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Abstract: Accurate storm surge forecasting is vital for saving lives and avoiding economic and
infrastructural damage. Failure to accurately predict storm surge can have catastrophic repercussions.
Advances in machine learning models show the ability to improve accuracy of storm surge predic-
tion by leveraging vast amounts of historical and realtime data such as weather and tide patterns.
This paper proposes a bidirectional attention-based LSTM storm surge architecture (BALSSA) to
improve prediction accuracy. Training and evaluation utilized extensive meteorological and tide level
data from 77 typhoon incidents in Hong Kong and Macao between 2017 and 2022. The proposed
methodology is able to model complex non-linearities between large amounts of data from different
sources and identify complex relationships between variables that are typically not captured by
traditional physical methods. BALSSA effectively resolves the problem of long-term dependencies
in storm surge prediction by the incorporation of an attention mechanism. It enables selective em-
phasis on significant features and boosts the prediction accuracy. Evaluation has been conducted
using real-world datasets from Macao to validate our storm surge prediction model. Results show
that accuracy and robustness of predictions were significantly improved by the incorporation of
attention mechanisms in our models. BALSSA captures temporal dynamics effectively, providing
highly accurate storm surge forecasts (MAE: 0.0126, RMSE: 0.0003) up to 72 h in advance. These
findings have practical significance for disaster risk reduction strategies, saving lives through timely
evacuation and early warnings. Experiments comparing BALSSA variations with other machine
learning algorithms consistently validate BALSSA’s superior predictive performance. It offers an
additional risk management tool for civil-protection agencies and governments, as well as an ideal
solution for enhancing storm surge prediction accuracy, benefiting coastal communities.

Keywords: storm surge; machine learning; artificial intelligence; tropical cyclone; natural disaster;
natural hazard

1. Introduction

Storm surge is a hazardous and destructive natural phenomenon that could result in
disastrous consequences for coastal communities. It happens when strong winds from a
tropical storm or typhoon push water towards the shore, causing the sea level to rise over
the predicted astronomical tide height [1]. This sea level rise can result in extensive floods,
infrastructure damage, and loss of life [2]. In recent years, we have witnessed the effects of
storm surge on communities around the world, from Hurricane Katrina in 2005 to super
typhoons Hato and Mangkhut in 2017 and 2018, respectively [3]. Impacts of storm surges
on coastal communities include the destruction of infrastructure, displacement of residents,
and ecological disruptions [4–6].
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Predicting storm surge is essential for ensuring the safety and security of coastal pop-
ulations, but it is a complicated and difficult endeavor [7]. Traditional numerical weather
prediction (NWP) models, which estimate the interplay between numerous physical pa-
rameters including wind speed, atmospheric pressure, and ocean currents, have been the
foundation of conventional approaches to forecasting storm surge [8]. Nevertheless, these
models take a significant amount of computational power and time to operate, and they
frequently fail to capture the complexity and volatility of real-world data and precisely
estimate the scale and timing of storm surge incidents [9], leaving communities vulnerable
to unexpected, possibly catastrophic, flooding [10]. In contrast, machine learning has
the potential to significantly enhance storm surge forecasting by learning from historical
and realtime data. This enables ML models to represent the diversity and complexity of
real-world situations, adapt to changing circumstances, identify complicated relationships
between variables, and detect new patterns. ML also enables concurrent evaluation of
historical and realtime data from several sources, thus allowing the use of multi-factor
storm surge predictions. Using various ML techniques, we can evaluate vast amounts of
historical and realtime data on storm surge and other possible factors, such as weather
patterns and sea temperatures [11], to generate more accurate and trustworthy models for
forecasting potential storm surge [12]. In addition, attention-based long short-term memory
(LSTM) models have shown promising results for predicting natural phenomena, including
weather and floods [13]. With the attention mechanism, these models assign different
weights to input features, allowing them to focus on relevant information and enhance
prediction accuracy. When applied to storm surge prediction, the models account for the
complex interactions between weather variables, such as wind speed and atmospheric
pressure, by considering their spatial and temporal relationships. This allows the models
to capture non-linear patterns and improve prediction accuracy.

ML can improve catastrophe preparation and response for storm surges, an extreme
weather event. However, existing ML methods for storm surge prediction have a limitation
in that they rely on historical data for training, making it difficult for them to predict
storm surges accurately under unseen weather conditions or sudden changes in weather
patterns [14]. This creates a research gap in accurately forecasting anomalies in sea level
when there is a sudden change in weather patterns, such as a rise in wind velocity or a drop
in air pressure. Specifically, these models tend to produce inaccurate tidal level forecasts
under the influence of tropical cyclones when sudden changes are observed in weather [15].
Moreover, their performance tends to decline as the forecast lead time increases. These
models may struggle to capture the complex inter-dependencies between various weather
variables that contribute to storm surge.

To overcome these limitations, we propose the use of bidirectional attention-based
LSTM models, which can capture the relationships between different weather features and
assign weights based on their importance in predicting storm surges [16]. This ability to
learn from relevant feature relationships can improve the accuracy of predictions even for
unseen weather conditions or sudden shifts in weather patterns. We believe that shifts in
weather often depend on changes observed in mutually related weather variables. Learning
the interaction of these mutually correlated weather features during water level forecasting
can accurately predict a particular weather feature when a sudden change is observed in
weather [17]. Therefore, we aim to develop a bidirectional attention-based LSTM architec-
ture for storm surge prediction to simultaneously learn input feature interactions in long
sequences and accurately predict sea water level anomalies. In this paper, we propose
and design a bidirectional attention-based LSTM model (BALSSA) that assigns varying
weights to each storm surge input feature sequence to improve the accuracy of storm surge
prediction. The attention mechanism allows the model to selectively learn the inputs and
correlate them with the output sequence, regardless of their distance in the input or output
sequences, thereby simplifying the understanding of how the input sequence influences
the final produced sequence. Moreover, our experimental results on real-world datasets
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reveal that BALSSA outperforms traditional models significantly. The main innovations
and contributions of this article are as follows:

1. Utilizes a bidirectional LSTM to encode the historical meteorological and tide data
sequence into a vector and subsequently decodes the vector with weights derived
from the attention layer to make the prediction.

