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Abstract: Based on meteorological observations, traffic flow data and information of traffic accidents
caused by fog or agglomerate fog along the expressways in Jiangsu Province and Anhui Province
in China from 2012 to 2021, key impact factors including meteorological conditions, road hidden
dangers and traffic flow conditions are integrated to establish the prediction model for risk levels of
expressway agglomerate fog-related accidents. This model takes the discrimination of the occurrence
conditions of agglomerate fog as the starting term, and determines the hazard levels of agglomerate
fog-related accidents by introducing the probability prediction value of meteorological conditions
for fog-related accident as the disaster-causing factor. On this basis, the hourly road traffic flow and
the location of road sections with a hidden danger of agglomerate fog are taken as traffic and road
factors to construct the correction scheme for the hazard levels, and the final predicted risk level of
agglomerate fog-related accident is obtained. The results show that for the criteria of disaster-causing
factor classification threshold, 72.3% of fog-related accidents correspond to a hazard of a medium
level or above, and 86.2% of the road traffic flow conditions are consistent with the levels of the
traffic factor defined based on parametric indexes. For risk level prediction, six out of the seven
agglomerate fog-related accidents correspond to the level of higher risk or above, which can help
provide meteorological support for traffic safety under severe weather conditions. Moreover, the
model takes into account the impacts of traffic flow and the road environment, which is conducive to
further improving the reliability of the risk assessment results.

Keywords: expressway; agglomerate fog; risk level prediction of fog-related accidents; meteorological
conditions; road hidden dangers; traffic flow conditions

1. Introduction

Fog is one of the most common disastrous weather events on expressways [1,2]. With
ab increasing road network density and the changing climate environment, the impacts of
fog on expressway traffic safety and traffic efficiency are becoming increasingly serious. In
China, the accumulated mileage blocked by fog is 1.78 times the total national expressway
mileage per year on average [3,4].

The occurrence, development and dissipation of fog are caused by multiple processes
(thermodynamical, radiative, dynamical and microphysical), and these processes inter-
act nonlinearly with each other. The micro-physical characteristics of fog can impact
the duration, radiation and visibility of fog. Many studies [5–10] on the micro-physical
characteristics of fog are conducted, and present the variation characteristics number, con-
centration and size of fog droplets, which can provide some reference for the improvement
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of parameterization schemes in numerical models via a better understanding of the mech-
anism of fog occurrence. For example, Haeffelin et al. [11] used the ParisFog dataset to
investigate the effect of hydrated aerosols on visibility, the role of aerosols’ microphysical
and chemical properties on supersaturation and droplet activation, and the role of turbu-
lence and sedimentation on fog life cycles. Guo et al. [12] used the data collected in the
project Low-Visibility Weather Monitoring and Forecasting in the Beijing–Tianjin region to
study the microphysical properties of aerosol, cloud condensation nuclei, the fog droplet
spectrum and liquid water content for an unusual fog-haze event that lasted for one week
in North China. They presented the physical characteristics of aerosol accumulation, as well
as the transition and mixture of aerosol and fog. Using a ground-based counterflow virtual
impactor, Duplessis et al. [13] measured the size distributions of fog droplet and aerosol
near Halifax on the eastern coast of Canada, as well as the fog droplet residuals. In addition,
many studies analyzed the macro characteristics related to the formation, development
and dissipation of fog, such as the synoptic pattern and meteorological factors (wind speed,
relative humidity and moisture) [14–16].

Since the 21st century, many scholars have gradually applied multi-source traffic mon-
itoring data to propose various real-time accident risk prevention and control techniques
by considering the comprehensive effects of road traffic flow, weather conditions and road
features [17–20]. Xu et al. [21] took into account the meteorological elements of precipita-
tion and visibility when using logistic regression to assess the impacts of environmental
factors and real-time traffic conditions on expressway crash risks, thus improving the
prediction accuracy of expressway accident occurrence by 6.8%. Based on the real-time
traffic flow data on foggy days, Wu et al. [22] estimated the influences of traffic and weather
variables on rear-end collisions using the random logistic regression and negative binomial
distribution models.

