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Abstract: The projection of future hydrological processes can provide insights into the risks associated
with potential hydrological events in a changing environment and help develop strategies to cope with
and prevent them. The Heihe River basin in Northwest China is crucial for providing water resources
to water-scarce regions. Thus, understanding the future runoff trends in the context of climate change
can optimize water allocation, alleviate water shortages, and mitigate flood risks in the region. In this
study, we use meteorological data from 10 general circulation models under two future scenarios to
drive the Soil and Water Assessment Tool (SWAT) model and project hydrological processes in the
upper Heihe River basin from 2026 to 2100. After examining the future changes in total runoff in the
basin, we assess the magnitude, frequency, and timing of daily flood events in the future. The results
of the multi-model ensemble averaging (MMEA) method show that the change in the multi-year
average annual runoff is −4.5% (2026–2050), −1.8% (2051–2075), and +2.0% (2076–2100) under the
SSP245 scenario and −1.0% (2026–2050), +0.4% (2051–2075), and +0.2% (2076–2100) under the SSP585
scenario compared to the historical period. The analysis of flood magnitudes indicates that the basin
will experience higher-magnitude floods in the future, with the largest increase rates of 61.9% and
66.4% for the 1-day maximum flows under the SSP245 and SSP585 scenarios, respectively. The flood
return period is projected to be shorter in the future, and the 1-day maximum flows of a 100-year flood
are expected to increase by 44.7% and 63.7% under the SSP245 and SSP585 scenarios, respectively.
Furthermore, a significant shift in the flood timing is expected, with the highest frequency moving
from July to August, representing a one-month lag compared to the historical period. Our findings
suggest that the hydrological characteristics of the upper Heihe River basin may be significantly
altered in the future due to the effects of climate change, resulting in floods with higher magnitudes
and frequencies and different timings. Therefore, it is imperative to consider these changes carefully
when developing risk prevention measures.

Keywords: climate change; Heihe River basin; hydrological projection; flood

1. Introduction

Extreme hydrological events can result in significant social and property losses, in-
cluding damage to homes, businesses, and infrastructure, as well as threats to human
lives and livelihoods [1–3]. According to the Intergovernmental Panel on Climate Change
(IPCC) Sixth Assessment Report (AR6) of April 2022, global greenhouse gas emissions have
reached record levels in the last decade, and substantial future warming is inevitable [4].
This will result in considerable uncertainty and changes in precipitation, temperature, wind
speed, air pressure, and other meteorological factors, affecting the timing, frequency, and
intensity of hydrological events [5–9]. The impacts of climate change may include more
frequent and severe droughts and floods and other associated risks [10–15].
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Numerous studies have shown that the occurrence of floods is strongly influenced
by a range of factors, including the amount of water vapor in the atmosphere, rainfall
intensity and duration, the geographical and temporal patterns of precipitation, and sub-
surface conditions, such as soil type and topography [16–18]. Climate change may alter
the characteristics of flood hazards since the physical elements contributing to floods,
such as atmospheric moisture, precipitation, and subsurface conditions, may also change
substantially under climate change [8,16,19–22]. It is crucial to reassess our understanding
of flood risk and develop more resilient flood control and mitigation strategies to mitigate
these risks and protect the environment.

Studies have shown that climate change will cause large uncertainties in the projection
of future hydrological conditions, and this part of the uncertainty will also be transferred
to future hydrological processes in the process of coupling climate change projection with
hydrological models [23–28]. Therefore, researchers often use multiple climate models
based on multiple scenarios to provide a range of possible outcomes. Additionally, changes
in climate-related physical elements may alter different aspects of hydrological processes,
requiring distributed models based on physical significance to estimate future hydrological
processes more accurately [29–31]. By using these models, researchers can better under-
stand the complex interactions between climate change and the hydrological cycle and
develop more effective management strategies to address potential future risks.

Eingrüber et al. [18] used the general circulation model (GCM) HadCM3 to drive the
Soil and Water Assessment Tool (SWAT) and found that flood events in the Ruhr basin,
Germany, would become more frequent and intense due to changes in atmospheric circula-
tion, resulting in a significant shortening of the flood return period. Iqbal et al. [22] used
four GCMs from the Fifth Coupled Model Intercomparison Project (CMIP5) and the SWAT
model to study flood intensity and frequency in the Kabul Basin. They found that the melt-
ing rate of snow and glaciers in the region would accelerate in the future due to increased
precipitation and temperature, leading to increased flooding. The latest CMIP6 considers a
broader range of socioeconomic pathways and provides more diverse emission scenarios
than the CMIP5 [32–34], improving the relevance to real-world conditions. Yang et al. [20]
used GCMs from the CMIP6 to assess the future hydrological processes in the Jiulong
River basin. They found that climate change was the dominant cause of future high-flow
increases, with expected increases in the average future 100-year flood frequency exceeding
100% and 200% under the SSP126 and SSP370 scenarios, respectively. Xiang et al. [21]
evaluated the future hydrological conditions of the Yarkant River basin based on six GCMs
from the CMIP6 and three shared socioeconomic pathways. The results suggested that the
future hydrological conditions in the region were likely to change significantly, with more
frequent extreme hydrological events.

