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Abstract: Solving the hydrodynamical equations in urban canopies often requires substantial com-
putational resources. This is especially the case when tackling urban wind comfort issues. In this
article, a novel and efficient technique for predicting wind velocity is discussed. Reynolds-averaged
Navier–Stokes (RANS) simulations of the Michaelstadt wind tunnel experiment and the Tel Aviv
center are used to supervise a machine learning function. Using the machine learning function it
is possible to observe wind flow patterns in the form of eddies and spirals emerging from street
canyons. The flow patterns observed in urban canopies tend to be predominantly localized, as the
machine learning algorithms utilized for flow prediction are based on local morphological features.
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1. Introduction

Calculation of the urban wind field is known to be a computationally demanding task
even in the case of a city over a flat terrain. This is mainly due to the need to resolve the
obstructed flow affected by the individual buildings; an air parcel can flow around tall
buildings on either side or above them [1]. When considering the mean temporal flow
within the urban canopy, there are a few typical flow patterns that occur in the urban canopy:
(a) street canyon—when the flow passes above buildings and encounters a perpendicular
street, it creates an eddy or eddies within the street [2]; (b) channeling—when the flow is
parallel to the streets, it can accelerate [3]; (c) junctions—the flow will continue in multiple
directions, branching off into streets that are perpendicular to the original flow.

Modeling the flow patterns at all spatial scales using numerical simulation (DNS) re-
quires a very high spatial resolution. This in turn leads to very small time steps and a high
computational effort, making it impractical for modeling urban areas. To simplify the model
and use larger grid cells, several options are available, such as Large-Eddy Simulation (LES)
models, which parameterize the small-scale flow [4], or Reynolds-Averaged Navier–Stokes
(RANS) models [5–8] that provide only the temporal mean values of the flow. RANS equa-
tions are used to assess wind comfort levels in urban areas [9,10] and urban wind energy
potential [11,12]. In this work, a RANS model will also be used, which is computationally less
demanding than LES. However, both LES and RANS models still require a significant amount
of computational time, ranging from hours to days when utilizing parallel computing. One of
the reasons is that the calculation time for these models is long is because they calculate the
wind field for the entire area even if we only need the wind speed at pre-selected locations
or areas.

Machine learning (ML) is a discipline that enables the acquisition of knowledge
through examples [13,14]. The wind field can be modeled using supervised learning,
where the machine is trained to identify the relationship between features and the target
outcome (e.g., wind speed at specific locations) and then apply that understanding to
similar situations. This connection can be established through various machine learning

Atmosphere 2023, 14, 990. https://doi.org/10.3390/atmos14060990 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14060990
https://doi.org/10.3390/atmos14060990
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0001-8873-994X
https://orcid.org/0000-0003-2425-0832
https://orcid.org/0000-0002-9893-6792
https://orcid.org/0000-0002-6016-634X
https://doi.org/10.3390/atmos14060990
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14060990?type=check_update&version=1


Atmosphere 2023, 14, 990 2 of 17

methods, such as Artificial Neural Networks, Support Vector Machines, and k-Nearest
Neighbors [13].

Previous studies in atmospheric science utilized machine learning to characterize
the flow in simple structures such as a duct, a single rectangular body, or a blade [15–18].
However, to the best of our knowledge, the only study that considered the complexities of
urban flows utilized it only above roof tops [19].

This work employs K-nearest neighbors (kNN) [20] as the ML algorithm. kNN is
a non-parametric supervised learning algorithm that can be used for both classification
and regression tasks. It is a lazy learning algorithm, meaning that it does not build a
model during the training phase. Instead, it stores all of the training data and uses it to
make predictions at the time of inference. To make a prediction, kNN finds the K most
similar training instances to the new instance and then uses the labels of those instances
to make a prediction for the new instance. The k nearest neighbors are identified using a
distance metric, such as Euclidean distance or Manhattan distance. The predicted value for
a new data point is then calculated as the average of the values of the k nearest neighbors.
The value of K is a hyperparameter that must be chosen by the user. kNN has several
advantages over other machine learning algorithms. First, it is very versatile and can be
used for a wide variety of tasks. Second, it is very robust to noise and outliers. Third, it can
be used for both classification and regression tasks.