In China, systematic studies have been conducted on various aspects including the
disaster-causing mechanism in the foggy section of expressways, dense fog or visibility
monitoring and forecasting as well as road traffic safety and security measures [23–27].
Specifically, the quantitative impact assessment of foggy weather on expressway traffic
safety is the key to defending against fog damage. Based on machine learning algo-
rithms, using traffic accident information and meteorological observations, some important
accident-related variables are selected, such as time, geolocation and the meteorological en-
vironment. Then, the mathematical models of the accident probabilities are built, which can
be used to assess the real-time traffic safety state on expressways during foggy days [28,29].
Additionally, the factors indicating accidents under low visibility conditions are selected
from the observed or simulated traffic parameters including upstream and downstream
traffic volume, speed and occupancy rate, and the road traffic safety status under foggy
conditions is quantitatively evaluated by detecting the number of traffic conflicts or safety
distance [30]. The occurrence of accidents is linked to drivers, vehicles and roads (en-
vironment), but only a few scholars have integrated multi-source information (such as
traffic, weather and visual information) into risk prediction due to the complexity and data
availability of road traffic systems. For example, Qu et al. [31] introduced the single traffic
flow and road environment to establish a risk level prediction model of fog disasters on
expressways in Hebei Province. Tian et al. [32] established a weather risk warning index
system for expressway traffic safety control by introducing the traffic flow, road alignment
and location type. However, in general, the spatio-temporal resolutions of these forecast
models are low, and the timeliness is poor. Moreover, the input data of non-meteorological
factors in the model are static, and thus the dynamic driving capability of the models is
obviously limited.

Agglomerate fog is a low-visibility weather phenomenon with locality, abruptness and
spatio-temporal inhomogeneity, and it is also a difficult problem during road traffic weather
monitoring, forecasting and early warning services. In China, the rate of traffic accidents
caused by agglomerate fog is found to be 2.5 times that caused by other severe weather
events, and the number of casualties in agglomerate fog-related accidents accounts for
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29.5% of the total number of casualties in traffic accidents [33]. Up to now, many scholars
have carried out studies on expressway agglomerate fog, with their focus on fog formation
and dissipation [34–36], simulation and diagnosis [37–39], distribution law [40–42] and
disaster-causing mechanisms [43–45], while there are few studies on the impact forecasting
or risk early warning of agglomerate fog traffic accidents. To this end, taking the Jiangsu
and Anhui area (hereinafter referred to as the “test area”, as shown in Figure 1) where
agglomerate fog accidents occur frequently as an example, this study establishes a risk level
prediction model for expressway agglomerate fog accidents by integrating the key impact
factors (meteorological environment, road hidden dangers and traffic flow conditions) and
proposing the factor classification threshold determination method. This model provides a
new approach to predict the agglomerate fog-related accident risk level. It is noteworthy
to mention that the introduction of dynamic traffic parameters and the determination of
factor classification thresholds in this study is more objective than that in past studies. We
hope the results of this study can help improve the fine-resolution meteorological impact
prediction and disaster prevention capability for expressway traffic safety under severe
weather conditions.
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Figure 1. Basic information of the test area.

The remainder of this paper is organized as follows. Section 2 describes the data
sources. The modeling method is provided in Section 3. The values and calculation
procedures of the disaster-causing factor, traffic factor and road factor are given in Section 4.
Section 5 presents the application and validation of the risk level prediction model. Finally,
Section 6 gives the conclusions and discussion.