The Heihe River basin is located in a dry and arid region of Northwest China and is
primarily fed by precipitation and glacial meltwater from the Qilian mountains [19,35–38].
In recent years, the increase in water demand for livestock, agriculture, domestic water, etc.,
has made the ecosystem of the basin more fragile [39,40]. Therefore, it is necessary to study
the long-term water resource quantity changes in this basin. Zhang et al. [41] used various
statistical methods to explore changes in historical runoff trends in the Heihe River basin
and found that increased precipitation and rising temperatures were responsible for the
increase in upstream runoff. Luo et al. [42] explored the drivers of surface runoff changes
in the upper Heihe River basin based on the SWAT model and pointed out that runoff
changes in spring and winter are mainly influenced by temperature, while summer runoff
is influenced by precipitation. Shang et al. [43], when studying the impact of land use and
climate change on surface runoff change, pointed out that the impact of climate change
is far greater than that of land use, and the change in precipitation is stronger than that
for temperature. Projections of future runoff are also of great significance in the context
of the current changing climate. Li et al. [35] used three GCMs to project future runoff
changes in the upper Heihe River basin under the representative concentration pathway
(RCP) 4.5 scenario and found that more runoff would occur due to increased precipitation.
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Zhang et al. [36] used the SWAT model to simulate future hydrological processes in the
upper Heihe River basin from 2021 to 2050 and found that the runoff was expected to
increase by 11.4% and 12.8% under the RCP4.5 and RCP8.5, respectively. Many studies
have focused on the total runoff changes under climate change [35–38].

Although extreme hydrological events are worth studying because they cause severe
social and economic losses, there is little research on these events in the Heihe River basin.
According to statistics, there have been 71 floods in the basin in the past 2000 years, and
the number of floods has been on the rise since the 18th century. With the intensifica-
tion of global warming, the impact of floods in the late 20th century far exceeded that
of other decades, with the frequency of occurrence reaching an average of 1.8 times per
decade [44–46]. Recently, a few studies have investigated the changes in the intensity of
extreme hydrological events in the basin. For example, Wang et al. [19] found that extreme
hydrological events have increased in the Heihe River basin due to climate change, partic-
ularly minor floods. Li et al. [37] found a significant increase in floods in the 50–100 year
return period using the CSIRO-MK-3-6-0 model under RCP4.5. Only a few GCMs and
scenarios were used in existing studies to project extreme hydrological events, focusing on
relatively coarse, rough time scales, e.g., monthly scales, resulting in large uncertainty.

Additionally, most studies used only precipitation and temperature from GCMs to
drive hydrological models and did not include relative humidity, wind speed, and solar
radiation or simulate them using weather generators to project hydrological processes
under future climate change [35,37,38,47]. As a result, discrepancies in the meteorological
variables occur in the study area.

Combining the problems of the current research, this study mainly focuses on (1) driv-
ing the SWAT model to project future runoff in the upper Heihe River basin and (2) ex-
tracting and analyzing the potential future flood events in the basin. We consider 1-day
maximum flow (1-day max), 3-day maximum flow (3-day max), 5-day maximum flow
(5-day max), and 7-day maximum flow (7-day max) to represent the floods. The main
highlights of this study are that (1) more climate variables, including precipitation, tem-
perature, relative humidity, wind speed, and solar radiation from more GCMs, as many as
10, are used to drive the hydrological model, and (2) the future floods are systematically
investigated from three aspects: the magnitude, frequency, and time of occurrence.

2. Materials and Methods
2.1. Study Area

The upper Heihe River basin is situated in northwestern China (98◦–102◦ E and
37◦–40◦ N). The basin covers an area of approximately 10,009 km2 and has a continental
alpine semi-arid climate [37,42]. The annual temperature ranges from −2.5 ◦C to −0.1 ◦C,
and the annual precipitation typically ranges from 290 mm to 527 mm. The location of the
study area is shown in Figure 1.

2.2. Historical Data

Our study utilized various types of data, including elevation, land use, soil type,
meteorological data, and runoff data, which are detailed in Tables 1 and 2. The historical
runoff data at the outlet of upper Heihe River basin (Yingluoxia station) were obtained
from the local hydrological manual, with time span of 1987–2014.

Table 1. Details of the data source.

Data Type Data Source Resolution

Digital Elevation Model https://www.gscloud.cn (accessed on 26 March 2021). 90 m
Land-use data in 2000 https://www.resdc.cn/DOI/DOI.aspx?DOIID=54 (accessed on 19 April 2021). 1 km

Soil type http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/ (accessed on 19 April 2021)). 1 km

https://www.gscloud.cn
https://www.resdc.cn/DOI/DOI.aspx?DOIID=54
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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Figure 1. Location of the upper Heihe River basin.

Table 2. Details of meteorological and hydrological data.

