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Abstract: A realizable Eddy Damped Markovian Anisotropic Closure (EDMAC) is presented for
the interaction of two-dimensional turbulence and transient waves such as Rossby waves. The
structure of the EDMAC ensures that it is as computationally efficient as the eddy damped quasi
normal Markovian (EDQNM) closure but, unlike the EDQNM, is guaranteed to be realizable in the
presence of transient waves. Jack Herring’s important contributions to laying the foundations of
statistical dynamical closure theories of fluid turbulence are briefly reviewed. The topics covered
include equilibrium statistical mechanics, Eulerian and quasi-Lagrangian statistical dynamical closure
theories, and the statistical dynamics of interactions of turbulence with topography. The impact
of Herring’s work is described and placed in the context of related developments. Some of the
further works that have built upon Herring’s foundations are discussed. The relationships between
theoretical approaches employed in statistical classical and quantum field theories, and their overlap,
are outlined. The seminal advances made by the pioneers in strong interaction fluid turbulence theory
are put in perspective by comparing related developments in strong interaction quantum field theory.

Keywords: Eulerian closures; Lagrangian closures; Markovian closures; turbulence; Rossby waves;
statistical mechanics; homogeneous flows; inhomogeneous flows; topography; field theory

1. Introduction

Jack Herring (1975) [1] developed a theory of two-dimensional (2D) anisotropic turbu-
lence by generalizing the eddy-damped quasi-normal Markovian (EDQNM) closure that
had been derived by Orszag (1970) [2] for three-dimensional (3D) homogeneous isotropic
turbulence (HIT). The EDQNM was numerically implemented and studied for 2D HIT by
Leith (1971) [3]. Herring’s interest was in examining the relaxation of 2D homogeneous
anisotropic turbulence (HAT) back to isotropy in comparison with the return of 3D HAT to
HIT. The study was performed without the presence of transient Rossby waves. Indeed,
incorporating transient waves in the EDQNM closure, while guaranteeing realizability, has
been a long-standing problem that we will discuss in detail.

Our aim in this article is to present a variant of the EDQNM closure for HAT, which is
realizable in the presence of transient waves. The study focuses on Rossby waves, although
the same approach can be used for other waves. We call the model the realizable eddy
damped Markovian anisotropic closure (EDMAC). The EDMAC model is as computation-
ally efficient as the EDQNM and so expands the applicability Markovian closures to cater
for transient waves at very little computational cost.

A second aim is to summarize some of Jack Herring’s major achievements in laying
the foundations of the statistical dynamical theory of turbulence. It is also to place his work
in the context of related developments, to note the impacts of his work and how it has
allowed further advances in this complex and difficult field.

The article is structured as follows. In Section 2, we review some of Jack Herring’s
major pioneering contributions to formulating the foundations of the statistical dynamical
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closure theory for fluid turbulence. His impact on the field is also discussed and his
work placed in the context of related works and some of the further advances that have
built on these foundations are discussed. A major aim of this article is also to present a
generalization of the EDQNM closure that is guaranteed to be realizable for 2D HAT in
the presence of transient waves like Rossby waves. This work thus extends the closures of
Orszag [2] and Herring [1] and provides a resolution of a long-standing problem.

In Section 3, the dynamical equations for 2D HAT interacting with Rossby waves
on a β–plane are summarized. The corresponding direct numerical simulation equations
are displayed in the spectral space of Fourier coefficients on the doubly periodic domain
in Section 4. In Section 5, non-Markovian closures for 2D HAT are presented and three
variants of corresponding Markovian closures with auxiliary evolution equations for the
triad relaxation functions are derived in Section 6. The realizable EDMAC closure for
2D HAT interacting with transient Rossby waves is presented in Section 7. The EDMAC
model is constructed to be as numerically efficient as the EDQNM closure since it has an
analytical expression for the triad relaxation function like the EDQNM. Section 8 contains a
few of Jorgen’s personal reflections on Jack Herring and perspectives on strong interaction
statistical field theories and a comparison of progress in strong interaction fluid turbulence
with that in hadron physics in quantum field theory. Our conclusions are summarized in
Section 9. Appendix A establishes the conditions under which the real part of the EDMAC
triad relaxation function is positive semi-definite and Appendix B presents the Langevin
equation that underpins the EDMAC model and ensures that it is realizable for 2D HAT in
the presence of transient Rossby waves.

2. Herring’s Statistical Dynamical Theories and Their Impacts and Extensions

Jack Herring made giant pioneering steps in laying the foundations of the statistical
dynamical theories of fluid turbulence. In this Section, we briefly summarize some of
his major achievements, the impacts of his works and some of the related and further
developments that have occurred.

2.1. Equilibrium Statistical Mechanics

Equilibrium statistical mechanics is perhaps the simplest theoretical framework that
gives some insight into the more complex phenomena of turbulence in the presence of
forcing and dissipation. The appeal of equilibrium statistical mechanics is that the inviscid
unforced equations of motion, with conservation laws like energy and enstrophy, have
exact analytical solutions.

2.1.1. Complete Statistical Mechanics Theories

Herring (1977) [4] developed the statistical mechanics theory of two-dimensional
flows over random topography with ensemble averages taken over both the flow fields
and the topography. He formulated the canonical equilibrium solutions based on planar
geometry spectral representations of the flow fields and topography. The aim was to
provide guidance and understanding of the more complicated statistical dynamical closure
theories that he formulated and solved numerically for forced dissipative turbulence over
random topography. Herring’s thermal equilibrium solutions for ensembles of random
topography led on from the earlier statistical mechanics of point vortices by Onsager
(1949) [5], Kraichnan’s (1967) [6] and (1975) [7] planar geometry spectral solutions without
topography, and the planar geometry statistical mechanics for quasi geostrophic flows over
single realization topography by Salmon et al., (1976) [8].

These seminal works were extended to formulate canonical equilibrium theory in
spherical geometry both with and without single realization topography [9,10]. Indeed, the
relationships between equilibrium statistical mechanics solutions in planar geometry and
on the sphere have been further elucidated and reviewed in this special issue dedicated to
Jack Herring by Salmon and Pizzo [11].
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Bretherton and Haidvogel (1976) [12] developed a different model for understanding
turbulence over topography in which the dynamical solutions were minimum enstrophy
states that are nonlinearly stable [13]. Frederiksen and Carnevale (1986) [14] established
the relationships between canonical equilibrium states and minimum enstrophy states for
barotropic flows over topography on the sphere and this was subsequently generalized
to baroclinic flows [15,16]. The corresponding equivalence was formulated for barotropic
flows over topography in planar geometry by Carnevale and Frederiksen (1987) [17].
They also considered the thermodynamic limit of infinite resolution and showed that
then the canonical equilibrium state is statistically sharp and identical to the nonlinearly
stable minimum enstrophy state. In their study, it was also noted that for the continuum
dynamics of fluids, more general nonlinear stable states than the minimum enstrophy states
are possible since an infinity of invariants exists in the inviscid case. Moreover, they pointed
out that statistical mechanics theory can also be generalized to account for these invariants
to be consistent with the many-invariant nonlinearly stable flows. The in-principle and
practical difficulty is developing a realizable numerical model with an infinity of invariants
on which theoretical formulations and solutions can be based.