2. Data

In this study, the meteorological observation data are obtained from 616 traffic me-
teorological stations, 317 regional meteorological stations and 30 national meteorologi-
cal stations along the expressways in the test area, which are provided by the National
Meteorological Information Center of the China Meteorological Administration. The
data quality control method refers to the “Quality Control of Meteorological Observation
Data-Surface” (QX/T 118-2020) of the meteorological industry standard of the People’s
Republic of China. The traffic accident data in foggy or agglomerate foggy days are
from the traffic control departments and news reports of media. The two kinds of data
cover the period from 2012 to 2021. The traffic flow data such as vehicle flow rate and
congestion index are calculated via road section estimation and road matching based
on the mobile location information from internet navigation and national heavy-load
freight, which covers the period from 2018 to 2021. These kinds of data are derived
from the National Intelligent Road Network Monitoring Platform, and the website is
http://hmrc.palmgo.cn/lwzx2/a1c64c3e6c9b76efcbccb8effd58fcad.html (accessed on 15
May 2023). In terms of the information of road sections with hidden dangers due to agglom-

http://hmrc.palmgo.cn/lwzx2/a1c64c3e6c9b76efcbccb8effd58fcad.html
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erate fog, this study uses the information of road sections with frequent agglomerate fog
released by the Traffic Administration Bureau of the Ministry of Public Security of the Peo-
ple’s Republic of China in recent years, and the results of expressway traffic meteorological
disaster risk survey by the China Meteorological Administration.

3. Modeling Method
3.1. Index Selection

Road traffic accident risk is jointly determined by the driver, vehicle and road envi-
ronment. Considering the predictability of traffic accident systems, three types of indexes
(weather, traffic and road) are selected to construct a risk level prediction model for ex-
pressway agglomerate fog-related accidents.

The traffic accidents in foggy days are closely related to the synoptic background.
The hazard of meteorological conditions for agglomerate fog-related accidents is selected
as the disaster-causing factor and the core index to construct the risk level prediction
model. In addition to its low visibility, fog can often cause the reduction in the road friction
coefficient through the interaction between fog droplets and dust, or through forming a
thin layer of ice on cold road surfaces. By using the random forest and support vector
machine algorithms, Song et al. [28,29] established a model depicting the relationship of
the probability of fog-related accidents within an hour with the meteorological elements
(visibility, relative humidity, wind, air temperature, etc.) and related derived variables,
where recursive feature elimination and principal component analysis were used for feature
selection. By using the results of the two models, the probability prediction value P of
the meteorological conditions for the occurrence of fog-related accidents is obtained by
weighting, which is used as the disaster-causing factor. The formula is as follows:

P =
2

∑
i=1

pi × αi (1)

where p1 is the probability prediction value output by random forest model, p2 is the
probability prediction value output by the support vector machine model, and αi is the
weight coefficient. Considering risk prevention and control, it is hoped that the events are
not missed. Hence, the ratio between the recall rates of the two models in the training set is
used as the criterion for weight assignment. For the training sample consisting of the same
accident group and control group, the recall rate of the random forest model and support
vector machine model is 75.4% and 81.4%, respectively. Therefore, α1 and α2 are 0.48 and
0.52, respectively.