Type of Stations Site Name Longitude and Latitude Data Description

Meteorological stations
Tuole 98.42◦ E, 38.82◦ N Daily air pressure, wind speed, average

temperature, maximum temperature,
minimum temperature, relative humidity,

precipitation, sunshine hours, with a time span
of 1987–2014

Yeniugou 99.58◦ E, 38.42◦ N

Qilian 100.25◦ E, 38.18◦ N

Hydrological stations Yingluoxia 100.18◦ E, 38.82◦ N Daily runoff data with a time span of
1987–2014

2.3. Future Meteorological Data

We selected ten GCM outputs from CMIP6 under two shared socioeconomic pathway
scenarios (SSP245, SSP585) from CMIP6 and downloaded the data from the Earth System
Grid Federation (ESGF) website (https://esgf-node.llnl.gov/projects/cmip6/ (accessed on
2 March 2022)). Table 3 provides detailed information on the GCMs. The output data from
these GCMs include daily precipitation, maximum and minimum temperatures, relative
humidity, wind speed, and solar radiation for the Heihe River basin from 1987 to 2014 and
from 2026 to 2100. The GCM data from 1987 to 2014 and the measured meteorological
data were used to correct the GCM data from 2026 to 2100. The historical meteorological
data and the bias-corrected future meteorological data were used as input to the SWAT
model. The future meteorological data were obtained by nearest-neighbor interpolation of
the bias-corrected output from the GCMs.

Table 3. List of GCMs used in this study.

Name of GCM Country Resolution Frequency

ACCESS-CM2 Australia 1.875◦ × 1.25◦ daily
ACCESS-ESM1-5 Australia 1.875◦ × 1.25◦ daily

CanESM5 Canadian 2.8125◦ × 2.8125◦ daily
CMCC-ESM2 Italy 1.25◦ × 0.9375◦ daily

MIROC6 Japan 1.40625◦ × 1.40625◦ daily

https://esgf-node.llnl.gov/projects/cmip6/
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Table 3. Cont.

Name of GCM Country Resolution Frequency

MPI-ESM1-2-LR Germany 1.875◦ × 1.875◦ daily
MRI-ESM2-0 Japan 1.125◦ × 1.125◦ daily

NorESM2-LM Norway 2.5◦ × 1.875◦ daily
NorESM2-MM Norway 1.25◦ × 0.9375◦ daily

TaiESM Taipei 1.25◦ × 0.9375◦ daily

2.4. SWAT Model

The SWAT model is a physically based, semi-distributed model that has been success-
fully applied to studies of changing environmental conditions, including climate conditions,
land use, and cover, and has yielded numerous results [35–38,47–49].

The 1987–1989 period was used as a warm-up period to mitigate the impact of initial
conditions. The calibration period was from 1990 to 2000, and the validation period was
from 2001 to 2014. Future hydrological processes were projected by the validated SWAT
model using future bias-corrected meteorological data.

2.5. Model Calibration, Validation, and Performance Evaluation

The calibration and validation of the SWAT model were conducted using the SWAT-
CUP software. Four evaluation indicators were selected: the coefficient of determination
(R2), Nash–Sutcliffe efficiency coefficient (NSE), percent bias (PBIAS), and the ratio of the
root mean square error and the standard deviation of the observations (RSR). They are
calculated as follows:

R2 =

 ∑n
i=1 (Qi −

−
Q)(Mi −

−
M)√

∑n
i=1 (Qi −

−
Q)2

√
∑n

i=1 (Mi −
−
M)2


2

(1)

NSE = 1− ∑n
i=1 (Qi −Mi)

2

∑n
i=1 (Qi −

−
Q)2

(2)

PBIAS =
∑n

i=1 (Mi −Qi)

∑n
i=1 Qi

× 100% (3)

RSR =
RMSE

STDEVobs
=

√
∑n

i=1 (Mi −Qi)
2√

∑n
i=1 (Qi −

−
Q)2

(4)

where Qi is the observed runoff, Mi is the simulated runoff,
−
Q is the average observed

runoff,
−
M is the average simulated runoff, and n is the number of data points.

2.6. Bias Correction of GCMs

There are significant biases in the output of GCMs, affecting the projection result of
future hydrological processes. Therefore, it is essential to correct the GCM output to obtain
more accurate projections from hydrological models.

Researchers have proposed post-processing methods to deal with the bias of climate
model outputs, such as the Delta method, linear scaling (LS), Gamma distribution quantile
mapping (GQM), and empirical quantile mapping (EQM) [50–55]. However, some methods
are not universally applicable to all climate variables. For instance, GQM is suitable
for correcting precipitation data but is not the best option for other variables, such as
temperature data [55]. Here, LS and EQM, which are common approaches, were used to
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correct future climate data. The principles of these two methods have been described in the
literature [55,56]. LS and EQM were implemented using the “xclim” Python library.

2.7. Framework

The framework of this study is depicted in Figure 2. The study area is the upper Heihe
River basin. The meteorological data based on 10 GCMs from the CMIP6 were used to
drive the calibrated SWAT model and project future hydrological processes. In addition
to analyzing the changes in future annual and intra-annual runoff, we also extracted the
1-day max, 3-day max, 5-day max, and 7-day max to represent the floods, as used in some
previous studies [57–59], and then evaluated changes in flood characteristics, i.e., the flood
magnitude, frequency, and timing.
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3. Results
3.1. SWAT Model Calibration and Validation

A sensitivity analysis and the study area conditions were used to select the model
parameters to be calibrated. The calibration results are listed in Table 4. The time series of
the observed and simulated runoff are depicted in Figure 3. The evaluation indicators are
listed in Table 5.