2.1.2. Empirical Statistical Mechanics Theories

Miller and collaborators [18,19] and Robert and collaborators [20,21] made attempts at
formulating complete statistical mechanics theories with an infinity of invariants. However,
the shortcomings of these attempts have been noted in several studies. Chorin [22] and
Turkington [23] pointed out that the lattice models of Miller et al. [19] always have a shortest
scale, while this is not the case for continuum fluids. Majda and Wang [24] regard the
many-invariant approaches as empirical rather than complete statistical theories like the
energy-enstrophy theories with underpinning realizable spectral models. More extensive
discussions of statistical mechanics methods including recent works and applications are
provided in the reviews in Refs. [24–27].

2.2. Eulerian Statistical Dynamical Closure Theories

The late 1950s to mid-1960s was a time of extraordinary advances in the theory of
strong turbulence, one of the most difficult problems in classical physics. In the vanguard
was the Eulerian direct interaction approximation (DIA) closure theory of Kraichnan [28,29]
for homogeneous isotropic turbulence (HIT). The DIA was based on formal, rather heuristic,
renormalized perturbation theory and, in the language of modern physics, is a bare vertex
approximation [30–32]. This was followed by the nonequilibrium steady state theory of
Edwards [33] and the self-consistent field theory (SCFT) of Herring [34,35] in steady state
and time-dependent forms. Both the Edwards and Herring statistical closures for HIT
are based on Liouville or Fokker–Planck formalisms and are original in their approaches.
Carnevale and Frederiksen [36] and McComb [37] in this special issue in commemoration
of Jack Herring compare these different formalisms at nonequilibrium steady states. An-
other Eulerian non-Markovian closure theory for HIT that was developed in the 1970s by
McComb [38–40] is the local energy transfer theory (LET).

The three time-dependent Eulerian non-Markovian closure theories developed by
Kraichnan, Herring and McComb are based on quite different physical reasoning and
theoretical approaches. However, the final closure equations are in fact simply related.
The theories are all bare vertex approximation theories. The theories all have the same
single-time cumulant equation and differ just in how the two-time cumulant and response
functions are treated. Kraichnan’s DIA has separate equations for the response functions
and two-time cumulants while both Herring’s SCFT and McComb’s LET effectively assume
a fluctuation dissipation theorem (FDT) between the response and two-time cumulant
functions [41]. In principle the FDT should only be strictly valid in statistical mechanical
equilibrium as described in Section 2.1. The SCFT and LET closures can be derived from
the DIA by employing the prior-time FDT [36] (Equation (3.5)) defined by

Ck(t, t′) ≡ Rk(t, t′)Ck(t′, t′) (1)
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for t ≥ t′. Here, Ck(t,t′) is the two-time spectral cumulant at wavenumber k, Rk(t,t′) is the
response function and Ck(t′,t′) the prior time single-time cumulant. The SCFT and DIA have
the same response function equation, but the SCFT then calculates the two-time cumulant
from Equation (1). On the other hand, the LET and the DIA have the same two-time
cumulant equation with the LET determining the response function from Equation (1).

The DIA, SCFT and LET closures are quite skillful in capturing the large energy
containing scales, which is probably the most important property for geophysical fluids
and plasmas. However, the focus of much of the statistical closure theory for HIT has been
on the power law behaviour of the closures as well as their realizability. The realizability of
the DIA closure was a major triumph but the power laws of the DIA, and the SCFT, were
found to differ a little from the inertial range power laws of k−

5
3 for 3D turbulence and from

the k−3 enstrophy cascading inertial range for two-dimensional turbulence (Herring et al.,
1974 [42]). Again, the power law fall-off of the LET closure and general performance are
very similar to the DIA and SCFT closures for two-dimensional turbulence (Frederiksen
and Davies 2000 [43]). The power law deficiencies of the DIA closure were ascribed by
Kraichnan [29] to spurious sweeping effects of the small eddies by the large eddies.

The study of Herring et al. [42] established the properties of the DIA closure for
two-dimensional HIT in comparison with direct numerical simulations (DNS) on the
doubly periodic domain. The DNS used the discrete Fourier transform but for the sake of
efficiency the DIA closure, as with most closure codes, was formulated for the continuum
problem and used logarithmic discretization to reach high wavenumbers. Frederiksen
and Davies [43] made a series of similar comparisons of the DIA, SCFT and LET closures
for two-dimensional HIT with DNS and for a range of large-scale Reynolds numbers
between RL ≈ 50 and RL ≈ 4000 that included experimental setups very similar to those of
Herring et al. [32]. They used closures formulated on the same discrete spectral space as the
DNS which involved a much larger computational task. It meant that all interactions were
included in both closures and DNS and a direct comparison was possible. It was found
that the discrete closures were in much better agreement with DNS at the low to moderate
Reynolds numbers used by Herring et al. [42]. As well, the DIA, SCFT and LET closures
had very similar performance and similar deficits in kinetic energy and palinstrophy at the
smallest scales compared with DNS.

Reviews of the subsequent development of closures for HIT are given in Refs. [27,37–40,44–47].

2.3. Quasi-Lagrangian Statistical Dynamical Closure Theories

The recognition of the inertial range discrepancies of the Eulerian DIA compared
with the observed power laws of 2D and 3D turbulence led to the development of quasi-
Lagrangian closures for HIT by Kraichnan (1965) [48] and (1977) [49], Herring and
Kraichnan (1979) [50], Kaneda (1981) [51] and Gotoh et al. (1988) [52]. This was a truly epic
effort of theoretical and numerical model development. Unfortunately, the outcome was
not wholly successful. Unlike the Eulerian DIA, which is independent of field variable
formulation, or norm, the quasi-Lagrangian closures depend on whether the derivations
use labelling time derivatives [48] or measuring time derivatives [51]. As well, the quasi-
Lagrangian closures depend on the choice of field variable, or representative. This is
effectively equivalent to specifying one two-state parameter, the labelling or measuring
time, and one continuous parameter that determines the field variable or linear combina-
tions of field variables.

The quasi-Lagrangian closures are still second order in perturbation theory, and
the aims have been to make transformations that avoid the spurious convection effects
identified by Kraichnan [29]. They do not, however, provide a fundamental solution to
the vertex renormalization problem “which is the whole problem of strong turbulence”
(Martin et al., 1973 [53]).

Kraichnan (1964) [54] had earlier recognized that the power law discrepancies of the
Eulerian DIA could be overcome by cutting off the wavenumber interactions between
the larger and smaller scales in the response functions and two-time cumulants. This
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results in a one parameter regularized DIA closure with empirical vertex renormalization
depending on the cut-off parameter α (see Section 5.3). However, it turns out that α is only
weakly dependent on whether the turbulence is 2D or 3D and on whether the turbulence is
homogeneous or inhomogeneous. For 3D HIT, the regularized DIA closure captures the
DNS statistics closely, including the k−

5
3 power law, with α between 3 and 3.5 [54,55]. For

2D turbulence, the regularized DIA (Frederiksen and Davies 2004 [56]) and regularized
QDIA (O’Kane and Frederiksen 2004 [57]) have employed values of α between 4 and 6.
Closures for 2D HIT have used α = 6 to give good agreement with DNS including the k−3

power law, and for inhomogeneous closures, α = 4 has been used. However, the closures in
the HIT simulations were used with repeated cumulant update restarts [56] after relatively
short times to optimize computational resources, and that allowed a larger value of α to be
used. We expect that, with sufficiently long-time integrals in the non-Markovian closures,
taking α ≈ 4 may be a reasonable universal value for both 2D and 3D turbulence.

