we obtain

∂tF + v · ∇F + ā · ∇vF = −∇v · 〈δaδ f 〉. (11)

In the above, a = 〈a〉+ δa and f = F + δ f , F = 〈 f 〉. Due to linearity and incompressibility,
we have

〈a〉 = −∇ p̄ + ν∇2U (12)
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Because of the existence of the unknown term on the right-hand side, Equation (11) for the
averaged pdf is not closed.

Taking the average over the Navier–Stokes equation (i.e., Equation (6)), we obtain the
known Reynolds-averaged equation

∂tU + U · ∇U +∇ · σ −〈a〉 = 0, (13)

where 〈a〉 is given by (12). The additional quantity σ is the so-called Reynolds stress tensor
defined as

σ ≡ 〈δuδu〉. (14)

From the averaged pdf, we have∫
dvvvF = 〈

∫
dvvv f 〉

= 〈uu〉 = UU + σ. (15)

In the above, the basic definition u = U + δu and 〈δu〉 = 0. Consequently, taking the trace
of Equation (15), we have ∫

dv
1
2

v2F =
1
2
〈u2〉 = 1

2
U2 + K, (16)

where K ≡ 1
2 〈(δu)2〉 is the turbulent kinetic energy.

From Equations (9), (10), and (15) as well as Equation (16), one can recognize that σ
and K have the following definitions based on the kinetic theory:∫

dv(v−U)(v−U)F = σ, (17)

and ∫
dv

1
2
(v−U)2F = K. (18)

It is important to note from Equation (17) that the approach we developed here shows
that the Reynolds stress tensor is fully determined by the averaged pdf, F. We emphasize
the following non-trivial point. We have made no assumption so far that goes beyond
those usually attributed to the ensemble of turbulent fluctuations δu; the entire information
about this ensemble that is necessary for the full knowledge of turbulent Reynolds stress
components, and thus for the full macroscopic description of turbulent flow, is contained
in a single function F(x, v, t) that is determined by the kinetic theory. Further, Equation (18)
implies that the turbulent kinetic energy plays a role similar to the thermal energy in a
regular kinetic theory for molecules.

Integrating Equation (11) by
∫

dvv, we have

∂tU + U · ∇U +∇ · σ −〈a〉 = −
∫

dvv∇v · 〈δaδ f 〉. (19)

Comparing Equations (13) and (19), the term on the right hand side of (19) should vanish.
That is,

−
∫

dvv∇v · 〈δaδ f 〉 = 0.

This is also seen as a direct consequence of the fluctuation term on the right hand side of
Equation (19). After integration by parts, we obtain

−
∫

dvv∇v〈δaδ f 〉 =
∫

dv〈δaδ f 〉.
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Since a is not a function of v, we have∫
dv〈δaδ f 〉 = 〈δa

∫
dvδ f 〉

= 〈δa
∫

dv( f − F)〉 = 0. (20)

The result in the last step vanishes because
∫

dv( f − F) = 0 from Equations (4) and (9).
Therefore, the additional term on the right-hand side of Equation (11) is formally like a
“collision term” in the Boltzmann equation that conserves both mass and momentum:∫

dv∇v · 〈δaδ f 〉 = 0∫
dvv∇v · 〈δaδ f 〉 = 0. (21)

Consequently, we may rename this collision term in Equation (11) as

C ≡ −∇v · 〈δaδ f 〉, (22)

but also point out that we do not know its explicit form. The central task in this turbulence
representation is to find an appropriate closure for the collision term C.

3. The Energy Equation

Before investigating a possible form of C, we review the averaged energy equation
here. Taking a dot product of u with Equations (6) and (8), we have

∂t(
u2

2
) +∇ · (u2

2
u) = −u · ∇p + νu · ∇2u. (23)

Likewise, taking a dot product of U with Equation (13), we have,

∂t(
U2

2
) +∇ · (U2

2
U) + U · (∇ · σ) = −U · ∇ p̄ + νU · ∇2U. (24)

Substituting u = U+ δu into Equation (23), taking the average, and subtracting Equation (24),
after some algebra, we obtain

∂tK + U · ∇K + σ : ∇U +∇ · (Q + W) = ν∇2K− ε. (25)