2. Explores the integration of an attention mechanism to enhance prediction accuracy by
extracting meteorological, tidal, and typhoon features of storm surge time series and
using them as input to the model.

3. In contrast to traditional numerical weather prediction models, BALSSA can handle
non-stationary sequences and capture all non-linear interactions more effectively [18].

4. Compared to other deep learning models, BALSSA has superior interpretability and
can avoid the long-term dependence issues [19].

In general, BALSSA offers several advantages over traditional ML models for storm
surge prediction. These advantages include the ability to capture complex relationships
between weather variables, handle non-linear and non-stationary relationships, and focus
on the most relevant features for making accurate predictions [20]. The advantages are
listed below:

1. The model focuses on specific features of the data that are most relevant for making
accurate predictions. For instance, in storm surge prediction, it can identify which
weather variables (such as wind speed, air pressure, and temperature) are most
influential in determining the likelihood and severity of a surge.

2. The model captures complex relationships between the weather variables that may
not be apparent from simple statistical analysis. For example, it can help the model
recognize how changes in one variable (such as wind speed) can affect other variables
(such as water level or wave height) and how these changes can combine to create a
storm surge.

3. The model handles non-linear and non-stationary relationships between the weather
variables, which can be difficult for traditional statistical models. It captures the
dynamic interactions between the weather variables and adjusts their weights based
on the current state of the system, allowing them to adapt to ever-changing weather
conditions and make more accurate predictions.

This paper is structured as follows: Section 2 reviews current research related to the
topic and highlight how this work differs. Section 3 describes the main structure of the
proposed model. This includes an overview of the model principle and architecture settings,
as well as the model training method and evaluation metrics. Section 4 presents real case
studies where the proposed model was applied. This section covers the experimental
environment, the dataset used, and the achieved results. Additionally, we compare the
proposed model with eight different machine learning and deep learning models. Section 5
offers a discussion on the key highlights of this research area. Finally, Section 6 presents the
final remarks on this work and suggests directions for future research.

2. Related Works

Traditional numerical weather prediction (NWP) models have been widely utilized
for short-term flood estimation [21–23]. However, the development and implementation
of these models necessitate specialized expertise [24,25] and are susceptible to inherent
limitations [26–30].

In recent years, machine learning has emerged as a promising alternative for flood
prediction, demonstrating superior accuracy and lead time compared to traditional statisti-
cal models [31–35]. Quinn et al. [36] underscored the significance of considering temporal
variability in storm surge predictions, as it directly impacts flood volume and depth.
Doycheva et al. [37] proposed an ensemble approach employing support vector machines
(SVMs), multilayer perceptron (MLP), and random forest (RF) classifiers to mitigate predic-
tion uncertainty and enhance reliability. Fleming et al. [38] developed an artificial neural
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network (ANN)-based model for daily high tide prediction, demonstrating swift model
development and deployment capabilities. Chen et al. [39] employed deep learning tech-
niques, including convolutional neural networks (CNNs) and long short-term memory
(LSTM) networks, to forecast storm surge levels in the South China Sea, yielding improved
accuracy and robustness compared to conventional NWP models.

Including atmospheric conditions in prediction models is crucial for improving the
accuracy of flood estimation with short lead times [40]. Kim et al. [14] developed an
improved version of traditional statistical models with an hourly lead time for predicting
typhoon-induced floods. Prediction models by Danso et al. [41] and Saghafian et al. [42]
were found to be more accurate than traditional ones. Kourgialas et al. [43] developed an
artificial neural network (ANN)-based flood prediction model with lead times of 3, 12, and
19 h to enhance estimation performance for flooding with short lead times. Sahoo et al. [44]
developed an ANN for estimating storm surge with a computational accuracy of over 92%.
The model was validated using in situ data and archival storm tide records. Quinn et al. [36]
emphasized the significance of incorporating the exact moment when storm surge levels
peak into the model, as it has a substantial impact on the resulting effects. Furthermore,
Wang et al. [45] developed a hybrid machine learning model that combined a numerical
model and a recurrent neural network (RNN) to predict storm surge heights in the Gulf of
Mexico. The hybrid model demonstrated superior performance compared to individual
models, leading to enhanced prediction accuracy.

Artificial intelligence (AI) has emerged as a powerful tool for advancing sustainable
development goals across various domains, including the economy, society, and environ-
ment. In particular, AI has shown remarkable potential for addressing challenges related
to climate change, extreme weather prediction, and weather forecasting [13,46,47]. De-
spite the abundance of machine learning models based on LSTM-RNN that have been
proposed, accurately predicting natural phenomena remains a challenge due to the dy-
namic nature of weather patterns. To overcome this limitation, attention techniques have
been developed to identify and focus on the most relevant portions of input data, thereby
enhancing the predictive accuracy of the models [48–50]. By utilizing multiple weather
variables to forecast a single target weather feature, the interplay and attention weights of
these variables with respect to the target variable can be determined [51]. This approach
enables the model to effectively capture the impact of weather patterns and assign varying
weights to input variables, thereby improving prediction accuracy. Several studies have
explored attention-based neural networks that capture spatio-temporal correlations and
long-term dependencies, aiming to enhance the accuracy of multivariate time series pre-
diction. These include the dual-stage two-phase attention-based recurrent neural network
(DSTP-RNN) [52], the spatiotemporal attention module [53], and the self-attention joint
spatiotemporal convolutional LSTM model [54]. In a recent study, an LSTM model incorpo-
rating a spatial attention mechanism was employed to accurately capture the spatial and
temporal characteristics of different meteorological parameters for temperature forecasting,
resulting in improved prediction accuracy [13]. These advancements in attention-based
techniques offer promising avenues for refining the prediction capabilities of AI models in
weather forecasting and climate studies.