The traffic factor is a dynamic correction index of the risk level prediction model for
expressway agglomerate fog-related accidents. The traffic operation of road network is
closely related to traffic meteorological disasters, and the traffic flow situation should be
considered when studying unfavorable weather effects [46]. Taking the sections of the
Beijing–Shanghai Expressway, Beijing–Taipei Expressway and Nanjing–Luoyang Express-
way in the test area where fog-related traffic accidents frequently occur as an example, the
accumulated number of fog-related accidents (Figure 2a) is generally consistent with the
annual average foggy days (visibility < 1 km) along the expressways in terms of spatial
distribution (Figure 2b). The determination coefficient of the power function fitting curve
is 0.106, which passes the confidence test at a 95% confidence level. However, it is also
influenced by the operation status of expressway traffic (Figure 2c), and the determination
coefficient of the power function fitting curve is 0.078, which passes the confidence test at a
95% confidence level. From the perspective of temporal distribution (figure omitted), dense
fog occurs frequently during 03:00–08:00 BST (Beijing standard time, the same below) and
peaks during 05:00–07:00 BST, while fog-related accidents occur mainly during 05:00–10:00
BST and peak during 07:00–08:00 BST when the traffic flow increases rapidly. Hence, this
study chooses hourly traffic flow prediction as the traffic factor for the dynamic correction
of the risk level of the occurrence of expressway agglomerate fog-related accidents.
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The road factor is a static correction index of the risk level prediction model for
expressway agglomerate fog-related accidents. Agglomerate fog is usually formed under
the background of meso–micro-scale circulation systems over mountainous areas, river
valleys and areas with dense river networks [45], exhibiting specificity in terms of the
geographical environment of roads. In this study, the location information of segmented
roads in the test area is collected as the road factor, which is used for the static correction
of the risk level by identifying the special form of a disaster-pregnant environment with
hidden dangers in the risk level prediction model.

3.2. Assessment Procedure

As shown in Figure 3, the assessment procedure consists of three key steps: discrim-
ination of the occurrence of agglomerate fog, risk level initial prediction of agglomerate
fog-related accidents based on the disaster-causing factor, and risk level correction of
agglomerate fog-related accidents based on traffic and road factors. To achieve the op-
erationalization and visualization of this prediction model, the hierarchical threshold
determination method is used to quantify the factors in the model.
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In the first step, the occurrence of expressway agglomerate fog is taken as the starting
term of the risk level prediction model for expressway agglomerate fog-related accidents. If
the meteorological forecast data on segmented road in the test area meet the predetermined
conditions for the occurrence of agglomerate fog, the risk level of traffic accident is further
calculated; otherwise, the risk is directly determined to be low. The test area consists of
two parts: Jiangsu Province and Anhui Province. According to the data of agglomerate
fog-related traffic accidents recorded by the traffic department, the variation characteristics
of meteorological factors (visibility, relative humidity, temperature and wind) around
agglomerate fog occurrence are analyzed to establish the meteorological forecast indexes
for agglomerate fog in the two provinces separately (Table 1). Specific details can be found
in Tian et al. [35] and Gao et al. [36].
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Table 1. Meteorological forecast indexes for agglomerate fog in the test area.

Meteorological Characteristics
of Agglomerate Fog Jiangsu Province Anhui Province

Background conditions Fog weather background Fog weather background
Relative humidity >92% >86%

Daily temperature decrease >7 ◦C >8 ◦C
Wind speed <2 m s−1 <1 m s−1

In the second step, the pre-trained meteorological probability prediction model for
fog-related accidents is utilized to obtain the probability prediction value of meteorological
conditions for fog traffic accidents on corresponding road sections. According to the
mapping relationship between the configured ranges of the disaster-causing factor at
different hazard levels and the risk levels of agglomerate fog-related traffic accidents, five
levels are initially determined, which are in the order of the extremely high level (Level 5),
high level (Level 4), medium level (Level 3), low level (Level 2) and extremely low level
(Level 1).

In the third step, the defined thresholds for grading the traffic factor and road factor
are utilized to classify the traffic flow conditions (peak and off-peak periods) and road
locations (special and ordinary types). Combined with the emergency handling experience
of public security traffic administration departments, the hazard levels of meteorological
conditions for agglomerate fog-related accidents are adjusted. On this basis, four risk levels
are obtained (Table 2), where Level I (severe risk), Level II (very high risk), Level III (high
risk) and Level IV (general risk) indicate the extremely high, very high, high and general
possibilities of the occurrence of traffic accidents induced by expressway agglomerate
fog, respectively.

Table 2. Classification of the risk levels for the occurrence of expressway agglomerate fog-related
accidents.