The current study aims to address the computational challenges associated with mod-
eling micro-urban flow patterns. Initially, RANS simulations, which are computationally
intensive but provide fairly accurate results, will be performed to gain an understanding of
flow patterns in urban areas. Subsequently, machine learning techniques will be utilized to
identify the key properties that influence micro-urban flow. Due to the long calculation
time of coupled, regional models with CFD models [21], using those properties for ma-
chine learning prediction, it is possible to shorten the calculation time in order to obtain
downscaled information. Regional models use wind measurements as a data assimilation
input to improve their accuracy [22]. ML predictions can assist this process by adjusting
the measurements to be less local, by taking into account nearby morphological features.
Furthermore, they can also be employed as predictors of the initial conditions for other
RANS simulations, thereby reducing the time required for the simulation.

In addition, we examine the utilization of machine learning for the calculation of wind
flow in a complex urban area. Given that machine learning requires many learning cases
and the number of experiments is limited, we use the results of RANS simulations for
the learning stage. We use two test cases. The first test case is based on the simulation
of the Michaelstadt experiment conducted in a wind tunnel (WT) with over 2000 mea-
surements [23]. In this case, we compare the results of the machine learning algorithm to
both the RANS simulation in the entire domain and the measured results in the WT at the
measured locations. The second test case characterizes Tel Aviv city center, a congested city
with a variety of buildings, streets, and open spaces. In the second test case, we compare
the machine learning algorithm to the RANS simulation.

2. Materials and Methods
2.1. RANS Model

The Navier–Stokes equations, which pertain to the dynamics of an incompressible
fluid, can be utilized to analyze micro-urban flow patterns, under the presumption of
neutral atmospheric stability. The Reynolds-Averaged Navier–Stokes (RANS) [24] model is
employed to solve the mean Navier–Stokes equation by separating the flow into a mean
temporal flow, represented by u, and fluctuations, represented by u′.

u = u + u′ (1)
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The basic RANS equations conserve momentum and mass.
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In order to denote the direction of flow, the wind velocity is represented by the
subscripts i and j = 1, 2, 3, where u1 and u2 represent the horizontal wind speed in the
ambient flow direction and perpendicular to the ambient flow direction, respectively, while
u3 represents the vertical wind speed. The distance in the i direction is represented by xi,
air density is represented by ρ, pressure is represented by p, and kinematic viscosity is
represented by ν. The Reynolds stress tensor u′iu

′
j is solved using the turbulence model k-ω

SST closure [25].
The RANS equations were solved using the Semi-Implicit Method for Pressure-Linked

Equations (SIMPLE) solver [26] integrated in the OpenFOAM library [27]. The top bound-
ary of the domain was assigned slip boundary conditions, and the wind velocity near the
ground and buildings was fixed to be zero using a wall function. The inlet wind profile
imposed a Neuman boundary condition using a logarithmic profile, and the outlet bound-
ary condition was set to have zero gradient. The simulation’s configuration is based on the
“wind around buildings” example of the openFOAM package.

To model the flow in urban areas, a digital map of the area is required, which dis-
tinguishes between air-permeable regions (e.g., streets) and air-impermeable regions
(e.g., buildings). Such a digital map can be obtained from map servers (such as open-
streetmap) or through CAD software (such as freeCAD).

The initial step in constructing the computational domain is defining the grid over
the calculation area. An irregular mesh is employed to minimize grid size. Specifically,
the grid is densely spaced near the ground and buildings where the flow is complex and
coarser in other parts of the domain where the flow is less complex. The irregular mesh
is constructed by first defining a regular mesh with a horizontal resolution of 10 m and a
vertical resolution of 4 m. In proximity to the buildings and ground, the regular mesh is
gradually divided into four smaller cells in each direction to increase the resolution, This
results in cells near the buildings being 2.5 m wide and 1 m high.

In those experiments, the inlet flow was characterized by a logarithmic velocity profile,
which resulted in an average flow speed of 7 m/s at a height of 100 m.

In the following sections, we will explain how the RANS solution serves as an input
for the learning phase of the supervised machine learning engine.

2.2. Machine Learning

There are various machine learning models that can be employed to learn the flow
patterns in urban areas. In this work, we tried several methods of computational learning;
the methods were tested according to their level of accuracy, and the method found to have
the highest accuracy is the kNN method [28]. The kNN method can be based on different
values of K; we found that setting the value to 6 gives the appropriate balance between
the calculation time and the desired accuracy. We use the k-Nearest Neighbors (kNN)
regression model implementation by scikit-learn [29]. kNN is a supervised learning model
that is based on a training set. In this work, it will link the morphological features to RANS
results. When using kNN to predict the flow, it compares the morphological properties of
the target location to those of similar properties in the training set. The features utilized for
learning include the distance of the location from the nearest building in four directions,
the location height, and the height of nearby buildings. These features were selected as they
can be utilized to compute the width-to-height ratio (w/H) between buildings, a commonly



Atmosphere 2023, 14, 990 4 of 17

used metric for describing flow in street canyons [30,31]. The actual wind speed will be
normalized according to the wind speed above the buildings.