Here the dissipation term ε is given by

ε ≡ ν〈(∇δu) : (∇δu)〉, (26)

and the effective flux of turbulent kinetic energy due to turbulent fluctuations is given by

Q ≡ 〈δu
(δu)2

2
〉. (27)

There is also a “work”-related flux term ∇ ·W,

∇ ·W ≡ 〈δu · ∇δp〉, (28)

defined using the incompressibility condition ∇ · δu = 0.
Equation (25) governing the turbulent kinetic energy can also be derived straightfor-

wardly from Equation (11). It can be shown that the contribution from the collision term C
contains ε. Therefore, unlike the case of a regular molecular system, the turbulent kinetic
energy is not conserved in its collision process among turbulent fluctuations, as expected
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from energy transfer from fluid fluctuations to thermal energy. Multiplying Equation (11)
by 1

2 v2 and performing
∫

dv, we obtain

∂t

∫
dv

1
2

v2F +∇ ·
∫

dvv
1
2

v2F +
∫

dv
1
2

v2ā · ∇vF

=
∫

dv
1
2

v2C, (29)

where C is given by Equation (22). According to Equation (16),∫
dv

1
2

v2F =
1
2

U2 + K,

where K is defined in Equation (18). Integrating by parts, it can be shown that∫
dv

1
2

v2〈a〉 · ∇vF = U · 〈a〉.

With some straightforward algebra, one can show that

∇ ·
∫

dvv
1
2

v2F = ∇ · {U[
1
2

U2 + K] + U · σ + Q},

where σ is defined in Equation (17); the flux Q, defined by (27), can be rewritten as

Q ≡ 〈δu
(δu)2

2
〉 =

∫
dv

1
2
(v−U)(v−U)2F. (30)

Taking all these into Equation (29), we obtain

∂t[
1
2

U2 + K] +∇ · {U[
1
2

U2 + K] + U · σ + Q}+ U · ā

=
∫

dv
1
2

v2C. (31)

Subtracting Equation (24) from (31) and using the definition of average force (12), we obtain
the following equation for the turbulent kinetic energy evolution from this kinetic theory
formulation:

∂tK + U · ∇K + σ : ∇U +∇ ·Q =
∫

dv
1
2

v2C. (32)

By recalling the definition (22), the right side of Equation (32) can be recast as∫
dv

1
2

v2C = −∇ ·W + ν∇2K− ε, (33)

to recover Equation (25) for incompressible flows.

4. The Collision Term

It is difficult to derive an explicit form for the collision term C in Equation (11). In our
previous work [16], we used an experimental observation that the single-particle pdf Feq in
a homogeneous turbulent flow exhibits a local Gaussian form

Feq = W exp[−3(v−U)2/2K], (34)

where W is the normalization factor for
∫

dvFeq = 1. See also [18,19]. Let us now present
some further semi-theoretical arguments for this form of the equilibrium distribution
function, and argue that it is the asymptotic limit of the collision process C. Suppose
we start evolving the distribution function F according to Equation (11) towards its local
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equilibrium Feq. Based on the expression for the collision integral in Equation (22), the
ensemble average could be reinterpreted as

C = −〈δa · ∇vδ f 〉 = − 1
N

N

∑
n

δa(n) · ∇vδ f (n). (35)

Here the ensemble is explicitly written as the average of N realizations of deviations from
the mean, for n = 1, . . . , N → ∞. Therefore Equation (35) defines C as the summation of N
small increments to the distribution function as it evolves towards equilibrium, as defined
by Equation (11). By an informal appeal to the central limit theorem, the argument can be
made that F should converge, in the most probable sense, to a Gaussian form, since it is the
average sum of infinitely many uncorrelated processes. We realize that, while realizations
are uncorrelated, their deviations from the mean are not; we are thus fully self-critical with
respect to this argument. If, however, one accepts that these processes are uncorrelated to a
leading order, then the only Gaussian that can be a candidate for the equilibrium is that
given by Equation (34), since it satisfies the conservation of mass and momentum, as well
as the energy constraint based on (9), (10) and (16):∫

dvFeq =
∫

dvF = 1∫
dvvFeq =

∫
dvvF = U∫

dv
1
2

v2Feq =
1
2

U2 + K′. (36)

These constraints together with a Gaussian distribution completely determine Feq given by
Equation (34). Here K′ is the value of turbulent kinetic energy in equilibrium. Therefore,
the collision process C drives the distribution towards an equilibrium distribution which
is exactly defined by Equation (34). We note that this semi-theoretical argument does not
quantify the rate of approach to equilibrium; that is, we do not know the time it takes for
the collision process C to drive F to Feq.