Hazard Level of Disaster-Causing Factor
Ordinary Location Special Location

Off-Peak Peak Off-Peak Peak

Extremely high (Level 5) I I I I
High (Level 4) II I I I

Medium (Level 3) III II II II
Low (Level 2) IV III III III

Extremely low (Level 1) No IV IV IV

4. Factor Values and Calculation
4.1. Classification of Disaster-Causing Factor

According to Equation (1), the probability prediction values of meteorological con-
ditions for fog-related accidents corresponding to 418 fog events [28,29] in the training
set are calculated, and then the frequency of disaster occurrence at a probability interval
of 0.05 is calculated by using the statistical method of histogram. Figure 4 reveals that a
significant negative skewness appears in the distribution of disaster frequency correspond-
ing to the probability of meteorological conditions, with the skewness and kurtosis being
−1.36 and 1.21, respectively, and the left side of the peak shows a monotonically increasing
trend. Thus, we count the frequency of fog-related events in the left range of the peak at
intervals of 0.01 probabilities. Then, the first occurrence of three consecutive intervals with
a frequency of more than or equal to 2 is defined as the change point where the accident
frequency begins to increase significantly. The average of the meteorological condition
probability prediction value corresponding to the continuous interval is calculated and is
used to determine the initial probability value of the meteorological conditions that induce
traffic accidents on foggy days. It is found that the probability value of disaster-causing me-
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teorological conditions is 0.19, which is taken as the critical threshold for disaster-causing
factor at Levels 1–2.
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The thresholds for disaster-causing factors at Levels 2–5 are further determined based
on the cumulative distribution function. The fitting equation is determined according to
the features of the cumulative distribution functions of the probability of meteorological
conditions for fog-related accidents and the frequency of fog events, which conforms to
the exponential characteristics. On this basis, the predicted values of the probability of
meteorological conditions corresponding to the cumulative frequency of 25%, 50% and 75%
are used as the critical thresholds for disaster-causing factor at Levels 2–3, Levels 3–4 and
Levels 4–5, respectively. Using the samples of 47 fog events and 141 non-fog events from the
validation set [28,29], Table 3 validates the rationality of the of hazard of a disaster-causing
factor. The results show that the frequency of disasters at the five hazard levels is consistent
with the criteria for index classification. Approximately 72.3% of fog-related accidents
correspond to a hazard of a medium level or above, while the false alarm rate is about 7.1%.

Table 3. Defined hazard levels for disaster-causing factor and corresponding effect validation.

Hazard
Extremely Low Low Medium High Extremely High

[0, 0.19) [0.19, 0.60) [0.60, 0.75) [0.75, 0.84) [0.84, 1]

Number of
accidents 2 11 14 12 8

Number of
non-accidents 105 26 7 3 0

4.2. Classification of Traffic Factor

With the increasing traffic flow, the car following distance on the expressway becomes
smaller, which makes it prone to causing traffic accidents due to low visibility, slippery
road conditions or improper operation. The traffic risk under foggy weather conditions is
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basically proportional to the traffic volume, and the traffic flow can be divided into off-peak
(normal) and peak (risk) periods according to the variations in hourly traffic volume [32].
Considering that each province has different management standards for expressways
within its jurisdiction, the classification thresholds for traffic factor are determined in each
province.

The hourly traffic flow of the expressways in the test area during 2018 to 2020 is
extracted in sections based on the county level, which is further divided into several
sections at 5th-percentile interval. Furthermore, the average value of the congestion index
in each section is calculated in two provinces. The congestion index is a comprehensive
parameter characterizing the operation state of road traffic and the change in traffic flow,
which is expressed as follows:

IA,T =
N

∑
i=1

li × βi,T , i ∈ A (2)

where IA,T is the congestion index in the analysis area, A, during the period, T (unit: km h),
li is the length of road section i (unit: km), βi,T is the cumulative congestion (speed less than
40 km h−1) duration on road section i during the period, T (unit: h), i is the road section
number, and N is the total number of road sections within the analysis area.