The quasi-Lagrangian closures do of course improve on the small-scale behaviour of
the Eulerian closures, but there are still significant differences from the statistics of DNS.
These differences depend on both the formulations and on whether the turbulence is 2D
or 3D. The differences also generally become more apparent at higher Reynolds numbers.
For the case of 2D HIT, Frederiksen and Davies [56] compared their regularized DIA cal-
culations with quasi-Lagrangian closure results based on both labelling time derivatives
and measuring time derivatives and for several choices of field, or representative, formula-
tions. Compared with the statistics of DNS, the regularized DIA performed better than the
abridged Lagrangian-history direct interaction (ALHDI) approximation, the strain-based
abridged Lagrangian-history direct interaction (SALHDI) approximation of Herring and
Kraichnan [50], and the Lagrangian renormalized approximation (LRA) of Gotoh et al. [52].

2.4. Homogeneous Closures for Turbulent Flows over Topography

Herring (1977) [4] generalized the Eulerian DIA and the test field model (TFM)
(Kraichnan 1971 [58]) to study the statistics of turbulent 2D flows over ensembles of
random topography. He considered rotating flows on an f -plane, so there was no differ-
ential rotation with latitude, or β-effect, or propagating Rossby waves. The aim was to
shed further light into the findings of Bretherton and Haidvogel [12] that slowly decaying
turbulence over topography tends to progress through a sequence of minimum enstrophy
states for a fixed energy (in the absence of the β-effect).

Herring [4] was able to establish broad parameter ranges for which there was general
agreement between his forced dissipative closure results and the exact static solutions for
inviscid flows. The locking of the flow to the topography was determined for the DIA and
TFM closures with very similar behaviour at the larger scales.

2.5. Inhomogeneous Closures for Turbulent Flows over Topography

Frederiksen (1999) [59] continued the work on understanding the effects of topography
on 2D turbulence. He developed a generalization of the Eulerian DIA closure theory that
applies to inhomogeneous turbulence over single realization topography. This quasi-
diagonal direct interaction approximation (QDIA) has a statistical dynamical equation
for the mean flow unlike homogeneous closure equations, for which the mean flow is
zero. The mean flow also couples to the single-time cumulant, the two-time cumulant
and the response function that describe the turbulence. The QDIA expresses the off-
diagonal elements of the cumulants and response functions, in Fourier space, in terms
of the diagonal elements and the mean flow and topography. Consequently, the QDIA
is only a few times more computationally demanding than the corresponding DIA for
homogeneous turbulence.

The inhomogeneous QDIA closure theory has been generalized to multi-field classi-
cal systems including quasi-geostrophic and 3D turbulence [60,61] and to quantum field
theories [32]. O’Kane and Frederiksen (2004) [57] implemented the closure for numerical
studies in comparison with ensembles of DNS on an f -plane. Frederiksen and O’Kane
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(2005) [62] generalized the QDIA closure for the interaction of inhomogeneous turbulent
flows with Rossby waves and topography on a β-plane and noted the remarkable agree-
ment between the closure and large ensembles of DNS for low Reynolds number flows.
The QDIA closure has been extensively applied in bare vertex form at lower Reynolds
numbers and in regularized form with α = 4 at higher Reynolds numbers. It has been
used to study the dynamics of turbulence, Rossby wave and topography interactions, the
predictability of blocking regime transitions, data assimilation, and has been extensively ap-
plied for developing subgrid scale parameterizations. Reviews of the literature are given in
refs. [44,63,64].

2.6. Markovian Statistical Closure Theories without Waves

The non-Markovian closures, the DIA, SCFT and LET for homogeneous turbulence,
and the QDIA for inhomogeneous turbulence, present a large computational task that scales
as O(T3) where T is the length of the time integration. This can be improved to scaling
like O(T2) by restarting the integrations periodically and using the updated three-point
cumulant in the restart [43,61,65]. However, Markovian closures such as Orszag’s (1970) [2]
EDQNM closure are still very much more computationally efficient since they scale like
O(T). The EDQNM is a one parameter theory with the eddy damping specified analytically
to satisfy inertial range power laws. It was first implemented numerically by Leith (1971) [3]
for 2D HIT with a form equivalent to that given in our Section 7.1. Herring (1975) [1] gener-
alized the EDQNM closure to develop a theory of 2D anisotropic turbulence without the
presence of waves. The EDQNM has an underpinning Langevin equation representation,
as noted by Leith [3] and Herring and Kraichnan [66], that guarantees realizability for HIT
and HAT without transient waves.

The EDQNM in its most basic form is represented by just the single-time cumulant
spectral equation. It can be arrived at from the DIA closure by invoking the current-time FDT

Ck(t, t′) ≡ Rk(t, t′)Ck(t, t) (2)

for t ≥ t′. As well an analytical form for the response function is assumed and the time-
history integrals of the DIA are then performed analytically to determine a triad relaxation
function that enters the cumulant equation (see Section 7.1).

In the presence of transient waves, it is possible for the EDQNM closure to have
unphysical behaviour and blow up (Bowman et al., 1993 [67]). To avoid this, the steady
state form of the triad relaxation function has often then been used [46,68–70] or modified
quasi-normal Markovian closures employed [71,72].

2.7. Markovian Statistical Closure Theories with Waves

Bowman et al. [67] made detailed analyses of the EDQNM and the problems with
realizability that can occur in the presence of transient waves. In particular, in the stan-
dard formulation, when waves, such as drift-waves or Rossby waves, are included in the
response function it is not possible to guarantee that the real part of the triad relaxation
function will be non-negative. This is also the case if the prior time FDT in Equation (1)
is used instead of the current time FDT in Equation (2). Bowman et al. [67] found that
they could derive a realizable Markovian closure (RMC) by using a fluctuation dissipation
theorem that involves both current and prior time cumulants and that we have termed the
correlation FDT

Ck(t, t′) ≡ [Ck(t, t)]
1
2 Rk(t, t′)[Ck(t′, t′)]

1
2 (3)

for t ≥ t′. Note though that while the EDQNM triad relaxation function has an analytical
form for the RMC, a time-dependent equation must be solved to determine it.

The works of Bowman et al. [67], Hu et al. [73] and Bowman and Krommes [74]
describe the further development of realizable Markovian closures for homogeneous tur-
bulence with transient waves, in which the triad relaxation functions are determined by
auxiliary differential equations.



Atmosphere 2023, 14, 1098 7 of 22

Markovian inhomogeneous closures (MICs) were developed and tested against large
ensembles of DNS by Frederiksen and O’Kane [44,75]. They started their formulations with
the inhomogeneous QDIA closure for turbulent 2D flow interacting with Rossby waves
and topography and employed the three versions of the FDT that they combined as:

Ck(t, t′) ≡ [Ck(t, t)]1−XRk(t, t′)[Ck(t′, t′)]X (4)

for t ≥ t′ and Ck(t,t′) = C−k(t′,t) for t′ > t. Here, X = 0 for the current-time FDT used
for the EDQNM of Orszag {1970}, X = 1

2 for the correlation FDT used for the RMC of
Bowman et al. [67], X = 1 for the prior-time FDT used for the SCFT of Herring [35] and the
LET of McComb [38,39].