Table 4. Selection of parameters and their calibration results.

Parameter Description Range Calibration Results

v__SFTMP.bsn Snowfall temperature [−5, 5] 4.6587
v__SMTMP.bsn Snow melt base temperature [−5, 5] 3.2865

v__SURLAG.bsn Surface runoff lag time [1, 24] 15.2123
v__ALPHA_BF.gw Baseflow alpha factor [0, 1] 0.2937

r__CN2.mgt Initial SCS CN II value [−0.5, 0.5] 0.1681

v__ESCO.hru Soil evaporation
compensation factor [0.01, 1] 0.3156

r__SOL_K.sol The soil layer’s available
water capacity [−0.7, 0.7] 0.5842
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Table 4. Cont.

Parameter Description Range Calibration Results

r__SOL_AWC.sol Saturated hydraulic conductivity [−0.7, 0.7] 0.6123

v__GWQMN.gw
Threshold depth of water in the

shallow aquifer required for
return flow to occur

[0, 5000] 3046.6331

v__GW_REVAP.gw Groundwater “revap” coefficient [0.02, 0.2] 0.0874
v__CH_K2.rte Effective hydraulic conductivity [0, 100] 59.0481

v__CH_N2.rte Manning’s nvalue for main
channel [0, 0.3] 0.2455
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Table 5. Evaluation indicators in the calibration and validation periods.

Period R2 NSE PBIAS RSR

Calibration 0.87 0.68 −23.81% 0.56
Validation 0.89 0.71 −26.31% 0.54

Figure 3 shows that the simulated hydrograph derived from the SWAT model is in good
agreement with the observed one, and the flow values have a good match. The high flows
are simulated with high accuracy, whereas the low flows show slight underestimations.

As shown in Table 5, the R2 is higher than 0.85 for the calibration and validation
periods, the NSE is higher than 0.65, the PBIAS is within 30%, and the RSR is less than 0.6.
According to the model performance ratings proposed by Moriasi et al. [60], both NSE and
RSR achieved a good level. Although PBIAS was slightly higher than the suggested value
(within 25% corresponds to a satisfactory level) in the validation period, it was very close
to the satisfactory level. These results indicate that the SWAT model performs satisfactorily
overall and can be used to project future runoff.

We selected several typical high-flow processes from the calibration and validation
periods to investigate the SWAT model’s performance for high-flow simulations, as shown
in Figure 4. The results indicate that the model performed well in predicting high flows
in 1996 and 1998, with R2 greater than 0.8, NSE greater than 0.65, PBIAS less than 10%,
and RSR less than 0.6. The model slightly overestimated the high-flow peak in 1990,
resulting in a slightly larger PBIAS and RSR. During the validation period, the SWAT
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model produced satisfactory results for the high-flow processes in 2003, 2008, and 2011.
In general, the simulated flow process closely matched the observed ones, and the trends
were relatively consistent, demonstrating that the SWAT model was suitable for projecting
future high flows.
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3.2. Bias Correction of GCM Outputs

The simulated meteorological data derived from 10 GCMs during 1987–2014 were
corrected using the measured data and the EQM and LS methods. Figure 5 shows the
original and bias-corrected intra-annual data. All the bias-corrected data showed better
agreement with the measured values than the original data. Table 6 shows the results
of the mean absolute error (MAE), which is used to represent the difference between the
original outputs of the GCMs and those corrected by the two methods. For precipitation,
for example, the MAE of the original data ranged from 3.70 to 4.23 mm, and that of the
corrected data ranged from 1.59 to 1.70 mm (EQM) and 1.56 to 1.68 mm (LS), respectively.
For the maximum temperature, the MAE decreased from 6.42–10.15 ◦C to 4.09–4.23 ◦C
(EQM) and 4.36 ◦C to 4.98 ◦C (LS) after correction. The results demonstrate that LS and
EQM are effective for correcting the climate variables of the GCMs, indicating that these
correction methods can be used to bias-correct future climate variables.

The projections of the six bias-corrected climate variables for 2026 to 2100 are shown in
Figure 6. Multi-model ensemble averaging (MMEA) was used to obtain the results, denoted
as the solid line with circles. The EQM and LS bias-corrected results show that the future
precipitation is projected to increase by 3.8 mm and 3.1 mm per decade under the SSP245
scenario and by 4.0 mm and 3.2 mm, respectively, under the SSP585 scenario. Moreover,
this increasing precipitation trend is expected to persist until the end of this century.
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Figure 5. Correction results for precipitation, maximum temperature, minimum temperature, relative
humidity, wind speed, and solar radiation based on the EQM and LS methods.

Table 6. Mean absolute error of observed versus corrected daily data for the EQM and scaling
methods (1987–2014).