Attention-based LSTM models have demonstrated their effectiveness for weather and
time series forecasting tasks by assigning importance weights to input variables. In the
context of storm surge prediction, where multiple factors such as wind, pressure, and
tides contribute to surges [26,55,56], attention-based LSTM models can enhance prediction
accuracy by identifying the most significant inputs and their interactions. By capturing
spatial and temporal correlations, these models offer improved performance in predicting
storm surge levels [10]. Consequently, attention-based LSTM models hold the potential to
accurately forecast water level anomalies, further enhancing the capabilities of storm surge
prediction models.
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3. Model Architecture

This section deals with three issues: the proposed model structure in Section 3.1; data
collection and preprocessing in Section 3.2; and evaluation metrics in Section 3.3.

3.1. Model Structure

In our design of BALSSA, we used a bidirectional LSTM layer and an attention layer,
as shown in Figure 1. The LSTM layer transformed the input data into a sequence of output
vectors O1. . . n, representing the sea water level history information. This output sequence
is then fed into the attention layer, which assigns adaptive weights W1. . . n to the input
features to highlight the most important ones. The output of both layers is used to predict
the abnormality of sea water level, specifically predicting the sea level at time t + 1 given
past information t and the attention weights.

To compare the performance of BALSSA with other machine learning methods, we also
employed linear regression (LR), K-nearest neighbor (KNN), random forest (RF), extreme
gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), categorical
boosting (CatBoost), and gradient boosting (GB) models. All the models were constructed
using scikit-learn, a popular machine learning tool.

Figure 1. Proposed structure for the bidirectional attention-based LSTM model, BALSSA.

3.1.1. Bidirectional LSTM Layer

Given a sequence of inputs, denoted as x1, x2, . . . , xn, at timestep t, the long short-
term memory (LSTM) model performs computations to generate the corresponding output
sequences, represented by h1, h2, . . . , hn, and the memory cell sequences, represented by
C1, C2, . . . , Cn. This is achieved through a series of equations, as shown in Equations (1)–(6).

The forget gate ( ft) in Equation (1) is responsible for determining the extent to which
the previous memory cell should be forgotten. It is computed by applying the sigmoid
function (σ) to the weighted sum of the previous hidden state (ht−1) and the current input
(xt), along with a bias term (b f ). Similarly, Equation (2) defines the input gate (it), which
controls the amount of new information to be stored in the memory cell. It is computed by
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applying the sigmoid function to the weighted sum of ht−1, xt, and the bias term (bi). The
candidate cell state (c′t) in Equation (3) is computed by applying the hyperbolic tangent
function (tanh) to the weighted sum of ht−1, xt and the bias term (bc). This candidate cell
state represents the new information that can be potentially added to the memory cell. The
current memory cell state (Ct) in Equation (4) is then computed by combining the previous
memory cell state (Ct−1) with the candidate cell state (c′t) scaled by the forget gate ( ft) and
added with the product of the input gate (it) and the candidate cell state. Furthermore,
Equation (5) introduces the output gate (ot), which controls the extent to which the current
memory cell state is exposed as the output. It is computed by applying the sigmoid function
to the weighted sum of ht−1, xt and the bias term (bo). Finally, Equation (6) computes the
hidden state (ht) by multiplying the output gate (ot) with the hyperbolic tangent of the
memory cell state (Ct).

f orget gate, ft = σ(W f ∗ [ht−1, xt] + b f ) (1)

input gate, it = σ(Wi ∗ [ht−1, xt] + bi) (2)

c′t = tanh(Wc ∗ [ht−1, xt] + bc) (3)

state, Ct = ft ∗ Ct−1 + it ∗ c′t (4)

output gate, ot = σ(Wo ∗ [ht−1, xt] + bo) (5)

h sequence, ht = ot ∗ tanh(Ct) (6)

where σ is the standard logistic sigmoid function and W f , Wi, Wc, Wo and b f , bi, bc, bo are
weights and bias.

The bidirectional LSTM layer is an important component of BALSSA, and it is a type
of recurrent neural network (RNN) layer that is widely used in deep learning models for
time series data. It has the ability to capture both past and future context by combining the
benefits of both forward and backward processing of the inputs, which helps in extracting
more significant representations of the input data.

To achieve bidirectional processing, the input sequence is processed in two separate
LSTM layers that process the sequence in opposite directions. One layer processes the
sequence from start to end (i.e., forward direction), while the other layer processes the
sequence from end to start (i.e., backward direction). At each time step, each LSTM layer
maintains a hidden state vector that captures the previous context of the input sequence.
The outputs of the two layers are then concatenated to form a combined output vector:

ht = [
−→
ht ;
←−
ht ]

where
−→
ht and

←−
ht are the hidden state vectors of the forward and backward LSTM layers at

time step t, respectively (see Figure 1).
Specifically, the forward LSTM layer processes the input sequence from the first time

step to the last, while the backward LSTM layer processes the sequence from the last time
step to the first. This approach enables the model to capture both past and future context,
which can be useful for predicting the next possible event in the future and capturing long-
range dependencies and complex patterns in the input sequence. Overall, the bidirectional
LSTM layer is a powerful and versatile tool for processing sequence data in deep learning
models. Its ability to capture both local and global context of the input sequence can lead
to better accuracy, faster convergence, and more effective use of the available data.
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3.1.2. Attention Layer

The attention layer enables us to assign variable weights to different input features
instead of treating them equally, which allows for a more nuanced representation of the
input data. For instance, sudden changes in wind velocity and pressure may have different
weights based on their relative magnitudes. To calculate the weights dynamically based on
the actual values of the input features, we first pass the input through a dense layer to obtain
a set of feature representations. Then, we use a softmax layer to compute the attention
weights based on these representations. These weights are trainable and optimized based
on the input data, so they can effectively capture the relationships between different
features. Once we have the attention weights, we multiply them by the corresponding
feature representations to obtain a weighted sum. This represents the final output of
the attention layer, which can be further processed by additional layers to produce the
desired prediction or classification result. By adjusting the weights and parameters of
the attention layer through backpropagation, we can improve the accuracy of the model
and make better use of the input data. It is a highly effective technique for improving the
accuracy and interpretability of deep learning models, making it an essential component
for ML applications.