Based on the argument above, we could assume that the collision term can be de-
scribed as a relaxation process towards the local Gaussian equilibrium with an unspecified
relaxation time τ, namely a BGK form [20]

C = − F− Feq

τ
. (37)

Equation (11) together with (37) gives a closed kinetic Boltzmann–BGK representation for
the averaged fluid motion with an unspecified relaxation time τ. Obviously, τ = τ(x, t),
a function of local and nonlocal properties and structures of turbulence. Understanding
and the determination of this fundamental time scale is work for the future, but a few
comments are in order.

First, τ must have similar characteristics as K/ε but it must be kept in mind that the
deviation of F from the equilibrium value, Feq, occurs when there exists a shear in the mean
flow, as dictated by Equation (11). This is in agreement with the experimental observation
of the Gaussian single-point pdf Feq (Equation (34)) in homogeneous turbulence. Second,
one can in principle write down a dynamic equation for τ as done in a different context
in Ref. [21], where a wake behind a twin-airfoil, driven away from equilibrium by an
impulsive pressure gradient, was allowed to relax back to equilibrium.

As discussed above, the collision operator C obeys the conservation of mass and
momentum in (21) as ∫

dv[F− Feq] = 0∫
dvv[F− Feq] = 0. (38)
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In contrast, C does not conserve the turbulent kinetic energy K. As shown above, the
turbulent kinetic energy should change, in the sense of a global space average, according to∫

dv
(v−U)2

2
C = −ε. (39)

Consequently, the K value appearing in Feq (Equation (34)) should be slightly smaller than
the K value derived using F according to Equation (16) or Equation (18). If we assume the
BGK form for the collision term, then the difference between the two K values is simply
∆K = τε.

5. Kinetic Representation of the Average Turbulence Dynamics

Equations (9), (10), (18), (11), (12), (22), (34), (36), (37) and (39) fully define a kinetic
theoretic representation of the averaged turbulent flow dynamics in the form of Boltzmann–
BGK with one unspecified collision relaxation time, τ. Solving the kinetic system, one
obtains the averaged pdf F, and the latter fully determines fundamental quantities such
as the Reynolds stress tensor σ according to Equation (17). Note that for homogeneous
flow the derivatives in the kinetic Equations (11) and (33) disappear so that the solution
corresponding to the BGK collision integral (39) is the Gaussian Feq (34), which is consistent
with experimental observations for single point pdf. Therefore, from this perspective, the
non-Gaussian statistics are due to spatial inhomogeneities of the averaged flow, generating
non-equilibrium properties.

It is straightforward to derive that Equations (13) and (25) are the results of the
appropriate moments of the Boltzmann-BGK model. The resulting Reynolds stress term
has an explicitly expanded form in terms of turbulent hydrodynamic quantities via the
Chapman–Enskog expansion of a finite mean-free path [6]; its leading order (i.e., Navier–
Stokes) expression (in the small mean-free path limit) is the usual eddy-viscosity form

σij =
2
3

Kδij − νeddyS̄ij, (40)

where νeddy = 2τK/3. Here δij is the Kronecker delta function, and S̄ij is the averaged strain
rate tensor

S̄ij =
1
2
(

∂Ui
∂xj

+
∂Uj

∂xi
).