GCMs Methods Precipitation Max.temp Mix.temp Humidity Wind Speed Radiation

ACCESS-CM2
Historical 4.00 7.11 13.31 0.28 1.27 5.61

Eqm 1.60 4.09 3.88 0.14 1.12 3.87
LS 1.62 4.69 4.54 0.11 1.16 4.67

ACCESS-ESM1-5
Historical 4.14 9.19 18.22 0.33 1.21 5.37

Eqm 1.64 4.09 3.89 0.13 1.12 3.88
LS 1.59 4.55 4.25 0.10 1.09 4.64

CanESM5
Historical 3.91 8.43 15.65 0.25 1.46 5.44

Eqm 1.69 4.12 3.88 0.14 1.12 3.89
LS 1.57 4.98 5.20 0.12 1.08 5.18

CMCC-ESM2
Historical 3.86 10.02 15.05 0.27 1.09 5.89

Eqm 1.70 4.09 3.95 0.14 1.12 3.92
LS 1.56 4.52 4.56 0.11 0.96 5.75

MIROC6
Historical 4.07 8.65 16.23 0.27 1.46 5.80

Eqm 1.59 4.09 3.94 0.14 1.12 3.97
LS 1.68 4.36 4.06 0.11 1.06 5.61
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Table 6. Cont.

GCMs Methods Precipitation Max.temp Mix.temp Humidity Wind Speed Radiation

MPI-ESM1-2-LR
Historical 4.09 6.42 13.59 0.34 2.31 6.44

Eqm 1.68 4.19 3.95 0.14 1.12 3.95
LS 1.63 4.76 4.69 0.11 1.09 5.64

MRI-ESM2-0
Historical 4.23 8.11 15.16 0.23 1.81 5.76

Eqm 1.59 4.17 3.99 0.14 1.13 3.85
LS 1.64 4.76 4.77 0.13 1.01 5.37

NorESM2-LM
Historical 3.70 10.00 16.51 0.22 1.51 5.54

Eqm 1.66 4.10 3.88 0.14 1.11 3.88
LS 1.58 4.68 4.49 0.13 0.99 5.47

NorESM2-MM
Historical 3.73 10.15 15.90 0.21 1.43 5.49

Eqm 1.64 4.09 3.88 0.14 1.11 3.89
LS 1.60 4.76 4.50 0.13 1.00 5.39

TaiESM1
Historical 3.77 9.89 13.65 0.24 1.10 6.31

Eqm 1.66 4.23 4.02 0.14 1.12 3.98
LS 1.58 4.80 5.20 0.13 0.96 6.32
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The annual maximum temperature is projected to increase by 0.2 ◦C and 0.3 ◦C per
decade under the SSP245 scenario and by 0.6 ◦C and 0.7 ◦C per decade under the SSP585
scenario based on the EQM and LS bias-corrected data, respectively. Similarly, the annual
minimum temperature is projected to increase by 0.26 ◦C and 0.28 ◦C per decade under the
SSP245 scenario and by 0.63 ◦C and 0. 64 ◦C per decade under the SSP585 scenario.

The annual mean wind speed is projected to decrease by 0.03 m/s and 0.02 m/s per
decade under the SSP245 scenario and by 0.02 m/s and 0.01 m/s per decade under the
SSP585 scenario. Similarly, the annual mean relative humidity is expected to decrease
under both scenarios. In contrast, solar radiation is projected to increase by 7.0 MJ/m2 and
7.8 MJ/m2 per decade under the SSP245 scenario and by 8.5 MJ/m2 and 12.1 MJ/m2 per
decade under the SSP585 scenario.

These results suggest changes in the future climatic variables in the study area. Since
large differences will occur in the minimum and maximum temperatures in different
periods (Figure 6), the time series from 2026 to 2100 was divided into three parts: the near
future from 2026 to 2050 (NF period), the middle future from 2051 to 2075 (MF period), and
the far future from 2076 to 2100 (FF period). In the following analysis, we will discuss the
hydrological projections in the three periods.

In addition, the results indicate differences in the data corrected by different methods,
affecting the projection of hydrological processes in the subsequent modeling. Therefore,
using multiple modeling chains to assess potential risks associated with future hydrological
processes is essential.

3.3. Runoff Projection
3.3.1. Annual and Intra-Annual Runoff

Figure 7 displays the projected annual average runoff in the upper Heihe River basin
for the next 75 years. The arrows indicate changes compared to the historical period. The
results of the MMEA show that the annual average runoff will be 4.5% and 1.8% lower in
the NF and MF periods, respectively, than in the historical period under the SSP245 scenario.
In contrast, the runoff will be 2.0% higher in the FF period. In contrast, the runoffs will be
0.4%, 0.2%, and 1.0% lower in the MF, FF, and NF periods, respectively, than in the historical
period in the SSP585 scenario. Overall, the long-term runoff in the basin exhibits a declining
trend from the historical period to 75 years in the future, with a greater decline under the
SSP245 scenario (blue line) and a lesser decline under the SSP585 scenario (red line).