In our proposed model, the weight of the additive attention mechanism is determined
through a calculation that involves the input and a learnable parameter matrix. This
calculation is then passed through a non-linear activation function, the hyperbolic tangent
function, as shown in Equation (7):

ei = tanh(W1hi + W2s) (7)

Here, hi represents the ith input feature or element, s is the query vector, and W1
and W2 are learnable parameter matrices. The resulting scores, obtained through this
calculation, are further processed using a softmax function to obtain the attention weights,
as demonstrated in Equation (8):

αi =
exp(ei)

∑n
j=1 exp(ej)

(8)

In Equation (8), αi denotes the attention weight assigned to the ith input feature or
element, while n represents the total number of input features or elements.

The weighted sum of the input is then computed by combining the input features with
their respective attention weights, as indicated in Equation (9):

c =
n

∑
i=1

αihi (9)

Alternatively, the attention weight for a pair of input features (hi, hj) could also be
determined using Equation (10):

αi,j =
exp(hi · hj)

∑n
k=1 exp(hi · hk)

(10)

In Equation (10), αi,j represents the attention weight assigned to the pair of input
features (hi, hj). Based on these attention weights, the weighted sum of the input could
then be calculated using Equation (11):

ci =
n

∑
j=1

αi,jhj (11)

Note that in this case, the output of the attention layer is a sequence of weighted input
vectors ci, rather than a single vector c.

The attention layer plays a crucial role in enhancing the performance of modern deep
learning models by selectively focusing on relevant information in the input sequence. This
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is achieved by assigning variable weights to each element in the sequence based on their
importance to the task, which is dynamically calculated. By doing so, the attention layer
allows the model to prioritize certain parts of the input and disregard others, resulting in
better accuracy and faster convergence.

To achieve this, the attention layer takes in a sequence of feature vectors or hidden
states as input, obtained from a previous layer such as the LSTM layer in this research. The
layer applies trainable parameters to each feature vector, resulting in a set of transformed
vectors. These transformed vectors are then passed through a softmax layer to compute a
set of attention weights w1. . . n, which determine the importance of each feature vector in
the final output. The attention weights are multiplied by the corresponding feature vectors
to obtain a weighted sum, representing the final output of the attention layer. This output
can be further processed by additional layers, such as the Dual-BALSSA (D-BALSSA)
structure that will be discussed in the next section, depending on the specific task and
model architecture. The softmax function ensures that the attention weights add up to 1
and assign higher weights to more relevant or informative feature vectors.

Traditional storm surge time series prediction models based on LSTM or RNN often
utilize raw time series as input, and all feature sequences are considered equally [57,58].
This can lead to suboptimal performance, as some features may be more relevant than others
for the task at hand [59]. By contrast, the attention layer in our proposed model allows
for a more selective and nuanced representation of the input data. The newly acquired
attention weights W1. . . n enable us to focus more on specific input feature sequences,
efficiently extract relevant feature sequences, and remove the effects of duplicated feature
sequences. It can result in higher prediction accuracy when they are used as inputs to
another LSTM layer or converged with the input sequence. Attention weights are trainable
and updated during training using backpropagation, enabling the model to learn to focus on
different parts of the input sequence and improve its accuracy and robustness. Compared to
traditional models [59–61], using the attention layer can result in higher prediction accuracy,
as it learns to focus on different parts of the input sequence depending on the input data.
The attention weights themselves can be analyzed and visualized to gain insights into
how the model makes decisions and what parts of the input are most important. This
makes the attention layer a powerful and versatile tool for enhancing the performance and
interpretability of deep learning models. By selectively focusing on different parts of the
input sequence, the attention layer can lead to better accuracy, faster convergence, and
more effective use of available data.

3.1.3. Dual-BALSSA, D-BALSSA

To further explore and strengthen the capabilities of the design for the single layer
BALSSA we have discussed earlier, our extended version of BALSSA will be built using dual
layers of bidirectional LSTM and attention layers (D-BALSSA), as illustrated in Figure 2.
This implies that we use the output of the first attention layer as input to the second
bidirectional LSTM layer and then utilize the output of the second LSTM as input to the
second attention layer to predict the ultimate anomalies in sea level.

By using a D-BALSSA for storm surge prediction, we could achieve:

• Enhanced management of complex relationships: Accurate storm surge prediction
requires modeling the complex relationships between various factors, such as wind
speed, sea level, and atmospheric pressure. The dual-layer design of D-BALSSA helps
capture these complex correlations and long-term dependencies, leading to more
accurate predictions.

• Improved feature selection: The prediction of storm surges involves analyzing complex
relationships between multiple factors, such as wind speed, sea level, and atmospheric
pressure. The architecture of D-BALSSA effectively captures these relationships and
improves its ability to identify and incorporate important information into its predic-
tions, leading to more accurate results.
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Figure 2. The structure of D-BALSSA.

3.2. Data Collection and Preprocessing
3.2.1. Data Collection

The Pearl River Delta, located along the coast, has a history of being vulnerable to
natural disasters, with typhoons and storm surges posing recurring threats. Timely and
reliable forecasts of such events are crucial for safeguarding the lives and property of coastal
communities in the region, especially given the substantial rise in water levels during the
typhoon season. In order to assure the integrity and reliability of the collected input data
for the training of our models on various storm surge events caused by typhoons, this study
collects data from the the Hong Kong Observatory [62] and the Macau Meteorological
and Geophysical Bureau [63], which are the official weather departments of the respective
cities. Both of these areas are susceptible to typhoons and storm surges. BALSSA is
trained using observation data acquired from meteorological ground stations and tidal
gauges between 2017 and 2022, during which time a number of these typhoons caused
varying storm surges over these six years. A total of 630,000 recordings of meteorological
and tidal data have been gathered from these stations once every 5 minutes over these
6 years, along with observation data for tropical storms that have occurred. The number
of typhoon incidents each year, ranging from 8 to 16, along with their corresponding
tracks are illustrated in Figure 3. Landfall locations for these typhoons, where incidents
of serious storm surges occurred, were mostly located along the southeastern coast of
China. For instance, serious storm surge incidents were induced by super typhoons Hato
(2017, Figure 3a) and Manghut (2018, Figure 3b), which had their landfall location at the
southern coast of Zhuhai and Taishan coast of Jiangmen, Guangdong Province, respectively.
These two typhoons have induced severe storm surge events in Macao, causing billions of
economic losses [5,6,10]. Figure 4 depicts a digital elevation model (DEM) of Macao, which
represents the continuous physical topographic elevation surface that allows us to better
comprehend which surrounding low-lying areas would be the most susceptible to storm
surge attacks if occurred [64].