The trace of S̄ij vanishes due to incompressibility. The next order contributions to σ include
both time and space derivatives and nonlinear functions of S̄ij as well as the anti-symmetric
tensor Ω̄ij [6], as given below:

σ
(2)
ij = − 2νeddy

D
Dt

[τS̄ij]

− 6
ν2

eddy

K
[S̄ikS̄kj −

1
3

S̄kl S̄kl ]

+ 3
ν2

eddy

K
[S̄ikΩ̄kj + S̄jkΩ̄ki]. (41)

Here, D/Dt ≡ ∂t + U · ∇, and

Ω̄ij =
1
2
(

∂Ui
∂xj
−

∂Uj

∂xi
)

is the vorticity tensor. The summation convention for repeated indices is adopted in
Equation (41). It is interesting to mention that by associating τ to a known turbulent eddy-
viscosity model, the coefficients in the next order (i.e., (40) and (41)) are in quantitative
agreement with some representative nonlinear turbulence models that were constructed or
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proposed from various other means [6]. Using the same analysis, one can also expect, to
the leading order,

Q = −ηeddy∇K, (42)

with ηeddy∼νeddy.
In short, we have theoretically constructed a kinetic theory representation for the aver-

aged turbulent flow dynamics. However, the equation is not closed due to the unspecified
time τ. The latter is central for formulating any specific kinetic-theory-based turbulent
models. This requires an understanding of the structures and interactions (collisions) of
turbulent fluctuations in terms of 〈δa · ∇vδ f 〉.

6. Discussion
6.1. Past Closure Attempts

Closure models for the Reynolds stress tensor with an eddy-viscous form as in (40)
(and (42)) have been a long-standing foundation for mainstream turbulence models. The
underlying concept has been the heuristic analogy between turbulent eddy fluctuations
and molecular motions. For the mean motion of turbulent flows, this analogy results in
the Navier–Stokes equation with an added eddy viscosity. However, this procedure is
questionable because of the lack of scale separation between the mean flow and the so-
called turbulent eddies. (Separate studies [22,23] have also demonstrated weak correlation
between the Reynolds stress tensor σ and the mean turbulent rate-of-strain S̄ tensor).
Extensions beyond the eddy-viscosity term, which include higher order non-Newtonian
effects with the framework of a modified Navier–Stokes equation [10–13], have offered
useful insights but limited success.

In the past, kinetic theory representation based on the Boltzmann equation has also
been attempted [6,15,16]. However, these attempts are imposed externally with the intent
to generate the a priori known averaged turbulent hydrodynamic equations, although
the former contains more information beyond the viscous order [6]. There is a question
as to why such a kinetic equation should be justified other than that it produces the
already expected hydrodynamic equations. There is also the question of how such a kinetic
representation related to the first principles of fluid turbulence, if the latter is a property of
the Navier–Stokes equations. On the other hand, one main issue related to averaging the
regular Boltzmann equation is that the resulting averaged equilibrium distribution contains
the temperature in the same place as the turbulent kinetic energy. Hence, the thermal
molecular effects cannot be removed by successive averaging procedure that can pick out
the tiny hydrodynamic velocity from a microscopic velocity of molecules. Thus, the most
straightforward approach of performing averages of the regular Boltzmann equation over
molecular motions has been without commensurate gain [17]). For an interesting effort in
the direction of using the Boltzmann equation for obtaining the dynamics of filtered fluid
equations, see [24].

6.2. Present Work

We have shown here that the starting point for deriving a desired kinetic equation
for averaged dynamics of turbulence can be a Klimontovich-type self-consistent body-
force-based equation. This equation describes the motion of particles (i.e., fluid elements
of infinitesimal size) corresponding exactly to the (unaveraged) Navier–Stokes hydrody-
namics. Averaging the Klimontovich equation results in a kinetic equation with a collision
term representing the effect of turbulent fluctuations on mean dynamics. Our present
kinetic-theoretic representation does not suffer from the problem of scale separation. Be-
sides including the eddy viscosity as well as the next order effects, effects from turbulent
fluctuations of all orders of a scale expansion are also naturally included.