While the prediction process takes fractions of a second, it is important to note that an
additional stage involving the development of a machine learning function, or regression
function, is necessary. Although this stage may be time-consuming, it only needs to
be performed once during the lifetime of a project. An extensive database of accurate
predictions is crucial for gaining a better understanding of the wind field; therefore, we rely
on WT-verified RANS simulations to obtain an accurate depiction of the “true” wind field.
To construct the learning database, RANS simulations can be utilized to generate millions
of records and local properties of the location can be used as predictors.

In our study, we utilized only 20% of the cell data for training purposes after trans-
forming the simulation results from an irregular grid to a regular grid. The remaining 80%
of the cells were utilized to evaluate the accuracy of the learning process. The training
process takes time as a function of the number of cells, and thus only a limited portion
of the cells were selected for the training phase. The cells were not randomly chosen as
we aimed to avoid using cells with similar feature values for both training and prediction
phases. Instead, when we checked the machine learning function for the same city that
used for the learning process, we selected the training cells from the city center and the
testing cells from the outskirts. Another test case used the Tel Aviv learning function and
tested it on the Michaelstadt experiment.

2.3. Test Cases

We use two datasets as test cases to examine the validity of our method. The first dataset
is the Michaelstadt WT experiment, which is part of the COST ES1006 project [23], as it
represents a typical European city. The WT experiment was conducted at the “WOTAN”
facility at Hamburg University. The WT has a neutrally stratified model boundary layer flow
generated by turbulence spire generators at the inlet. The measurements were carried out
with 2D fiber-optic Laser-Doppler-Anemometry. The geometric scale is 1:250. The wind flow
measurements were used for validation of RANS and LES simulation by other groups [32–35].
The second test case is Tel Aviv center morphology (Figure 1), which represents an urban
area with varying building shapes and heights.

Figure 1. Part of the simulation domain of central Tel Aviv.
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The Michaelstadt morphology consists of buildings that range from 18 to 24 m in height
and are 15 m wide. The streets are non-perpendicular and are 20 m wide. The buildings
are not rectangles and vary in shape. All have patios on the interior (as depicted in
Figure 2). The figure displays the locations of 2156 measurement points in the center of
the town on various levels during the experiment. The measuring points were below
and above the building’s top. The advantage of this test case is that it allows for direct
comparison and verification of the machine learning results with both WT measurements
and RANS simulation results. When we compared the wind velocity of the machine
learning prediction with the RANS simulation, we were also able to compare points near
the walls of the building.

Figure 2. The location of the measuring points at different heights in Michaelstadt wind tunnel experiment.

The Tel Aviv center morphology (Figure 1) aims to test the performance of the kNN
regression model in a different urban areas with varying building shapes and heights.
The results of this experiment were used to validate the performance of the model (against
the WT-verified RANS) and show its generalization capability to other urban areas. The area
that was chosen is between the coordinates 32.058 °N 34.757 °E and 32.081 °N 34.794 °E;
it has a size of 9 km2. The average building height is 12.2 m and the tallest building is 187 m
in height. The morphology of the city center contains courtyards and buildings of different
sizes, shapes, and directions. The streets are also of different widths, from streets of 1 lane
to streets of 8 lanes. The junctions are not always perpendicular.

3. Results

A computational domain consisting of 9.5 million cells was established to model the
wind flow in the Michaelstadt experiment. Utilizing a 36-CPU cluster, the solution achieved
convergence after 3500 iterations, with a duration of 7.3 h. The convergence criterion
was defined as a difference of 10−6 between the right-hand side and left-hand side of the
Reynolds-Averaged Navier–Stokes equations.

The ML training function was built using an array of sample locations with their mor-
phological properties and their calculated velocity. Using more data gives us better accuracy,
as seen in Figure 3. Using more than 80k samples did not change the accuracy by much.