Although the total runoff in the future is projected to either decrease or increase
compared to historical periods, there are differences in the changes occurring in different
seasons. Figure 8 presents the intra-annual runoff for both scenarios. The results indicate
that only the summer runoff is projected to decrease, whereas most of the winter, spring,
and autumn runoffs show the opposite trend. In both scenarios, the greatest increase rate
in the runoff is observed in winter. This result may be due to the warming temperatures
during winter and spring that accelerate the melting of the glacial snowpack. The summer
runoff is projected to decrease compared to the historical period. The decrease rates are
estimated at 10.0%, 12.0%, and 11.9% in the NF, MF, and FF periods, respectively, in the
SSP245 scenario and 7.2% (NF), 7.0% (MF), and 9.6% (FF) in the SSP585 scenario. Autumn
exhibits the lowest change rate in the intra-annual runoff.

3.3.2. Magnitude of Floods

Table 7 displays the future discharge and multi-year averages and the results of the
Mann–Kendall trend test and Theil–Sen slope estimates. Although the total runoff may
decrease or increase in the future for different cases, the flood magnitude is higher in the
future. The 1-day max is projected to increase the most under the SSP245 and SSP585
scenarios, with increase rates of 61.9% and 66.4%, respectively. The 3-day max is projected
to increase by 34.3% and 38.5%, the 5-day max is projected to increase by 22.6% and
26.2%, and the 7-day max is projected to increase the least, by 18.7% and 22.5% under the
two scenarios, respectively.
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Table 7. Trends in future floods and multi-year averages at different time scales under the two scenarios.

Time Scale

SSP245 SSP585

Trend p-Value Change
Rate (%) Trend p-Value Change

Rate (%)

1-day max ↑ 0.127 61.9% ↑ 0.855 66.4%
3-day max ↑ 0.141 34.3% ↑ 0.742 38.5%
5-day max ↑ 0.154 22.6% ↑ 0.694 26.2%
7-day max ↑ 0.188 18.7% ↑ 0.577 22.5%

Note: An upward arrow indicates an increasing trend in future flood compared to the historical period.

We created scatter plots between the flood magnitudes for the two scenarios (Figure 9).
When the points are located below the forty-five-degree line, the SSP585 scenario has higher
flows than the SSP245 scenario and vice versa.
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Slightly more points are located in the pink area than in the blue area for the 1-day max,
indicating a slightly higher probability of floods occurring under the SSP245 scenario. For
the 3-day, 5-day, and 7-day max, slightly higher likelihoods of floods occur under the SSP585
scenario during the NF period, and higher likelihoods occur under the SSP245 scenario
during the MF period. Most of the points are clustered in the flow range of 100–500 m3/s,
indicating that this flood magnitude will occur more frequently in the future.

3.3.3. Frequency of Floods

We calculated the flood frequency under different return periods (5 years to 100 years)
using the Pearson type III theoretical distribution to assess the impact of climate change on
flood frequency (Figure 10). The shaded part represents the 10th to 90th percentile ranges of
the projections, and the solid line represents the magnitude of MMEA. The results show that
the flood frequency will be significantly higher in the future than in the historical period
for different return periods. Therefore, an early warning system should be implemented.
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Table 8 lists the flood magnitudes in the historical period and the future. The 1-day
max for the 30-, 50-, 80-, and 100-year return periods are expected to increase by an average
of 26.3%, 30.72%, 34.9%, and 36.1% under the SSP245 scenario and by 35.0%, 40.7%, 46.2%,
and 47.6%, respectively, under the SSP585 scenario. The 3-day max for the four return
periods is expected to increase by 23.6%, 27.6%, 31.0%, and 32.5% under the SSP245 scenario
and by 30.8%, 35.5%, 39.4%, and 41.1%, respectively, under the SSP585 scenario. As the
return period increases, the rate of increase in the flood magnitude increases. The SSP585
scenario always exhibits a higher rate of increase in the NF and MF periods, indicating a
higher flood risk.

Table 8. Flood magnitudes in the historical period and the future for different return periods under
two scenarios.

Time Scale Future Period
30-Year Flood 50-Year Flood 80-Year Flood 100-Year Flood

SSP245 SSP585 SSP245 SSP585 SSP245 SSP585 SSP245 SSP585

1-day max

NF 32.34% 46.10% 37.97% 54.04% 42.64% 60.72% 44.72% 63.72%
MF 16.45% 39.01% 20.03% 44.97% 24.31% 52.16% 24.31% 52.16%
FF 29.95% 19.91% 34.15% 23.07% 37.64% 25.68% 39.19% 26.83%

Mean 26.25% 35.01% 30.72% 40.69% 34.86% 46.19% 36.07% 47.57%

3-day max

NF 30.68% 36.97% 35.96% 42.79% 40.37% 47.66% 42.34% 49.84%
MF 12.39% 32.98% 15.30% 37.98% 17.71% 42.16% 18.79% 44.02%
FF 27.66% 22.29% 31.63% 25.57% 34.93% 28.29% 36.39% 29.50%