An attractive feature of this kinetic-based approach is that a single distribution function
F(x, v, t) ≡ 〈 f (x, v, t)〉, governed by (11), contains the entire information needed for the
(turbulent ensemble) averaging of all properties, as long as they are based on single point
pdfs. Indeed, in addition to second order moments (17), (18), the knowledge of F provides
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full information about the turbulent energy diffusion flux (30) which is a third order
quantity—and, indeed, about any arbitrary N-th order moment of the single point pdf
of turbulent fluctuations. In particular, the non-Gaussian properties of the pdf such as
flatness and skewness are all contained in the kinetic-based distribution function F. Note
also that the all these conclusions are obtained under some of the weakest assumptions
possible. Indeed nothing stronger than the mere existence of ensemble average (such that
〈δu〉 = 0) is required to exactly derive expressions such as (17), (18), and (30); in particular
no assumptions about the specific form of the equilibrium distribution function and/or
collision integral are invoked. This self-consistent approach can be applied for the kinetic-
theory reformulation of equations other than Navier–Stokes (e.g., the Burgers equation) by
an appropriate choice of self consistently generated body force a(x, t) (Equation (8)).

In this formulation, the turbulent kinetic energy K, which measures the square of
the mean turbulent fluctuation, plays a role like the thermal energy or temperature in
the regular Boltzmann equation for motion of molecules. It is interesting to note one
important difference between a turbulent kinetic-energy-based temperature Tturb (=2K/3)
and a conventionally known thermal temperature T: Unlike a regular low Mach number
flow with

√
T >> |u|, the turbulent kinetic-energy-based temperature is often less than

the mean flow velocity,
√

Tturb < |U|. Therefore, an averaged turbulent flow bears some
character of a supersonic flow, even though it is still incompressible because of the pressure
term from the incompressibility constraint.

We have shown that the averaged kinetic equation generates the same form of the
governing equations for the mean turbulent velocity U and the turbulent kinetic energy
K, as that from direct averaging of the Navier–Stokes equation. Furthermore, interactions
of turbulent fluctuations play a role like a molecular collision process that drives the
mean pdf towards a Maxwell–Boltzmann (Gaussian) equilibrium distribution. The single
relaxation time scale determines not only the eddy viscosity, but also the turbulent transport
coefficients of all orders in the expansion of turbulent flow scales. The collision process
obeys the conservation of mass and momentum. On the other hand, it generates a loss of
flow energy that directly corresponds to the turbulent dissipation ε. The present analysis
justifies a relaxation process to equilibrium. The full kinetic equation for describing the
dynamics of a mean turbulent flow is closed when the relaxation time τ, the dissipation
ε, as well as the flux W (cf. Equations (28) and (33)), are specified. However, whether all
turbulent moments relax with the same relaxation time τ (i.e., BGK model) is a model
assumption, although there is some supporting evidence for this view [25]. The ultimate
determination of τ should be obtained from an analysis of the full expression of the collision
term in (22). One may measure its value experimentally or numerically from, for instance,
the time evolution of turbulent kinetic energy in a rapid distortion problem (cf. [13]).

6.3. The Collision Term and the Relaxation Effects

An estimate, based on a typical conventional turbulence model, indicates that the
effective mean-free path, Lm f p, or the collision relaxation time τ are, respectively, about one
tenth of the length and time scale of the energy containing eddies, namely Lm f p∼CµK3/2/ε
and τ∼CµK/ε. Cµ∼0.1. Therefore, a mean turbulent flow is more resembling of a flow with
finite Knudsen number, Kn∼0.1. This suggests that the representation of the mean turbulent
flow dynamics by the Navier–Stokes equation with an eddy viscosity is not sufficient, in
general. Instead, contributions from the higher order terms (in the small Knudsen number
expansion) become non-negligible, and are responsible for non-Newtonian fluid dynamic
behavior beyond the Navier–Stokes representation. Indeed, averaged turbulence exhibits
the known phenomena of finite Knudsen number and non-Newtonian character, such as the
slip velocity near wall [16], the secondary flow structures in a square duct and the known
retarded rapid distortion behavior (cf. [10,12,13]). A kinetic-theory-based representation
for turbulence naturally includes finite Knudsen effects of all orders, and thus all the
non-Newtonian phenomena mentioned above are automatically captured.
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Lastly, we wish to make the following observation. Microscopic motion of molecules
is described by a Boltzmann-type kinetic equation. The averaged motion of the molecules
is described by the Navier–Stokes hydrodynamic equation. Yet, when further aver-
aged, a suitable kinetic formulation comes back as a desirable description—completing a
virtuous circle.
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