The primary input training parameters include wind velocity and direction, air pres-
sure, and tide level, as shown in Table 1 [65,66]. Auxiliary reference factors, such as typhoon
central pressure, central wind speed, moving speed, and moving direction, are also as-
signed [67,68]. These data will be used to evaluate the effectiveness of our model under
different typhoon conditions [69]. In addition, the tendency fluctuations of air pressure and
wind velocity in 1 h, 3 h, and 6 h have been computed and incorporated as a new feature
space for model training.



Atmosphere 2023, 14, 1082 10 of 25

(a) 2017, 13 typhoon incidents (b) 2018, 8 typhoon incidents

(c) 2019, 11 typhoon incidents (d) 2020, 14 typhoon incidents

(e) 2021, 15 typhoon incidents (f) 2022, 16 typhoon incidents

Figure 3. Movement tracks and landfall locations for typhoons occurring between 2017 and 2022.

Table 1. Partial meteorological and tide data obtained.

Date Time Predicted
Tide (m)

Actual Tide
(m) P # (hPa) Wind Dir WS *

(km/h)

WS * 1 h
Delta

(km/h)

P # 1 h
Delta (hPa)

1 January 2021 0:00 2.61 3.084 1013.6 NNE 18.36 −6.48 0.3
1 January 2021 0:05 2.58 3.084 1013.6 NNE 19.08 1.80 0.3
1 January 2021 0:10 2.55 3.089 1013.6 NE 17.28 −8.64 0.4
1 January 2021 0:15 2.53 3.085 1013.7 NNE 15.84 0.555 0.6
1 January 2021 0:20 2.50 3.050 1013.6 NNE 14.40 −5.40 0.4
1 January 2021 0:25 2.47 3.016 1013.7 NNE 16.20 −8.28 0.5
1 January 2021 0:30 2.44 2.952 1013.7 NNE 18.36 5.040 0.4

# P: atmospheric pressure. * WS: wind speed.
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Figure 4. Digital elevation model (DEM) representation for the physical topography of Macao.

Figure 5 displays a historical storm surge event that occurred in October 2021, with an
abnormal increase in water level denoted by a shaded area in both Figure 5a,b. Notice that
a strong positive correlation exists between the increase in surge level and changes in wind
velocity tendency, as depicted in Figure 5a. On the other hand, a strong negative correlation
could be found between water level anomaly and behaviors in tendency variations of atmo-
spheric pressure, as shown in Figure 5b. These correlations provide valuable insights into the
dynamics of storm surges and can aid in the development of accurate predictive models.

(a) Positive correlation (b) Negative correlation

Figure 5. Relationship between surge level and changes in wind and pressure tendencies.

Incorporating the tendency behaviors of atmospheric pressure and wind velocity as
a new feature space in our dataset is crucial. This is because it provides the models with
additional knowledge about the likely outcomes based on recent events [35,70,71]. To
demonstrate this, we conducted four independent tests using different ML model types
to compare their performance levels with and without the trend fluctuation tendencies
of these two essential properties. The results, as shown in Table 2 and Figure 6, make it
evident that including the tendency variations in wind velocity and atmospheric pressure
improves the predictive capabilities of the models.
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Table 2. Significance of tendency features in wind velocity and atmospheric pressure.

Features of Wind and Pressure Tendency
Model Metric Stage Absence Presence

Linear Regression

MAE
Train 0.1071 0.1048
Val 0.1073 0.1052
Test 0.1078 0.1056

MSE
Train 0.0195 0.0187
Val 0.0198 0.0191
Test 0.0199 0.0191

K-Nearest Neighbor

MAE
Train 0.0936 0.0903
Val 0.1033 0.1000
Test 0.1049 0.1006

MSE
Train 0.0146 0.0136
Val 0.0178 0.0168
Test 0.0184 0.0171

Random Forest

MAE
Train 0.0967 0.0904
Val 0.0983 0.0929
Test 0.1000 0.0940

MSE
Train 0.0154 0.0134
Val 0.0162 0.0144
Test 0.0167 0.0147

XGBoost

MAE
Train 0.0802 0.0435
Val 0.1005 0.0779
Test 0.1017 0.0792

MSE
Train 0.0109 0.0036
Val 0.0171 0.0104
Test 0.0175 0.0109

LightGBM

MAE
Train 0.0958 0.0838
Val 0.0984 0.0886
Test 0.1000 0.0899

MSE
Train 0.0151 0.0115
Val 0.0162 0.0131
Test 0.0167 0.0135

CatBoost

MAE
Train 0.0958 0.0774
Val 0.0984 0.0856
Test 0.1000 0.0871

MSE
Train 0.0151 0.0099
Val 0.0162 0.0122
Test 0.0167 0.0127

Gradient Boosting

MAE
Train 0.0992 0.0960
Val 0.0991 0.0967
Test 0.1006 0.0977

MSE
Train 0.0163 0.0152
Val 0.0163 0.0155
Test 0.0169 0.0159

The effectiveness and efficiency of BALSSA can significantly be impacted by the feature
engineering method used, which, in turn, affects the quality and reliability of the developed
machine learning models [61]. Ensuring that the data used for feature engineering are
representative and comprehensive is crucial for enhancing the performance of the model.
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(a) Mean Absolute Error (b) Mean Squared Error

Figure 6. Significance of wind and atmospheric pressure tendency features experimented by different
ML models.