Table 1 presents a comparison between the simulation results of the RANS model
(Equations (1) to (3)) and the prediction of the ML model using 80k samples to the wind
speed obtained from the wind tunnel (WT) in both horizontal directions (u1 and u2).
The present study used RANS simulation results that were consistent with LES results from
the literature [23] and wind turbine (WT) observations. The similarity between the RANS
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simulation and the WT observations can be seen in terms of their mean values and standard
deviations. The Canonical Correlation Analysis (CCA) [36], which tests the correlation
between vectors that can be correlated (e.g., u1 and u2), gives a high score. Additionally, the
Pearson correlation coefficient (r) between the RANS simulation and the WT observations
is high, and the Root Mean Square Deviation (RMSD) between the simulation and the
observation is significantly lower than the average and standard deviation. The factor 2,
which compares the ratio of simulation points with values between 1/2 and 2 of the
measurement and calculated wind speed, is also high [37]. LES simulations obtained
Factor 2 values of 0.667 and 0.94 for the coarse and fine resolutions, respectively, for u1
and 0.404 and 0.471 for u2 in their regular grid [23]. In contrast, the present study found
Factor 2 values of 0.79 and 0.52 for u1 and u2, respectively, in a RANS simulation with an
irregular grid.

Figure 3. The machine learning function accuracy as a function of the training size for Michael-
stadt experiment.

Table 1. Michaelstadt model accuracy.

Index RANS ML

CCA 0.96 0.93
r 0.93 0.90

Factor 2 0.84 0.65
RMSD m/s 0.67 0.87

Observation Mean m/s 2.47 2.47
Model Mean m/s 2.11 2.08

Observation STD m/s 1.52 1.52
Model STD m/s 1.52 1.79

Figure 4 depicts the distribution of the different measurement points for the RANS
simulation and the ML prediction, respectively. The figures compare the wind speed of
the simulation to the WT measurements at each measuring point. It can be seen that
both the RANS simulation and the ML prediction exhibit better agreement with the WT
measurements for high wind speeds located above the buildings. The RANS simulation
has a stronger correlation with the measurements between the buildings as it takes into
account the flow upstream. The main flow is also well-captured by the ML prediction,
which indicates that it is primarily influenced by local features.
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(a)

(b)
Figure 4. Comparison between the model wind speed and the wind tunnel observation wind speed. (a) RANS
simulation results (b) machine learning results.
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(a)

(b)

Figure 5. Comparison between the wind speed of RANS simulation and the machine learning
prediction for (a) Michealstadt experiment and (b) Tel Aviv center.

When considering the comparison of the simulation results to the wind tunnel,
it should be noticed that the wind tunnel measurements were carried out in the cen-
ter of the streets. The measurements of the wind tunnel are spot-on, while the results of
the simulations represent cells with a width of about one and a half meters; this width can
affect the data taken by tens of percent.

The correlation between the RANS velocity results and the ML prediction can be seen
in Figure 5 where the upper plot depicts the Michaelstadt experiment and the lower plot
displays the Tel Aviv center experiment.

The comparison between the machine learning prediction results and the RANS simu-
lation results is good and even better between the buildings compared to the comparison of
the machine learning prediction to the wind tunnel measurements, because in the compari-
son of the ML prediction to the simulation results, more comparison points are taken into
account, including points that are closer to the walls of the building compared to the wind
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tunnel measurement points. In the Michelstadt experiment, there is an overestimation of
the wind speed in the machine learning prediction; the points of the overestimation are on
the outskirts of the city near the open areas.

Comparing the wind field at 2 m above the ground shows good qualitative agreement
(Figure 6). Both RANS simulation and the ML prediction have low wind speed between the
buildings and high wind speed above the canopy. In large courtyards, the wind is higher as
well, as seen in the upper left side of the city and within most of the streets that are parallel
to the ambient wind direction.

An additional method for verifying the accuracy of the model is to assess its ability
to reproduce known flows in micro-urban environments. Figure 7 illustrates a typical
street canyon flow in which the flow above the buildings creates an eddy as it encounters
them [2]. The upper image (a) shows the result of the RANS simulation, and the lower
image (b) depicts the result of the machine learning functions. The length of the arrows is
arbitrary. The comparison between the graphs shows us that both the RANS simulation
and the machine learning results give high speeds above the roofs of the houses and low
speeds between the buildings. In the three eddies shown in the figures, you can see that
the wind strength is weaker in the center of the vortex and higher as you move away from
the center of the vortex. The arrows in the left vortex and the middle vortex are similar
between the RANS simulation and the machine learning prediction. The right vortex has a
little less agreement between the simulation and the prediction but it still gives key features
of the flow and maintains the flow shape.