All the MICs developed by Frederiksen and O’Kane [44,75] performed remarkably
well compared with the DNS ensembles in low Reynolds number numerical experiments.
However, it is desirable to be sure that the Markovian closures employed will be realizable
under all circumstances as is the case for the formulations using the correlation FDT (X = 1

2 ).
Determining the relaxation functions through time integration of differential equations
is nevertheless a considerable computational overhead. Frederiksen and O’Kane [75],
therefore, developed the eddy damped Markovian inhomogeneous closure (EDMIC) that
generalizes the EDQNM to inhomogeneous flows. The EDMIC has analytical forms for the
relaxation functions and is realizable under the same conditions as the EDQNM.

A major aim of this article is to formulate a realizable eddy damped Markovian
anisotropic closure (EDMAC) with analytical triad relaxation function in the presence of
transient Rossby waves that thus generalizes the EDQNM.

2.8. Classical and Quantum Statistical Field Theory Formalisms

Herring’s [34,35] theoretical approach to deriving the statistical dynamical closure
equations based on Liouville or Fokker–Planck formalisms was original. It was different
from the approaches that had become standard in quantum field theory since the remark-
able success of renormalized perturbation theory in quantum electrodynamics by Feynman,
Schwinger and Tomonaga in the mid-20th century [32]. This is also the case for the works
of Edwards [33], McComb [38,39], and the published work of Kraichnan [28,29]. However,
Martin et al. [53] (Footnote 11) note “It seems that Kraichnan’s rules for calculating the
renormalized vertices to a given order generate the quantities which are given exact non-
perturbative definitions here. We are grateful to Dr. Kraichnan for providing us with old
unpublished notes . . . ”.

Wyld [30] and Lee [31] reconstructed Kraichnan’s Eulerian DIA closure through
renormalized perturbation theory with a diagrammatic representation similar to Feynman
diagrams. Lee considered magneto-hydrodynamics to sixth order and pointed out that
Wyld had mistakenly replaced the bare propagator by the renormalized propagator in
some terms in his fourth order representation. The DIA in these works appears as a bare
vertex approximation in second order renormalized perturbation theory.

Martin et al. [53] (hereafter MSR) generalized the Schwinger–Dyson functional op-
erator approach to classical statistical dynamics by introducing an adjoint operator that
generates the response function. They also introduced an associated non-Hermitian Hamil-
tonian, in terms of the field variable and the adjoint operator, and a generating functional
from which the mean field, two-point cumulants, response functions, self-energies and
vertex functions can be derived through functional differentiation.

The MSR formalism was expanded by Rose [76] to include random forcing including
non-Gaussian noise and non-Gaussian initial conditions. The full power of renormalized
perturbation theory was achieved by the reformulation of the MSR approach through the
Feynman path integral formalism [77] by Phythian [78] and most generally by Jensen [79].

Berera et al. [80] made an important reconciliation between the Wyld diagrammatic
approach at fourth order and the MSR formalism. As further discussed by McComb [37]
they corrected some errors in both the Wyld and MSR formalisms to show the consistency
between the diagrammatic approach and the functional method, as would be expected.
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The Schwinger–Dyson functional formalism was designed for developing a statistical
theory of scattering from asymptotic ‘in’ states to ‘out’ states. This is analogous to the steady
state theories of Edwards [33] and Herring [34] with the fluctuation dissipation theorem
(FDT) imposed. The time-dependent nonequilibrium statistical dynamical theories are more
complex and do not satisfy the FDT exactly; that is why MSR needed to introduce the adjoint
operator to generate the separate response function. The adjoint operator incidentally arises
naturally in the path integral generalization [78,79]. In fact, the MSR (1973) [53] formalism
and its path integral generalizations for classical systems are much more similar to the
closed time path (CTP) formalism of Schwinger (1961) [81] and Keldysh (1965) [82] for
time-dependent nonequilibrium quantum field theories. The earlier Schwinger–Keldysh
CTP theory contains all the aspects of adjoint operators, resulting in operator doubling,
Pauli matrices, two-point matrix Greens functions consisting of cumulants and response
functions and matrix self-energies that appear in the MSR formalism. Indeed, it is surprising
that the Schwinger–Keldysh formalism was not referenced by MSR.

Analyses of the relationships between the Schwinger–Keldysh CTP quantum field
theory formalism and the MSR classical field theory approach are described in the works of
Cooper et al. [83] and Blagoev et al. [84]. Frederiksen [32] presents a parallel development
of classical and quantum statistical field theories based on these formalisms, and the path
integral generalization, to include non-Gaussian noise, non-Gaussian initial conditions,
and quantum effects. It is shown that the approaches are equivalent and that the classical
approach can be applied to generate the second order statistical equations for quantum
systems provided a suitable non-Gaussian noise term is included. For the Klein–Gordon
equation with interaction Lagrangian of gφ3, the quantum effects correspond to a pure
skewness non-Gaussian noise, and for λφ4, it corresponds to pure kurtosis. Thus, the
differences between classical and quantum field theories manifest themselves through an
additional quantum self-energy term proportional to Planck’s constant squared, and in the
initial conditions.

Frederiksen [32] also developed the inhomogeneous QDIA closure for quantum field
theories. For both classical and quantum field theories, the QDIA closure is computation-
ally tractable. This is because the off-diagonal elements of the two-point cumulants and
response functions—the propagators—in Fourier space are represented in terms of the
diagonal cumulants and response functions and the mean fields (and possibly topography).

3. Two-Dimensional Barotropic Flows on a β-Plane

In this study we focus on 2D turbulent flows in planar geometry and with differential
rotation in the latitudinal direction that generates the β-effect. The equations of motion
are most conveniently described by a single equation for the vorticity, ζ. The vorticity is
of course the Laplacian of the stream function ψ whose gradient, in turn, is related to the
zonal and meridional wind fields. Throughout this article, we develop our results on the
doubly periodic domain 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π with x = (x,y).

The barotropic vorticity equation is given by

∂ζ

∂t
= −J(ψ, ζ + βy) + ν̂0∇2ζ + f 0. (5)

Here, the Jacobian is

J(ψ, ζ) =
∂ψ

∂x
∂ζ

∂y
− ∂ψ

∂y
∂ζ

∂x
(6)

and the vorticity ζ is the Laplacian of the stream function

ζ = ∇2ψ ≡
(

∂2

∂x2 +
∂2

∂y2

)
ψ. (7)

In these equations, β denotes the beta-effect, f 0 specifies any external forcing, and ν̂0
is the viscosity. The dissipation in Equation (5) is represented by the Laplacian, but we
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shall, in fact, also consider higher order dissipation operators so that in spectral space, ν̂0
depends on the wavenumber.