3.2.2. Data Preprocessing and Imputation

One of the major challenges in predicting storm surge events is the scarcity of data [72].
Limited and inconsistent historical data can restrict the accuracy of machine learning
algorithms in forecasting future events. Even if data are available, they may not represent
the exact location where a forecast is required. To overcome this challenge, different data
imputation strategies have been explored to fill in missing data and improve machine
learning model training. These strategies include statistical methods that estimate missing
data based on known data points or restore missing data based on historical patterns and
trends [73].

To analyze the collected data, several preprocessing steps were taken. These included
normalizing the data, filling in missing values using mean interpolation, and identifying
meteorological elements with a strong correlation to storm surge. The significance of each
meteorological feature was evaluated to determine its association with storm surge [74]. The
data were also standardized to account for differences in the magnitude of the original data.
Normalization was done using the following formulas before conducting data correlation
analysis and network training:

e′t =
et − e

Sd
(12)

Sd =

√√√√ 1
N − 1

N

∑
i=1

(et − e)2 (13)

where e′t is standardized data, et is the original measured value of that meteorological
parameter, e is the corresponding mean of that data feature, and Sd is the standard deviation
of the original collected data that correspond to elements such as pressure or wind speed.

To address the challenge of missing data, various strategies such as mean and median
imputation, regression, and hybrid methods have been employed. However, due to the
intricate interplay between meteorological and tidal factors, data imputation in this field
can be challenging. Appropriate metrics and validation methodologies must be employed
to address these issues. Once the dataset was prepared through preprocessing, it was split
into a training set, consisting of 70% (441,000 entries, around 1530 days) of the collected
meteorological and tide data; the validation set, comprising 20% (126,000 entries, around
430 days) of the data, and the testing dataset, comprising the remaining 10% (63,000 entries,
around 215 days) of the data being collected. The training set was used to train the
model, while the validation and testing sets were used for prediction validation and testing,
respectively.
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3.3. Model Evaluation Metrics

To effectively analyze and evaluate the predicted results by different models, we used
three evaluation indices to evaluate the anomalies of sea water level prediction accuracy
and measurement of performances: the mean absolute error (MAE), the mean squared error
(MSE), and the root mean squared error (RMSE). The following equations mathematically
represent the selected performance indices:

MAE =
1
N

N

∑
i=1
|yi − ŷ| (14)

MSE =
1
N

N

∑
i=1

(yi − ŷ)2 (15)

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (16)

where y represents the actual value, N is the number of test points, ŷ represents the predicted
value of y, and ȳ is the mean value of y.

To summarize, MAE measures the average absolute difference between actual and
predicted values, whereas MSE and RMSE quantify the variance and standard deviation of
the residuals, respectively. Although MAE provides a measure of the average prediction
error, MSE and RMSE give more weight to larger errors. Both indices are used to quantify
the difference between actual and predicted values, and their values can range from 0 to
+∞. The closer the values are to zero, the more efficient the model will be.

4. Result Analysis

In this section, we will evaluate the performance of the proposed model by analyzing
the ten tropical cyclones (TCs) that occurred in Macao between 2021 and 2022, as shown in
Figure 7. Names of the ten TCs are labeled and indicated in the diagram for the time period
during which they occurred. Details of the these tropical cyclones are given in Table 3.
Tropical cyclones are categorized by their maximum sustained wind speeds around the
center, as recommended by the World Meteorological Organization (WMO). Classifications
and meanings for the six different categories are presented in Table 4.

Figure 7. Dataset for water level anomalies between 2021 and 2022.
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Table 3. Details of the tropical cyclones for model performance evaluation between 2021 and 2022.

TC Name Duration Grade Highest Wind (km/h) Lowest Pressure (hPa)

1 Koguma 6 November–6 December 2021 Tropical Storm 65 996
2 Cempaka 18 July–21 July 2021 Typhoon 130 980
3 Lupit 2–4 August 2021 Tropical Storm 85 984
4 Conson 9–10 September 2021 Severe Tropical Storm 95 992
5 Lionrock 7–10 October 2021 Tropical Storm 65 994
6 Kompasu 11–14 October 2021 Typhoon 100 975
7 Rai 20–21 December 2021 Super Typhoon 195 915
8 Chaba 29 June–3 July 2022 Typhoon 130 965
9 Mulan 9–11 August 2022 Tropical storm 65 994
10 Ma-On 23–25 August 2022 Typhoon 100 980

Table 4. Classification of grades for tropical cyclones.

Classification Abbreviation Maximum Sustained Winds Near the Center
(km/h)

Tropical Depression TD 41–62
Tropical Storm TS 63–87
Severe Tropical Storm STS 88–117
Typhoon T 118–149
Severe Typhoon ST 150–184
Super Typhoon SuperT 185 or above

In this study, we compared the performance of BALSSA with several other ML algo-
rithms for time series prediction, as shown in Table 5. The results, as illustrated in Figure 8,
indicate that both the standard LSTM and BALSSA outperformed the other techniques. This
can be attributed to the ability of LSTM-based models to capture the non-linear interactions
and long-term dependencies present in time series data.

Table 5. Performance comparison between BALSSA and different ML algorithms.

Metric LR KNN RF XGBoost LightGBM CatBoost GB LSTM BALSSA D-BALSSA

MAE 0.1050 0.1006 0.0940 0.0792 0.0899 0.0871 0.0977 0.0484 0.0126 0.0114
MSE 0.0191 0.0171 0.0147 0.0109 0.0135 0.0127 0.0159 0.0032 0.0003 0.0002

RMSE 0.1382 0.1308 0.1211 0.1043 0.1161 0.1126 0.1260 0.0560 0.0159 0.0147

(a) Mean Absolute Error (b) Root Mean Squared Error

Figure 8. Evaluation metrics for performance comparison among different ML algorithms.