Mean 23.58% 30.75% 27.63% 35.45% 31.00% 39.37% 32.51% 41.12%

5-day max

NF 31.17% 34.58% 36.12% 39.66% 40.25% 43.92% 42.10% 45.82%
MF 11.38% 32.23% 13.78% 36.74% 15.77% 40.49% 16.66% 42.16%
FF 27.05% 23.26% 30.61% 26.28% 33.58% 28.78% 34.90% 29.89%

Mean 23.20% 30.02% 26.84% 34.23% 29.87% 37.73% 31.22% 39.29%

7-day max

NF 33.35% 36.34% 38.32% 41.38% 42.49% 45.62% 44.35% 47.51%
MF 14.41% 35.67% 16.88% 40.32% 18.94% 44.20% 19.86% 45.93%
FF 29.99% 28.29% 33.71% 31.64% 36.82% 34.43% 38.21% 35.67%

Mean 25.92% 33.43% 29.64% 37.78% 32.75% 41.42% 34.14% 43.04%

Higher-magnitude floods will occur in the NF period than in the MF and FF periods.
For example, the 1-day max for the 100-year return period will increase by 44.7% in the NF
period under the SSP245 scenario. In the same scenario, the FF period will experience the
second-largest increase (39.2%), followed by the MF period (24.3%).

Figure 10 also shows that the flood projection intervals for the two scenarios are
similar for shorter return periods, indicating that the flood projections with shorter return
periods are less sensitive to both scenarios, whereas with the return period increasing, the
sensitivity is also shown to increase. The larger the flood projection intervals, the greater
the uncertainties.

3.3.4. Timing of Floods

We analyzed and compared the maximum flow occurrences over one, three, five, and
seven days in the future and historical periods, as shown in Figure 11. The shaded part
represents the flood occurrence time derived from all GCMs, and the solid line represents
the average occurrence time obtained from the MMEA. Most of the floods occurred in June,
July, August, and early September (171–260 days). The future floods are projected to occur
sooner or later than the historical floods.
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Figure 11. The timing of historical and future floods.

We generated 40 time series of future runoff events using the 2 future scenarios,
10 GCMs, and 2 bias-correction methods. We extracted the flood timing and classified the
results into six groups based on the month of flood occurrence. Figure 12 shows the flood
probability in different months. Most floods occurred between July and September in the
historical period, with the highest probability in July. The probabilities were 56%, 48%,
52%, and 52% in July and 28%, 36%, 32%, and 32% in August for the 1-day max, 3-day max,
5-day max, and 7-day max, respectively.

The flood probabilities were different in the future period. The probabilities were
lower in July and higher in August. The future flood probabilities in July were 32.7% (1-day
max), 33.3% (3-day max), 34.0% (5-day max), and 34.3% (7-day max) in the SSP245 scenario
and 32.0% (1-day max), 33.0% (3-day max), 33.7% (5-day max), and 34.7% (7-day max)
in the SSP585 scenario. The flood probabilities in August were 38.7% (1-day max), 38.7%
(3-day max), 38.7% (5-day max), and 38.3% (7-day max) in the SSP245 scenario and 41.3%
(1-day max), 41.7% (3-day max), 42.0% (5-day max), and 41.0% (7-day max) in the SSP585
scenario. Overall, the flood probability in August is expected to increase from 32% in the
past to 40% in the future; thus, most floods will occur in August. Furthermore, the flood
probability in August is higher for the SSP585 scenario than for the SSP245 scenario.

The flood probabilities are also projected to increase in May, June, September, and
October, especially during the MF and FF periods. Specifically, the flood probabilities in
September are expected to increase from 8% to 14–18% for the 1-day max and 3-day max
and from 12% to 13–17% for the 5-day max and 7-day max. Floods did not occur in May
historically but may occur in this month in the future, although the probability is projected
to be relatively low.

Overall, the flood occurrence time will have a larger range in the future, with the
highest probability in August, lagging one month behind that of the historical period.
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4. Discussion
4.1. Impacts of Climate Change on Annual and Intra-Annual Runoff

The results of this study suggest that the upper Heihe River basin may experience
warmer and wetter conditions in the future. This finding aligns with previous studies. For
instance, Wu et al. [61] and Li et al. [35] found that this basin will likely experience higher
temperatures and precipitation in the future. In addition, recent studies have revealed
that glaciers in the Qilian Mountains region in the upper Heihe River have been retreating
due to increasing temperatures over the past few decades [19,61–63]. As a result, more
runoff from glacial meltwater has occurred in the upper Heihe River basin, a process that is
expected to intensify with continued warming in the future [19,64].

In our study, the multi-year average runoff in the future was projected to decrease in
some cases (the NF and MF periods under the SSP245 scenario and the FF period under
the SSP585 scenario) and increase in other cases, which is not consistent with the results
obtained from previous studies, which observed an increase in total runoff [36,37]. The
reasons may include the use of different GCMs, hydrological models, and study periods.
The results of several GCMs in our study showed increasing trends in the future runoff
compared to the historical period (Figures 7 and 8). We chose MMEA to estimate the
changes in runoff. This approach has been widely used by many researchers to analyze the
impact of climate change on watershed hydrological processes [20,64,65].