With the increasing road utilization rate, the mutual interference between vehicles is
aggravated, and the growth characteristics of the congestion index with traffic volume also
changes significantly. The variations in the average congestion index in the unit percentile
section of hourly traffic flow are shown in Figure 5. It is found that the line type usually
changes from near-linear growth to near-exponential growth. In this study, split points are
set from 15% to 85% at an interval of 5%, and the linear fitting formula and the exponential
fitting formula between the mean congestion index and the corresponding percentile before
and after split points are calculated separately; the goodness-of-fit values on the two fitting
curves are recorded separately. The split point corresponding to the maximum value
of the average goodness of fit is determined as the position where the congestion index
abruptly changes, and the corresponding percentile value of traffic flow is adopted as
the classification threshold for the traffic factor. It is found that the largest value of the
average goodness of fit appears at the split point that adopts the 55th percentile of the
historical hourly traffic flow dataset, which can be regarded as the cut-off point when the
traffic flow becomes saturated with conflict from the free and stable state. Accordingly,
the 55th percentile value of the above historical hourly traffic flow dataset is defined as
the classification threshold for traffic the factor (9871 vehicles h−1 in Jiangsu Province and
5405 vehicles h−1 in Anhui Province). If the hourly traffic flow on the segmented road
during the target time period is higher than the threshold, it is considered the peak (risk)
traffic flow condition; otherwise, it is regarded as the off-peak (normal) condition.

Considering the difficulty of obtaining real-time traffic flow data, this study constructs
the parametric index of the traffic factor by calculating the average hourly traffic flow during
2018–2020 based on the spatio-temporal distribution characteristics of traffic flow with
the county-level sections, with months and hours as basic statistical units, which is used
to simulate the traffic flow conditions on corresponding road sections in similar periods.
Additionally, to characterize the distinct features of the sharp increase in traffic flow and
peak hours on holidays (such as the New Year’s Day and the Spring Festival), the parametric
indexes for the traffic factor during holiday periods are constructed differentially. Table 4
validates the rationality of the classification of the traffic factor using the observed traffic
flow in 2021. The results show that the parametric index of the traffic factor constructed from
historical data has a strong positive correlation with that constructed from the observed
data (statistically significant at the 99% confidence level), with which can well-simulate
the trend variations of hourly road traffic flow. Furthermore, about 86.2% of the traffic
factor levels are consistent with the conditions of road traffic flow defined based on the
observed data.
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Table 4. Effect validation of the classification of traffic factor levels.

Validation Scope
Pearson Correlation Coefficient

between Parametric Index of Hourly
Traffic Flow and Observed Data

Consistency of Traffic Factor Levels Classified Based on
Parametric Index and Observed Data

Consistent with Traffic Flow
Conditions

Inconsistent with Traffic
Flow Conditions

Jiangsu Province 0.850 85.6% 14.4%

Anhui Province 0.867 87.0% 13.0%

Test area 0.860 86.2% 13.8%

4.3. Identification of Road Factor Hidden Danger

Using the spatial analysis technique based on the geographic information system, the
road within a range of 1 km around the road section with frequent agglomerate fog in
the test area are marked as special location, and the rest are marked as ordinary locations.
Under similar weather conditions, the topographical features around the special road
section are more conducive to the formation and maintenance of agglomerate fog, which
help increase the occurrence probability of agglomerate fog-related accidents.