The wind direction above the buildings is the ambient flow direction. Below the
rooftop, the wind direction is determined by the urban morphology. When an air parcel
goes in the direction of a wall, it will change its direction according to the angle between
the air parcel and the wall (e.g., it will create vortices, as seen in Figure 7). Thus, the wind
direction is determined mainly by a few local features. We can see in the upper plot of
Figure 8 that the horizontal wind direction predicted by the ML function has very good
agreement with the RANS simulation results. The main deviation is near the ambient
flow direction (0 degrees) and it is because of the slowing down of the wind speed in the
U direction due to the vertical wind (W).

In Figures 4–8, the machine learning function was built using one urban neighborhood.
This in turn was used for the calculation of the other neighborhood. A better validation
would be a study on one city and using the machine learning function on another city.
In our opinion, it can be accomplished when there is a wide enough variety for learning
samples, as in our case. Figure 9 shows the correlation of the prediction of the wind
speed in Tel Aviv using the Michaelstadt machine learning function. The graph shows a
reasonable match between the simulation and the prediction of the machine learning. An
underestimation can be seen above the rooftops, so more features related to this should be
added, such as the distance from the beginning of the house.

Furthermore, additional machine learning functions can be employed to predict other
important quantities such as the turbulence kinetic energy (TKE) or the pressure field.
Figure 10 illustrates the correlation between the predicted and observed TKE values,
demonstrating the effectiveness of the machine learning approach in capturing the turbulent
characteristics of the flow.
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(a)

(b)
Figure 6. Comparison between the wind field at 2 m above the ground of (a) RANS simulation and (b) the
machine learning prediction for Michealstadt experiment.
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(a)

(b)
Figure 7. Flow pattern simulation of an eddie that is formed in a street canyon using (a) RANS equations
(b) machine learning.
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(a)

(b)
Figure 8. The ML prediction of the horizontal wind direction vs. the wind direction of RANS simulation
in the upper plot (a). The U (red dots) and V (green dots) components of the wind direction from the RANS
simulation (b).
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Figure 9. Comparison between the ML prediction of Tel Aviv (using Michaelstadt ML function) to
the Tel Aviv RANS simulation results.

Figure 10. Comparison between the TKE of RANS simulation and the machine learning prediction for the
Michealstadt experiment.

The resolution of the model determines the scope of the phenomena that the model
can describe. The present study employs an irregular grid with a high resolution near the
buildings and the ground, allowing for a more detailed representation of the complex flow
between the buildings. To reduce computational resources, a coarser resolution is used in
areas of less turbulence, high above the ground. To account for the varying resolutions,
the total number of cells in the simulation domain is used for comparison, rather than
the resolution. As seen in Table 2, a comparison of Michaelstadt simulation results with
wind tunnel measurements shows similar accuracy (RMSD of 0.494 and 0.472 for low
and high cell count, respectively), despite a significant difference in simulation duration
(0.1 and 7.3 h for low and high cell count, respectively). In this case, the similarity in
measurement accuracy was due to the fact that the measurement points were situated in
the center of the streets. However, there was a noticeable difference in flow on the sides of
the street near the buildings. The transition between the maximum speed in the center of
the streets that are parallel to the direction of flow to the zero speed near the walls of the
buildings is more gradual in the simulation with the larger number of cells. Furthermore, in
the streets perpendicular to the direction of the flow, the resulting vortices are less accurate
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in the simulation with fewer cells. The required number of cells in the simulation depends
on the specific research question. For the use of machine learning functions, a high number
of cells in the simulation is necessary for the learning process to capture the wind speed
near the buildings and predict the wind velocity in these areas accurately.

Table 2. The model accuracy for different numbers of cells.

Coarse Medium Fine

number of cells 0.5 M 2.5 M 9.5 M
simulation duration [h] 0.1 0.9 7.3
RMSD (vs. Observation) 0.494 0.483 0.472

Three sets of features were tested. In the first set, we choose fewer features than in
the second and third sets. We calculated the weight of each feature for each set. Table 3
contains the full weight list. The weight of some features is neglected because it is already
allocated to other features. For example, the distance from the building in the right to the
u2 direction in set II is a superposition of the distance from the building on the left and
the street width. We can determine if the added features are significant by adding more
features and checking their weight and the change in the prediction accuracy.