Our proposed BALSSA exhibits superior performance compared to the standard
LSTM model, as shown in Figure 9. The evaluation of the testing set for MAE and MSE
with prediction times ranging from 1 h to 72 h is presented in Figure 9a and Figure 9b,
respectively. We observe that for all six models, the evaluation metrics of MAE and MSE
moderately increase from 1 h to 3 h, followed by a slight increase or decrease from 3 h to
24 h, after which the values remain steady or even improve slightly towards 72 h forecast
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time. Notably, the dark blue line representing the standard LSTM model is separated
from the other six models in Figure 9, indicating its inferior prediction performance. The
average MAE values for our proposed models and the standard LSTM model across the
seven prediction times are 0.0140 and 0.0484, respectively. Figure 10 shows the superior
prediction capability of BALSSA. Comparison in prediction accuracy between LSTM (85%)
and BALSSA (96%) can be observed in Figure 10a, and the difference between the actual
tide measurements with their respective predictions is shown in Figure 10b. It is evident
from the diagrams that BALSSA outperforms standard LSTM in terms of accuracy and with
tide differences ranging from −0.05 to 0.05. On the other hand, LSTM predictions show
tide differences that can exceed 0.15. The comparison among BALSSA (Figure 11a) and
other applied machine learning algorithms previously (Figure 11b) is depicted in Figure 11.

(a) Mean Absolute Error

(b) Mean Squared Error

Figure 9. Performance comparison on evaluation metrics between standard LSTM and BALSSA.

Furthermore, the attention mechanism’s ability to selectively and adaptively choose
the most relevant input features improves its accuracy. This suggests the relevance of input
feature sequences such as wind velocity, atmospheric pressure, tidal level, and tendency
changes in meteorological features, which aligns with our meteorological understanding.
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(a) Prediction Accuracy (b) Differences in tide levels

Figure 10. Comparison in performance between LSTM and BALSSA.

(a) BALSSA (b) Other applied ML algorithms

Figure 11. Taylor diagram for comparing the final results obtained by BALSSA and the other applied
ML algorithms.

The performance of the standard LSTM model was found to decline as the forecast
horizon increases. However, this drawback is fully addressed in all of our BALSSA architec-
tures, making them immune to this issue. It is worth noting that our models can maintain
high accuracy up to 24 h ahead, which is crucial for disaster risk preparation and timely
evacuation [75], if required.

We conducted a comparative evaluation of the performance accuracy between BALSSA
and D-BALSSA to further investigate their efficacy. The forecast lead time remained the
same as the seven predefined intervals used previously. We compared D-BALSSA with
variations of single-layered BALSSA models and also utilized an ensemble mean of the
BALSSA models to reveal the performance difference between D-BALSSA and the ensemble
model. As shown in Figure 12, the D-BALSSA is denoted by the thick brown line, while the
ensemble is denoted by the dotted blue line. The D-BALSSA improves the performance
of the prediction model, as evidenced by the evaluation metrics, exhibiting the smallest
MAE and MSE among most of the measured values from different breeds of BALSSA in the
majority of the cases. However, the improvement in performance accuracy is not significant
enough to justify the trade-off of being more complex in the overall design layout. In other
words, the resource expenditure in training and preparing this prediction model might not
be justified for this incremental enhancement in performance accuracy.
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(a) Mean Absolute Error

(b) Mean Squared Error

Figure 12. Evaluation metrics between BALSSA and D-BALSSA.

Our prediction accuracy and the efficacy of BALSSA are further demonstrated through
a comprehensive visual comparison of various implementations for the test cases of ty-
phoons Mulan and Ma-On in 2022. The results are presented in Figure 13, which also
shows the deviations between the actual tide level measurements and our predicted val-
ues. Overall, the obtained results are promising and satisfactory. For the Mulan case, the
discrepancies for the two tidal level peaks were 0.05 m and 0.02 m, respectively, while for
the Ma-On case, the deviations between the actual peaks and our predictions ranged from
0.03 m to 0.04 m. Furthermore, our prediction closely follows the real-world data curve
very well. However, we acknowledge that there is still a minor time lag in the prediction,
and our method may not always be sensitive to extreme weather conditions, which could
be an area of interest for future research.
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Figure 13. Model results and zoom-in view from variations of BALSSA for the prediction of sea level
anomalies induced by Mulan (left) and Ma-On (right). Maximum differences between actual and
predicted values at tide level peaks are highlighted.

5. Discussion

In this study, we have used a bidirectional attention-based LSTM model as our pro-
posed BALSSA approach. This approach effectively reduces the network structure complex-
ity while retaining crucial input indicators related to typhoons and relevant meteorological
changes. Specifically, it enhances prediction accuracy by extracting meteorological, tidal,
and typhoon features from storm surge time series data [36]. Our approach can handle
non-stationary sequences, capture non-linear interactions, offer superior interpretability,
and overcome long-term dependence issues observed in previous works [14,38,40]. To
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determine the optimal datasets, we carefully examined model results that yield accurate
surge forecasting over a relatively long lead time [14]. Consistent with several previous
studies [45], which utilized observation data from local tidal and meteorological stations,
our model substantially improves prediction accuracy.

To assess and explore the distinctions between the accuracy of BALSSA and pure
neural network model [44], we examine its prediction performance in terms of accuracy, as
depicted in Figures 10a and 12. It is evident that the various implementations of BALSSA
outperform earlier models, exhibiting significantly higher accuracy than the modest 92%
achieved by previous approaches. BALSSA stands out by delivering faster and more
accurate results, with abilities to retain storm-related information and leverage attention-
based capabilities. Furthermore, BALSSA demonstrates its superiority over earlier neural
network models [15,43,61], as evidenced by the findings presented in Figures 9, 11, and 12.
For instance, Lee et al. [15] presented a prediction model for Taiwanese coastal waters,
which exhibited good performance for a one-hour lead time, while Tseng et al. [61] reported
acceptable prediction results for a three-hour lead time using an artificial neural network
that considered parameters such as local meteorological information and typhoon charac-
teristics. Kourgialas et al. [43] developed a flood prediction model based on an ANN with
limited lead times of 3, 12, and 19 h to improve estimation performance for flooding.

To summarize, BALSSA offers accurate and efficient storm surge predictions even with
long lead times. Unlike models affected by uncertainty issues arising from atmospheric
forcing specified in numerical weather prediction models [76], BALSSA provides reliable
and robust prediction results.