Rossby waves, and superpositions of Rossby waves proportional to exp i(k.x−ωkt),
are solutions to Equation (5) (in the absence of forcing, topography, and viscosity). The
Rossby wave frequency satisfies the dispersion relationship

ωk = ω
β
k = − βkx

k2 . (8)

4. Dynamical Equations in Fourier Space

Our analysis and theoretical developments will be performed in Fourier space with
each of the fields having a spectral representation similar to that of the vorticity:

ζ(x, t) = ∑
k∈R

ζk(t) exp(ik.x), (9)

where

ζk(t) =
1

(2π)2

∫ 2π

0
d2xζ(x, t) exp(−ik.x). (10)

Here, x = (x, y), k = (kx, ky), k =
(

k2
x + k2

y

)1/2
. The reality of the physical space fields

implies that in spectral space ζ−k = ζ∗k. The summations in Equation (9) are over the
domain R which is a circular wavenumber domain excluding the origin 0. In spectral space,
the resulting dynamical equation is:(

∂

∂t
+ ν0(k)k2

)
ζk(t) = ∑

p∈R
∑

q∈R
δ(k, p, q)K(k, p, q)ζ−p(t)ζ−q(t) + f 0

k(t). (11)

The generalized delta function is defined by δ(k,p,q) = 1 if k + p +q = 0 and 0 if k + p + q 6= 0.
It is also convenient to define the complex ν0(k)k2 that represents both the viscosity and
the Rossby wave frequency ωk:

ν0(k)k2 = ν̂0(k)k2 + iωk. (12)

The Rossby wave frequency is defined in Equation (8). We have also generalized the form
of the viscosity ν̂0 → ν̂0(k) to allow for more general dissipation operators in Equation (5).
The interaction coefficient K(k,p,q) is given by

K(k, p, q) =
1
2
[pxqy − pyqx](p2 − q2)/p2q2. (13)

5. Eulerian Non-Markovian Statistical Dynamical Closures

Statistical dynamical closures encapsulate the dynamics of infinite ensembles of char-
acteristic flows. Our focus here is on 2D flows described by the DNS in Equation (5) (in
physical space) and Equation (11) (in Fourier space). A given member making up the
ensemble, the particular flow field, here given by the vorticity spectral coefficient ζk(t)
at wavenumber k, is conveniently represented by its mean < ζk(t) >≡ ζk(t) and devia-
tion from the ensemble mean ζ̃k(t). For homogeneous turbulence, with zero mean flow,
we have

< ζk(t) >≡ ζk(t) = 0 ; ζk(t) = ζ̃k(t). (14)

The spectral equation for ζ̃k is thus given by Equation (11) with ζk(t)→ ζ̃k(t) . Given that
the mean field is zero, this also means that the mean forcing is zero and that

< f 0
k(t) >≡ f

0
k(t) = 0 ; f 0

k(t) = f̃ 0
k(t) . (15)
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5.1. The DIA Closure for Homogeneous Turbulence

A simple formal derivation of the DIA closure equations for homogeneous 2D turbu-
lence is given by Frederiksen [85]. The DIA closure consists of coupled equations for the
two-time two-point cumulant

Ck(t, t′) =< ζ̃k(t)ζ̃−k(t′) > (16)

and the ensemble average response function

Rk(t, t′) =
〈

R̃k(t, t′)
〉

. (17)

Here, the response function for an individual disturbance is

R̃k(t, t′) =
δζ̃k(t)
δ f̃ 0

k(t
′)

, (18)

where δ denotes the functional derivative. The response function measures the change in
the individual field ζ̃k(t) at time t due to an infinitesimal change in the forcing f̃ 0

k(t
′) at the

earlier time t′.
We can obtain the equation for the two-time cumulant Ck from Equation (11), by

multiplying each term by ζ̃−k(t′) and averaging. This gives the cumulant equation(
∂
∂t + ν0(k)k2

)
Ck(t, t′)

= ∑
p

∑
q

δ(k, p, q)K(k, p, q) < ζ̃−p(t)ζ̃−q(t)ζ̃−k(t′) > + < f̃ 0
k(t)ζ̃−k(t′) >

(19)

where t > t′ and Ck(t, t′) = C−k(t′, t) for t′ > t. It can also be shown that

< f̃ 0
k(t)ζ̃−k(t′) >=

t′∫
t0

dsF0
k(t, s)R−k(t′, s) (20)

where t0 is the initial time and

F0
k(t, s) =< f̃ 0

k(t) f̃ 0∗
k (s) > . (21)

Thus, the two-point cumulant equation is coupled to the response function through
the random forcing term, but it also turns out through the closure for the three-point
cumulant in Equation (19). When this closure is performed [85], the two-time cumulant
equation becomes (

∂
∂t + ν0(k)k2

)
Ck(t, t′) +

t∫
t0

dsηk(t, s)C−k(t′, s)

=
t′∫

t0

ds(Sk(t, s) + F0
k(t, s))R−k(t′, s)

(22)

where t > t′ with Ck(t, t′) = C−k(t′, t) for t′ > t. In a similar way, the response function
equation can be derived [85] as

(
∂

∂t
+ ν0(k)k2

)
Rk(t, t′) +

t∫
t′

dsηk(t, s)Rk(s, t′) = δ(t− t′) (23)

for t ≥ t′ and Rk(t, t) = 1.
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In Equations (22) and (23)

ηk(t, s) = −4∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)R−p(t, s)C−q(t, s), (24)

and
Sk(t, s) = 2∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)C−p(t, s)C−q(t, s). (25)

The above two terms are known in field theory as self-energies. They modify or renormalize
the damping or forcing in the two-point cumulant and response function equations. The
term ηk(t, s) is the nonlinear damping that appears in the two-point cumulant and response
function equations. The nonlinear noise term, Sk(t, s), renormalizes the bare noise spectrum
F0

k(t, s) in the two-point cumulant equation. The noise terms are positive semi-definite.
The system of statistical dynamical equations is finally closed by the equation for the

single-time two-point cumulant:(
∂
∂t + 2Reν0(k)k2

)
Ck(t, t) + 2Re

t∫
t0

dsηk(t, s)C−k(t, s)

= 2Re
t∫

t0

ds(Sk(t, s) + F0
k(t, s))R−k(t, s)

(26)

where the initial conditions Ck(t0, t0) are to be specified.

5.2. The SCFT and LET Closures for Homogeneous Turbulence

McComb [37] has discussed in detail the historical developments of the SCFT closure
of Herring and the LET closure of McComb. However, as noted in the introduction, and
in Ref. [43], the SCFT and LET closures can be obtained from the DIA by imposing the
prior-time FDT. The three closures have in common the single-time cumulant prognostic in
Equation (26). The SCFT also has the same expression as the DIA for the evolution of the
response function in Equation (23), while the LET and DIA two-time cumulants are both
determined by Equation (22). For the SCFT, the two-time cumulant is then determined
by the prior-time FDT in Equation (1), and for the LET, the response function is instead
obtained by this FDT.

5.3. Regularized non-Markovian Closures for Homogeneous Turbulence

Kraichnan [29] attributed the incorrect inertial ranges of the Eulerian DIA to spurious
convection (advection) effects of the large eddies on the small-scale eddies. He showed that
this could be overcome by restricting the ranges of interactions in the response function
and two-time cumulant equations. He argued that this approach was analogous to using a
quasi-Lagrangian formulation. We see the procedure as a regularization that corresponds
to an empirical vertex renormalization. Specifically, we define

^
K(k, p, q) = θ(p− k/α)θ(q− k/α)K(k, p, q), (27)

where α is a wavenumber cut-off parameter and θ is the Heaviside step function. As noted
in the introduction, α only depends weakly on whether the turbulence is 2D or 3D or
whether it is homogeneous or inhomogeneous. The regularized non-Markovian closures

are obtained by replacing the interaction coefficient K(k, p, q) by
^
K(k, p, q) in Equation

(23) for the response function and in Equation (22) for the two-time cumulant, but not in
Equation (26) for the single-time cumulant.