The results of the MMEA indicate that the multi-year average annual evapotranspira-
tion rate is much higher than the precipitation rate during the NF and MF periods under
the SSP245 scenario and the NF period under the SSP585 scenario, indicating a decrease
in runoff in these periods. However, the precipitation rate was slightly higher than the
evapotranspiration rate during the FF period under the SSP245 scenario, which may lead
to the runoff increasing.

The intra-annual runoff results indicate that the winter and spring runoffs are projected
to increase, whereas the summer runoff is projected to decrease, which agrees with the
results of Li et al. [37]. The increases in the winter and spring runoffs may be attributed to
the increased seasonal precipitation and temperature (Section 4.2), producing more rainfall
and snowmelt runoff.

The summer runoff (June, July, and August) is expected to decrease. The precipitation,
evapotranspiration, and snowmelt data in the historical and future periods are shown in
Figure 13. The decrease in runoff in June under the SSP245 scenario may attributed to the
reduction in precipitation and snowmelt, the decrease in July may due to a decrease in
precipitation, and the decrease in August may related to an increase in evapotranspiration.
In contrast, the decrease in runoff in June under the SSP585 scenario may attributed to
higher evapotranspiration and less snowmelt, whereas the decreases in July and August
may attributed to higher evapotranspiration.

4.2. Impact of Climate Change on Floods

Precipitation and temperature affect intra-annual runoff and flood occurrence. Previ-
ous studies have suggested that changes in precipitation and evapotranspiration can impact
the flood magnitude. Increased precipitation can potentially cause greater flooding, and
decreased precipitation and increased evapotranspiration may lead to less flooding [11,14].
The upper Heihe River basin is located in the Qilian Mountains, which have high elevations.
Thus, it is speculated that summer floods in the basin may caused by precipitation and
glacier/snow melting, and spring floods may primarily caused by glacier/snow melting
due to rising temperatures. The primary contributing factors to increased flood magnitudes
in the future are speculated to be the increased precipitation and accelerated snow melting
caused by climate change.
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Similar to the historical period, most floods (over 75%) in the future are expected
to occur during summer. However, the reduction in precipitation and the increase in
evapotranspiration in July are projected to result in a substantial reduction in the flood
magnitude in July, and the proportion of floods in August is expected to increase in the
future. This study also reveals that the flood is projected to occur during spring in the
future, which is unprecedented in the historical period. The likely reason is that snow
melting is projected to occur earlier due to rising temperatures. Stewart et al. demonstrated
that a temperature rise of 1 to 3 ◦C during spring caused the onset of snowmelt runoff to
advance by 1 to 4 weeks [66,67]. Thus, the rising temperatures in the future would lead
to earlier snowmelt runoff and more snow melting in the basin. Therefore, it is necessary
to remain vigilant of major flooding in the future that could be caused by warmer spring
temperatures and higher rainfall.

5. Conclusions

The study used 10 GCMs under two scenarios in the CMIP6 and two downscaling
methods to generate future climatic data for the upper Heihe River basin. The SWAT model
was used to project future hydrological processes and potential floods in the basin. The
main findings of the study are as follows:

(1) Climate change will affect the annual and intra-annual runoff in the basin. The change
in the annual average runoff will be −4.5% (NF), −1.8% (MF), and +2.0% (FF) under
the SSP245 scenario and −1.0% (NF), +0.4% (MF), and +0.2% (FF) under the SSP585
scenario. Winter and spring runoff is projected to increase due to more precipitation
and snowmelt, whereas summer runoff is projected to decrease due to less rainfall
and snowmelt and more evapotranspiration.

(2) The MMEA’s projections show that the basin will experience higher flood magnitudes
in the future. The 1-day maximum flow is expected to increase the most under
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the SSP245 and SSP585 scenarios (61.9% and 66.4%, respectively) compared to the
historical period. The 3-day, 5-day, and 7-day maximum flow rates are also projected
to increase under both scenarios, with increases ranging from 18.7% to 38.5%.

(3) The flood frequency is projected to increase in the future, particularly in the NF period.
The 1-day maximum flow is expected to increase by 44.72% and 63.72% under the
SSP245 and SSP585 scenarios, respectively.

(4) The flood timing is also expected to change, with the highest probability occurring
from July to August. Additionally, there will be more flood events occurring in other
months in the future.

There are also some limitations to this study; for example, current studies pointed out
that the response of runoff to climate change may be different between models calibrated
using observed data and those calibrated through the output of GCMs [28,68]. In this
study, only the observed meteorological data were used to calibrate the model, which may
introduce a certain degree of bias, especially in projecting extreme hydrological events. In
addition, future runoff predictions are often subject to large uncertainties due to choices
made during the modeling process, e.g., GCMs, emission scenarios, hydrological models,
different sources of data, etc. [23–27,69,70]. Research has indicated that the selection of
scenarios can significantly affect watersheds with snowmelt [27], and the uncertainty
associated with GCMs plays a crucial role in predicting high and average flows [69,70].
The coupling between climate change projection and hydrological models is also one
source of such uncertainties [28]. Thus, more diverse scenarios, GCMs, and modeling
options to conduct a more comprehensive analysis of hydrological processes are required
in future studies.
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