5.1. The Unpredictability of Storm Surge

Storm surge is a highly complex and unpredictable phenomenon that is influenced by
a multitude of interrelated factors, including the storm’s magnitude and intensity, shoreline
shape, sea depth, wind direction and velocity, and other oceanic and atmospheric conditions.
To accurately predict storm surge, it is essential to model and forecast the interplay of all
these elements simultaneously. Even for experienced meteorologists, it can be difficult
to estimate the timing and severity of a storm surge using models that take into account
such a vast amount of data and factors. The variability of storm surge over short distances
further complicates forecasting, and even small inaccuracies in predictions of storm course,
intensity, or timing can have a significant impact on the outcome. Furthermore, changes in
wind speed and direction can cause a storm surge to abruptly shift, intensify, or weaken,
adding another layer of complexity to forecasting.

While machine learning algorithms have shown promising and reliable results in
predicting storm surges, it is important to note that storm surges remain fundamentally
unpredictable due to their dynamic complexity. Machine learning can improve the ac-
curacy and dependability of storm surge forecasts, but it cannot completely eliminate
unpredictability. However, by incorporating various meteorological and oceanic factors
and continuously learning from historical data, as demonstrated in this research, machine
learning algorithms can aid in better understanding the behavior and characteristics of
storm surges. This knowledge can subsequently be used to improve evacuation plans and
disaster risk reduction initiatives.

Despite technological and modeling advancements, accurately predicting storm surges
remains a challenging task due to the complex interplay between various contributing
factors and the element of uncertainty involved. However, machine learning models are
continuously evolving and becoming more sophisticated, with the potential to incorpo-
rate increasingly complex environmental phenomena, including the impact of climate
change [77]. These advancements could lead to more precise and dependable predictions of
storm surges, ultimately reducing their potential consequences. Nonetheless, it is important
to acknowledge that predicting storm surges will remain a dynamic and challenging field
of research, and the impact of climate change [78] adds an additional layer of complexity to
the problem.
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5.2. Appropriate ML Models

Our research findings on predicting sea level anomalies can be applied to evaluate
the probability of storm surges. This practical application is significant for developing
disaster risk reduction strategies, including early warning systems and evacuation plans,
to safeguard lives during natural disasters. Our proposed models have demonstrated
competitive and satisfactory performance in terms of accuracy and continuous forecasting
ability. Both BALSSA and D-BALSSA can be effectively utilized to estimate storm surges,
with encouraging results in terms of performance evaluation. However, the selection of
the prediction method may depend on various factors, such as the nature and volume
of available data, the specific features of interest, and the objectives of the prediction
model. Therefore, it is essential to assess the performance of each model on the given
data to determine the most suitable one for the specific prediction task. Additionally, as
climate change continues to impact our environment, it is critical to continue improving
and refining our models to enhance the accuracy and reliability of storm surge predictions.

5.3. Advantages over Traditional Methods for Handling Uncertainty

Machine learning algorithms excel at handling complex and uncertain data, making
them an ideal choice for predicting storm surges. Compared to traditional numerical
weather forecasting methods that rely on specific parametric forms to distribute data,
machine learning algorithms are more adaptable and flexible. They can capture com-
plex and non-linear relationships between input and output variables, leading to more
accurate predictions.

Our proposed methods, BALSSA or D-BALSSA, are particularly adept at handling high-
dimensional data when compared to traditional approaches. They are efficient at handling a
large number of parameters and can identify intricate patterns and correlations that might
not be noticeable using traditional methods. We accomplish this by utilizing normalization
techniques and ensemble approaches that reduce overfitting and increase the model’s general-
ization performance. As a result, BALSSA can be considered as more accurate and reliable
than traditional prediction methods or other machine learning algorithms.

6. Final Remarks and Future Work

The aim of this research is to develop a bidirectional attention-based LSTM model,
BALSSA, to predict sea water level anomalies during storm surges in the South China
Sea region. The model utilizes a bidirectional LSTM layer and an attention mechanism
to enhance prediction accuracy. The proposed model is tested on various datasets with
different meteorological and tide features, and it outperforms other compared models in
terms of prediction accuracy.

To train the model, we gathered meteorological and tide level data from 77 typhoon
incidents in Hong Kong and Macao between 2017 and 2022. We also incorporated tendency
changes in meteorological parameters such as wind velocity and atmospheric pressure,
which were previously not considered, to improve the model’s accuracy. The performance
of BALSSA is compared to other machine learning models and deep learning models
using metrics such as MAE, MSE, and RMSE. The results of the study demonstrate that
the proposed model accurately captures the temporal dynamics of the storm system and
provides more accurate forecasts of storm surge magnitude and timing compared to other
models. BALSSA has a high level of accuracy, with MAE and RMSE values of 0.0126 and
0.0003, respectively. It can also provide water level predictions with limited error for up
to 72 h. Therefore, the proposed model has practical significance for decision-makers to
establish disaster risk reduction strategies such as evacuation and early warnings to save
more lives during natural disasters.

In addition, we conducted experiments to compare the performance of six variations of
BALSSA with the traditional LSTM model, evaluating their prediction accuracy on datasets
with varying characteristics. The results demonstrated that BALSSA outperformed the
standard LSTM model in all cases. The six BALSSA variations produced similar prediction



Atmosphere 2023, 14, 1082 22 of 25

results, indicating their suitability for providing advanced warning information on storm
surges based on accurate water level predictions. BALSSA is ideal for predicting complex
and high-dimensional data and can enhance the accuracy and timeliness of storm surge
predictions, thereby reducing the adverse impact of storm surges on coastal communities.

The BALSSA model proposed in this research provides a promising avenue for storm
surge prediction, especially for data collected by automatic weather sensors. In future re-
search, additional data features such as sea surface temperature and atmospheric humidity
information could be incorporated to improve the prediction accuracy. Verification against
a wider dataset from various locations worldwide could also be conducted to further
validate the effectiveness of the proposed model and enhance its applicability. Overall,
further research in this area could lead to significant improvements in forecasting and
minimizing the impact of this natural disaster.
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