6. Statistical Dynamical Equations for Markovian Anisotropic Closures

Next, we develop the theory of Markovian anisotropic closures (MACs) that consist of
the single-time cumulant equation and an auxiliary differential equation for the evolution
of the triad relaxation function. The MACs are designed to describe the statistical dynamics
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of anisotropic turbulence, and one of the variants is guaranteed realizability, even in the
presence of transient Rossby waves. Based on the non-Markovian DIA in Section 5, we
formulate three variants of the MACs that we refer to as MACX. Here, the superscript X
relates to that used in the combined FDT in Equation (4), with X = 0 being the current-time
FDT, X = 1

2 the correlation FDT, and X = 1 the prior-time FDT.
The single-time two-point cumulant equation for the DIA, SCFT and LET closures is

the same and can be written in the following form:

∂

∂t
Ck(t, t) + 2Re[N η

k (t) +N
0
k ] = 2Re[FS

k (t) +F
0
k(t)] (28)

where Ck(t, t) is real. The Fk(t) and Nk(t) functions have the following expressions:

FS
k (t) = 2∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)∆(− k,−p,−q)(t), (29)

with

∆(−k,−p,−q)(t) =
t∫

t0

dsR−k(t, s)C−p(t, s)C−q(t, s), (30)

and

F 0
k(t) =

t∫
t0

dsF0
k(t, s)R−k(t, s). (31)

Also

N η
k (t) = −4∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)∆(− p,−q,−k)(t), (32)

and
N 0

k (t) = ν0(k)k2Ck(t, t) = D0
kCk(t, t), (33)

where
D0

k = ν0(k)k2. (34)

We now apply the FDTs in Equation (4) to simplify the nonlinear noise and damping
terms in Equations (29) and (32). The time history integrals can then be expressed by relax-
ation functions ΘX . The expressions for the relaxation functions can, in turn, be expressed
through time dependent differential equations. This then effects the Markovianization with
the single-time cumulant equation augmented by the differential equations for ΘX . Thus,

FS
k (t) = 2∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)

×C1−X
−p (t, t)C1−X

−q (t, t)ΘX(−k,−p,−q)(t),
(35)

with

ΘX(−k,−p,−q)(t) =
t∫

t0

dsR−k(t, s)R−p(t, s)R−q(t, s)CX
−p(s, s)CX

−q(s, s). (36)

Also
N η

k (t) = D
η
k(t)Ck(t, t), (37)

with
Dη

k(t) = −4∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)

×C1−X
−q (t, t)C−X

−k (t, t)ΘX(−p,−q,−k)(t).
(38)

The single-time cumulant equation then simplifies to
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(
∂

∂t
+ 2Re(Dr

k(t))
)

Ck(t, t) = 2Re(F r
k(t)) (39)

and the response function equation becomes

∂

∂t
Rk(t, t′) +Dr

k(t)Rk(t, t′) = δ(t− t′). (40)

Here,
Dr

k(t) = D
0
k +Dη

k(t) ; F r
k(t) = F

0
k(t) +F

S
k (t) (41)

define the renormalized dissipation operator Dr
k(t) and the renormalized stochastic

force F r
k(t).

The integral form for the relaxation functions ΘX in Equation (36) can be replaced
by differential equations since the response functions are simplified in Equation (40). The
ordinary differential equation for ΘX is:

∂
∂t ΘX(k, p, q)(t) + (Dr

k(t) +D
r
p(t) +Dr

q(t))ΘX(k, p, q)(t)
= CX

p (t, t)CX
q (t, t)

(42)

with ΘX(k, p, q)(0) = 0 and Dr
k given in Equation (41).

The three MACs with X = 0, 1
2 , 1 are specified by Equation (39) for the single-time

cumulant Ck(t, t), together with Equation (42) for the relaxation function ΘX(k, p, q)(t).
The MACs with X = 0, 1

2 , 1 are all realizable in the absence of transient waves like Rossby
waves and the variant with X = 1

2 can also be shown to be realizable even in the presence
of such waves [67].

We show, in the next section, that it is possible to derive a Markovian closure with
analytical representation of the triad relaxation function, which is, therefore, even more
computationally efficient, from the MAC with X = 0. Note that when X = 0, Equation (39)
for the single-time cumulant becomes:(

∂
∂t + 2ν̂0(k)k2

)
Ck(t, t)

= 8∑
p

∑
q

δ(k, p, q)K(k, p, q)K(p, q, k)ReΘ0(k, p, q)(t)

×Cq(t, t)
[
Ck(t, t)− Cp(t, t)

]
.

(43)

Here, we have used the properties of the interaction coefficients that K(k,p,q) = K(k, q, p),
and K(k, p, q) + K(p, q, k) + K(q, k, p) = 0, the fact that the single-time cumulants are real,
and the symmetry properties of the triad relaxation functions Θ0.

7. Realizable Eddy-Damped Markovian Anisotropic Closure

The MAC closures with X = 0 and in Equations (36) and (43) can be simplified in
a similar way to the derivation of the EDQNM closure [2,3,67–69]. In this section, we
establish the EDMAC model which is a suitable realizable generalization of the EDQNM for
homogeneous turbulent flows interacting with transient Rossby waves. We seek to replace
the differential equation in Equation (42) with an analytical parameterized expression that
generalizes that used for the EDQNM model.

Firstly, we note that the solution to the response function differential equation in
Equation (40) is

Rk(t, t′) = exp
(
−
∫ t

t′
dsDr

k(s)
)

(44)

whereDr
k is defined in Equation (41). Thus, from Equation (36), the triad relaxation function

with X = 0 simplifies to

Θ0(k, p, q)(t) =
t∫

t0

dt′ exp
(
−
∫ t

t′
ds
[
Dr

k(s) +D
r
p(s) +Dr

q(s)
])

. (45)
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Next, we make the Markov approximation for the Dr
k such Dr

k(s)→ D
r
k(t) . The gener-

alized dissipation terms can therefore be taken outside the integrals in Equation (44). Thus,

Rk(t, t′) = exp
(
−Dr

k(t)(t− t′)
)
, (46)

and

Θ0(k, p, q)(t) =
t∫

t0

dt′ exp
(
−
[
Dr

k(t) +D
r
p(t) +Dr

q(t)
]
(t− t′)

)
=

1−exp(−[Dr
k(t)+D

r
p(t)+Dr

q(t)](t−t0))
[Dr

k(t)+D
r
p(t)+Dr

q(t)]
.

(47)

have simpler analytical forms.

7.1. Analytical Triad Relaxation Function for EDQNM

In the EDQNM the only prognostic equation is Equation (43) for the second order
cumulant Ck(t, t). Moreover, the eddy damping Dη

k that appears through Dr
k = Dη

k +D0
k

in the triad relaxation function in Equation (47) is generally specified by an analytical form
that is consistent with the k−3 enstrophy cascading inertial range:

Dη
k(t)→ µ

eddy
k (t) = γ

[
k2Ck(t, t)

] 1
2 . (48)

Integral forms over wavenumbers have also been used for the eddy damping [86], and
our arguments here and in Section 7.2 apply equally for those forms. We note that Ck(t, t)
is real and positive and γ is a positive empirically determined dimensionless coefficient.
Thus, the EDQNM for homogeneous turbulence has the considerable simplification and
computational efficiency of having an analytical expression for the triad relaxation time
ΘEDQNM(k, p, q)(t), given in Equation (47), with the superscript 0→ EDQNM .