Table 3 reveals that the primary factors influencing wind flow are the separation
from the ground level, the angle between the street and the ambient wind direction, and
the proximity to neighboring buildings. These factors hold considerable significance
when examining wind flow that is perpendicular to the street, as they determine vortex
properties. This relationship is closely related to the width-to-height (W/H) ratio, which
is well-established for urban street canyons [30,31]. The W factor denotes the sum of the
distance from the neighboring buildings. Additionally, two other crucial factors are the
distances from the adjacent buildings on either side, which carry significant importance
when investigating wind flow parallel to the street.

Table 3. The flow property weights.

Feature Set I Set II Set III

Distance from ground 1.90 2.01 2.66
mean height (including buildings) - 0 0

distance from next building in u1 direction 1.047 0.873 1.61
distance from previous building in u1 direction 1.961 1.946 1.77

street width in u1 direction - 0.187 0
street width in u2 direction - 0.709 0

distance from building in left in u2 direction 0.589 0.259 1.51
distance from building in right in u2 direction 0.413 0 0.98
height of the previous building in u1 direction 0.321 0.097 −0.01
height of the following building in u1 direction 0.176 0.053 0.01

street angle - - −2.54
ratio between the distance from the previous building

and the previous building height - - −0.02

ratio between the distance from the following building
and the following building height - - 0.05

In the previous section, we discussed the utilization of the RANS equations to describe
the flow behavior. Despite the simplicity of these equations and the agreement they provide
between the model and the wind tunnel observations (as evidenced in Table 1), solving
these equations requires a substantial number of iterations until convergence is reached.
An effective approach to reducing the number of required iterations is to use good initial
conditions. The machine learning engine we employed in this section allows us to predict
the velocity field within the domain and use it as an initial condition for solving the RANS
equations. Figure 11 demonstrates the convergence of the standard RANS simulation
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and the machine learning-based RANS simulation by comparing the root mean square
deviation of the velocity field between the simulation’s iteration before convergence and
the last iteration. It can be seen that simulations based on machine learning-generated
initial conditions converge faster than those without. In cases where full convergence of
the simulation is not necessary, the machine learning option can provide reasonable results.

Figure 11. Convergence of machine learning-based simulation (green) and “regular” RANS simula-
tion (blue).

4. Discussion and Conclusions

In this study, a solution to the flow patterns in urban areas through the use of machine
learning functions that are based on the Reynolds-Averaged Navier–Stokes solution was
presented. The proposed method shows good agreement with wind tunnel observations
above and below the tops of building. Predicting the wind field using machine learning was
able to reproduce complex phenomena such as the creation of vortices between buildings.
We tested the set of equations using both uniform initial conditions and machine learning-
based initial conditions for two case studies: the Michaelstadt wind tunnel experiment and
the Tel Aviv center. The latter approach resulted in a reduced convergence rate by 50%.
The machine learning engine utilized only local features, such as the surrounding building
characteristics and cell height, indicating that the flow patterns are primarily influenced by
the local structures. To describe the local flow, we selected a few crucial features, but further
investigation may be necessary to identify additional important features, which could be
explored through the use of machine learning. Other factors, such as distance from previous
buildings that are higher than the closest buildings, may also be considered. The machine
learning engine can serve as a downscaling tool, where a numerical weather prediction
model (e.g., WRF) with a coarse resolution can be complemented by fine-resolution data
obtained from the machine learning prediction tool. Different wind speeds and directions
in different parts of a large city can add complexity to the wind. We show in this paper
that the wind patterns between the buildings are mostly local. In order to predict the wind
field, one has to calculate the wind field using a larger-scale model and then downscale the
results using ML. Although the learning process was carried out using one wind direction,
the variety in street directions and house sizes allows the use of this learning function for
different ambient wind directions.

The utilization of machine learning is a less complex alternative to conducting a
Reynolds-averaged Navier–Stokes (RANS) simulation. The reason is that, for the latter,
comprehensive data on all the structures in the vicinity are necessary, including their
geometries, heights, orientations, and relative distances from one another. Conversely,
after establishing a machine learning algorithm for a comparable urban setting, the only
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pertinent variables needed for subsequent predictions are the distance of the target location
from its neighboring buildings, the altitude of the target point, and the average wind
velocity across the urban area.

This paper describes the use of computational learning for urban flow in flat terrains;
although most cities in the world are built in flat areas, attention should also be given
to cities built over complex topography. In future work, such a flow will be described.
When computing urban flow in a city over complex topography, additional features such
as the height difference of the ground in different directions should be added. Another
scenario that will be examined in future works is the effect of temperature field on flow.
In this case, the RANS equations will be augmented with the temperature field to be used
for the learning process, and the temperature gradient with height will also be added to
the list of features.
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