For homogeneous turbulence on an f –plane, without Rossby waves, including for HIT,
D0

k = ν̂0(k)k2 > 0 is real as is Dη
k(t)→ µ

eddy
k (t) > 0 in Equation (47). Thus,

ΘEDQNM(k, p, q)(t) =
1− exp

(
−
[
µk(t) + µp(t) + µq(t)

]
(t− t0)

)
µk(t) + µp(t) + µq(t)

(49)

where

µk(t) = ν̂0(k)k2 + µ
eddy
k (t) = ν̂0(k)k2 + γ

[
k2Ck(t, t)

] 1
2 . (50)

Now, ΘEDQNM(k, p, q)(t) = ReΘEDQNM(k, p, q)(t) ≥ 0 is both real and non-negative,
and this ensures that the cumulant Ck(t, t) is also real and non-negative, and thus realizable,
as also shown in Appendix B with superscript EDMAC → EDQNM .

For homogeneous anisotropic turbulence interacting with transient Rossby waves on
a β-plane D0

k = ν̂0(k)k2 + iωk and taking Dη
k(t)→ µ

eddy
k (t) again we have

Rk(t, t′) .
= REDQNM

k (t, t′) = exp
(
−[µk(t) + iωk](t− t′)

)
, (51)

and
ΘEDQNM(k, p, q)(t)

=
1−exp(−[µk(t)+µp(t)+µq(t)+i(ωk+ωp+ωq)](t−t0))

µk(t)+µp(t)+µq(t)+i(ωk+ωp+ωq)
.

(52)

Unfortunately, the wave terms mean it is not possible to guarantee that
ReΘEDQNM(k, p, q)(t) ≥ 0, as noted by Bowman et al. [67], and so there may be
situations where Ck(t, t) is no longer realizable.

7.2. Analytical Relaxation Function for EDMAC

The EDMAC generalizes the EDQNM model by using an analytical form for the
triad relaxation function that is realizable in the presence of transient Rossby waves (or
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drift-waves or, indeed, other waves). It thus solves the problem that was the focus of
Bowman et al. [67] but without the introduction of an auxiliary Markovian evolution equa-
tion for the triad relaxation function. As we have noted above, although the auxiliary equa-
tion makes the whole system Markovian, it is still a large computational overhead since the
triad relaxation function depends on time and six spectral space dimensions that reduce
to four when the Kronecker delta functions in Equations (35) and (38) are implemented.
This is for 2D turbulence with corresponding larger computational effort required for
3D turbulence.

In the EDMAC model for homogeneous anisotropic turbulence interacting with tran-
sient Rossby waves on a β-plane we make the replacement

Dr
k(t)→ ρk(t) + iωk (53)

where

ρk(t) = µk(t) + c
ω2

k
µk(t)

(54)

with µk(t) given in Equation (50) and a typical value of c = 1
2 . Thus, the response function

equation becomes

Rk(t, t′) .
= REDMAC

k (t, t′) = exp
(
−[ρk(t) + iωk](t− t′)

)
, (55)

and
ΘEDMAC(k, p, q)(t)

=
1−exp(−[ρk(t)+ρp(t)+ρq(t)+i(ωk+ωp+ωq)](t−t0))

ρk(t)+ρp(t)+ρq(t)+i(ωk+ωp+ωq)
.

(56)

As shown in Appendices A and B, the EDMAC model is realizable for all c ≥ 1
4 .

The eddy damping in Equation (50) was of course chosen by Orszag [2] on empirical
grounds and from a practical point of view it would probably not matter if the frequency
renormalized eddy damping was arrived at in the same way. However, in a sequel where
we study the performance of the EDMAC model with transient Rossby waves, we also
aim to arrive at the form above through renormalized perturbation theory. It is clear that
for small ωk the frequency squared term in Equation (54) is negligible. As well, for large
wave numbers k, such as in typical geophysical enstrophy cascading inertial ranges, the
frequency squared term also becomes negligible. Thus, we expect that the EDMAC model
will be as computationally efficient as the EDQNM but will in addition be realizable in
the presence of transient Rossby waves (and other waves) since ReΘEDMAC(k, p, q)(t) ≥ 0
for all c ≥ 1

4 . As well, we expect that at least for small amplitude waves the efficient
performance and veracity of the EDMAC will be like that of the EDQNM but without the
possibility of blow up.

7.3. EDMAC for Three-Dimensional Turbulent Flows

There are various possible extensions of the frequency renormalized eddy damping
parameterization for the realizable EDMAC that we have presented for interaction of 2D
turbulence with Rossby waves. Of course, the EDQNM was initially formulated for 3D
HIT [2] and has been applied to a variety of problems in 2D and 3D HIT and HAT, including
with rotation [46,47]. We expect similar generalizations should be possible for the realizable
EDMAC. Indeed, our results are easily extended to the model of 3D quasigeostrophic
flows in Appendix B of Frederiksen [60], suitably generalized for flow on a β-plane with
Rossby waves.

8. Reflections and Perspectives
8.1. Jorgen’s Personal Reflections

Jack Herring first loomed large as a giant intellect and pioneer of statistical fluid
dynamics during my nine-month-long visit to NCAR in 1980 as part of a year’s sabbatical
from CSIRO Division of Atmospheric Physics. I was an early career research scientist at
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CSIRO, having switched from quantum field theory to classical geophysical fluid dynamics
five years earlier. My Ph.D. and post doc had involved determining the analytical properties
of Feynman diagrams, particularly the class of loop diagrams, which form the basis of
dispersion relations. These dispersion relations included the quadratic statistical closure
equations that describe meson-meson scattering—the core and iconic problem of strong
interaction quantum field theories. I was, therefore, very keen to learn as much as possible
about statistical turbulence closure theory and geophysical fluid dynamics as possible. I
suggested that the ‘Downunder’ tradition of afternoon tea and coffee be instituted at the
Climate and Global Dynamics Group and at it, and at lunch, learnt an amazing amount of
science from the great scientists at NCAR (a list too long to produce) and from more junior
staff and post docs. During this time, my friendship with Jack developed and continued
over the years.

As documented in Section 2, Jack has been an enormous influence on my career
with much of my work following in his footsteps. When the time came to launch into the
complexities of the numerical formulation of turbulence closure codes, Jack very generously
showed and explained all the tricks needed to efficiently implement the non-Markovian
integro-differential equations. Jack was always very friendly, cheerful, and unassuming,
always interested, and posed perceptive questions, including at seminars. Always there
during my short and longer visits to NCAR. Jack took a lot of interest, particularly in our
work on the inhomogeneous QDIA closures, from being thesis examiner of Terry’s Ph.D. on
the numerical implementation and further development of the closure to our most recent
publication in Fluids 2022 [44].

8.2. Perspectives on Strong Interaction Theories

The non-Markovian closure theories of Kraichnan, Herring, Edwards and McComb
for HIT tackle the core and iconic problem of strong turbulence without the complexities
of inhomogeneity. They are accurate at the large energy containing scales but their power
law behaviour in inertial ranges have, in principle or in practice, deficiencies since they
do not fundamentally address the vertex renormalization problem. However, restricting
the wavenumber ranges in the two-time cumulant and response function equations in one
parameter regularized versions of some of these closures gives excellent results. This is also
the case for the QDIA closure for inhomogeneous turbulence.

To put into perspective the state of strong interaction turbulence closure theories, it is
perhaps useful to look at the corresponding situation in strong interaction quantum field
theory. As noted in the previous subsection, pion-pion scattering is the core and iconic
problem of strong interaction hadron physics. Mandelstam (1958) [87] developed closure
equations for hadron scattering which are quadratic in the partial wave spectral scattering
amplitudes. A question of major interest was whether the scattering equations have unique
solutions that can be calculated through convergent iteration. To answer this question, it
was necessary to reformulate the equations, and the proof was established for pion-pion
scattering (Frederiksen 1975 [88]; Atkinson et al., 1976 [89]). This was done using functional
analysis contraction mapping theorems in Banach space of doubly Hölder continuous
scattering amplitudes. However, it has taken until 2023 for the iteration procedure to
be numerically implemented to generate the nonperturbative scattering amplitudes in a
remarkable effort by Tourkine and Zhiboedov (2023) [90].

While scattering between asymptotic ‘in’ and ‘out’ states has been the focus of much
of strong interaction hadron physics, often with introduction of some empirical data, time-
dependent non-equilibrium quantum field theories have become of increasing interest in
the last two decades. This is particularly so in studies of Bose–Einstein condensation far
from equilibrium [91,92], in studies of cosmology and inflation [93–95], and quark-gluon
plasma [96]. In these problems, the generalization from homogeneous to inhomogeneous
statistical quantum field theory is required to describe the time evolution of quantum
fluctuations in spatially inhomogeneous dynamical fields. The Schwinger–Keldysh CTP
approach has generally been the basis for these studies. The Schwinger–Keldysh [81,82]
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equations, like Kraichnan’s [97] inhomogeneous DIA (IDIA), and the MSR [53] and path
integral extensions [78,79], require the full covariance matrix to close the mean field equa-
tion. This is a severe restriction on the size of the problems that can be solved since if the
field has N degrees of freedom the full covariance matrix has N2 (the QDIA gets around
this problem as described in Section 2). Consequently, the full inhomogeneous problem
has generally only been tackled in one space dimension [98–100]. Interestingly in studies
of the evolution of a Bose gas, Cooper et al. [99] found that the bare vertex approximation
performs better than other closure schemes like the two-particle irreducible expansion. The
bare vertex approximation is the basis of the DIA, SCFT, LET and Edward’s closures and
guarantees the realizability of the DIA, the IDIA, the QDIA and the bare vertex quantum
closure equations.

The statistical dynamics of strongly interacting fields is an enormously difficult prob-
lem. The achievements of the pioneers in fluid turbulence closure theory have been truly
outstanding by any comparison.

9. Conclusions

Jack Herring made remarkable pioneering steps and contributions to laying the foun-
dations of the statistical dynamical closure theory of fluid turbulence. Some of his important
works have been briefly reviewed, their impacts and related developments discussed, and
some of the further developments and extensions summarized.

A particular focus of this article has also been to present the eddy damped Markovian
anisotropic closure (EDMAC), a generalization of the eddy damped quasi normal Marko-
vian (EDQNM) that is realizable for anisotropic turbulence interacting with transient waves
such as Rossby waves. By construction, the EDMAC is as computationally efficient as
the EDQNM but overcomes a long-standing problem of realizability with transient waves
present. This builds on Herring’s (1975) [1] generalization of the EDQNM for anisotropic
2D turbulence and his studies of the relaxation to isotropy.
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Appendix A. Positive Semi-Definite Triad Relaxation Time with Rossby Waves

As noted in Section 7, lack of realizability of the EDQNM model in the presence of
transient waves can be overcome by using a frequency renormalized eddy damping. The
response function is then:

Rk(t, t′) = exp−[ρk(t) + iωk](t− t′) (A1)

where ρk(t) = µk(t) + cω2
k/µk(t) > 0 is the frequency renormalized damping, µk(t) > 0

is the damping, ωk is the Rossby wave frequency and a typical value of c = 1
2 . The triad

relaxation time is then given by

ΘEDMAC(k1, k2, k3)(t) =
1− exp−[ρ + iω](t− t0)

ρ + iω
(A2)
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where, without loss of generality, we take t0 = 0. Here,

µ = µk1(t) + µk2(t) + µk3(t),
ω = ωk1 + ωk2 + ωk3

ρj = µkj + c
ω2

kj
µkj

, j = 1, 2, 3

ρ = ρ1 + ρ2 + ρ3.

(A3)

Then
ReΘEDMAC(k1, k2, k3)(t)
= 1

ρ2+ω2 [ρ{1− [exp−ρt] cos ωt}+ ω[exp−ρt] sin ωt] (A4)

where
∂ReΘEDMAC(k1, k2, k3)(t)

∂t
= [exp−ρt] cos ωt. (A5)

Next, we examine the conditions under which ReΘEDMAC(k1, k2, k3)(t) ≥ 0 so that
the EDMAC model of Section 7 (Equations (39) and (43)) is realizable as outlined in
Appendix B. Firstly, we note that for t ≥ 0, cos ωt is then an even function of ω and both ω
and sin ωt are odd functions with their product ωsin ωt being even. Thus, for 0 <|ω|t ≤ π

1− [exp−ρt] cos|ω|t > 0; |ω| [exp−ρt] sin|ω|t ≥ 0. (A6)

Further, for |ω|t > π ,

exp−ρt < exp−(ρ π

|ω| ) < exp−(π) < 0.05 (A7)

provided
ρ ≥|ω|. (A8)

Of course, in general
−1 ≤ cos|ω|t ≤ 1;−1 ≤ sin|ω|t ≤ 1 (A9)

and thus for |ω|t > π ,[
ρ2 + ω2

]
ReΘEDMAC(k1, k2, k3)(t) > 0.9ρ > 0. (A10)

The relationship in Equation (A8) holds ifµkj(t) + c
ω2

kj

µkj(t)

 ≥ |ωkj |, j = 1, 2, 3 (A11)

and the inequalities in Equation (A11) are valid provided c ≥ 1
4 which is established by

solving simple quadratic equations.

Appendix B. Langevin Equation for EDMAC Model

The EDMAC model in Equations (39) and (43) can be shown to be realizable since
it is underpinned by a stochastic model as is the EDQNM as discussed by Leith [3] and
Herring and Kraichnan [66]. The Langevin equation, which allows precise construction of
the EDMAC model, is given by:(

∂

∂t
+D0

k +Dη
k(t)

)
ζ̃k(t) =
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where D0
k is given in Equation (34) and Dη

k(t) is given in Equation (38) with X = 0 and
Θ0 → ΘEDMAC . As well,
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S
(t) =

√
2∑

p
∑
q

δ(k + p + q)K(k, p, q)
[
ReΘEDMAC(k, p, q)(t)

] 1
2

×w(t)ρ(1)−p(t)ρ
(2)
−q(t).

(A14)

The variables ρ
(i)
k (t), where i = 1, 2 or 3, and w(t) are independent random variables

that satisfy the following relationships:

< ρ
(i)
k (t)ρ(j)

−l(t
′) >= δijδklCk(t, t′), (A15)

with
< ζ̃k(t)ζ̃−k(t′) >= Ck(t, t′), (A16)

and
< w(t)w(t′) >= δ(t− t′). (A17)

Here, δ is the Kronecker delta function in Equation (A15), and in Equation (A17) it is
the Dirac delta function.

The realizability of the cumulants Ck(t, t), in the EDMAC model is established by
the Langevin equation provided ReΘEDMAC(k, p, q)(t) ≥ 0. This is in turn is shown
in Appendix A to be the case provided c ≥ 1

4 . The EDMAC equations also preserve
conservation of kinetic energy and potential enstrophy (in the absence of forcing and
dissipation).
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