5. Application and Validation
5.1. Overall Situation

Seven agglomerate fog-related accidents in the test area from 2015 to 2021 are selected
as the test samples to assess the application of the risk prediction model for expressway
agglomerate fog-related accidents. The hindcasts give the risk level of test samples and
the classification of each factor, as shown in Table 5. Overall, six out of seven agglomerate
fog-related accidents correspond to risk level III or above, where three correspond to
the level of severe risk and three are at the level of higher risk. For the No. 4 traffic
accident on the Huaibei section of the Sixu Expressway (S06), the risk of agglomerated
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fog-caused accidents is predicted to be low as the daily temperature decrease fails to reach
the conditions for agglomerate fog formation, while the meteorological, traffic and road
factors are all conducive to the occurrence of traffic accidents. The introduction of traffic
factor and road factor has appropriately raised the risk levels of agglomerate fog-related
accidents on local road sections, especially for cases in which a low-visibility condition is
not evident around the location of the traffic accident. For example, the visibility at the
adjacent traffic weather station I5814 in accident No. 1 is approximately 2.6 km, and the
disaster-causing factor corresponds to the level of low hazard. However, considering that
it is a special location with frequent agglomerate fog events, the model adjusts the risk of
the occurrence of agglomerate fog-related accidents on this road section from level IV to
level III. In accident No. 2, the visibility at Station I2858 near the accident location is higher
than 3 km before and after the accident. However, affected by the increase in traffic flow on
the National Day, the traffic operation on this road section is in a peak condition. Therefore,
the model adjusts the risk of agglomerate fog-related accident from level IV to level III. It
can be seen that the model is of good indicative significance for the risk of agglomerate
fog-related accidents, especially for the identification and warning of road sections and
periods of risks under atypical disaster-causing meteorological conditions.

Table 5. Validation of the model application based on agglomerate fog-related accidents.

Number Accident Occurrence Period Location Situation

Distance of Traffic Station from
the Accident Location and

Corresponding
Average/Minimum Visibility

Agglomerate
Fog Index

Hazard
Factor

Traffic
Factor

Road
Factor

Risk
Level

1 13 February 2021 07:00–08:00 BST
Tongling, Anhui,

Shanghai–Chongqi-ng
Expressway (G50)

7 accidents of several
vehicles scraping each

other and rear-end
collision

1 km (I5814)
2666/1630 m

matches the
conditions Level 2 Off-peak Special III

2 3 October 2019 06:00–07:00 BST
Bengbu, Anhui,

Nanjing–Luoyang
Expressway (G26)

10 people dead and
7 injured in 4 accidents

8 km (I2858)
3768/3432 m

matches the
conditions Level 2 Peak Ordinary III

3 15 November 2017

07:00–08:00 BST Fuyang, Anhui,
Chuzhou–Xincai
Expressway (S12)

18 people dead and
21 injured in multi-point

and multi-vehicle
collisions

1 km (I2754)
80/57 m
71/68 m

matches the
conditions Level 5 Peak Special

I

08:00–09:00 BST matches the
conditions Level 5 Peak Special

4 5 February 2017 08:00–09:00 BST
Huaibei, Anhui,
Sixian–Xuchang

Expressway (S06)

16 vehicles damaged and
6 people injured

3 km (I1358)
226/165 m

mismatch
with the

conditions
Level 5 Peak Special No

5 2 April 2016 12:00–13:00 BST
Changzhou, Jiangsu,
Shanghai–Chengdu
Expressway (G42)

51 vehicles damaged,
3 people dead and

31 injured

5 km (M9112)
1058/846 m

matches the
conditions Level 2 Peak Ordinary III

6 7 December 2015 00:00–01:00 BST
Yancheng, Jiangsu,
Shenyang–Haikou
Expressway (G15)

3 people dead and
3 injured in multi-vehicle

collisions

4 km (M9437)
87/75 m

matches the
conditions Level 5 Peak Ordinary I

7 23 May 2015 06:00–07:00 BST
Lianyungang, Jiangsu,

Shenyang–Haikou
Expressway (G15)

4 people dead and
8 injured in dozens of

rear-end collisions

3 km (M9433)
197/115 m

matches the
conditions Level 4 Peak Ordinary I

5.2. Typical Cases

From 07:35 BST to 08:57 BST on 15 November 2017, a multi-point and multi-vehicle
rear-end collision occurred on the road section from 191 km to 194 km along the down-
ward direction of the Chuzhou–Xincai Expressway (S12) due to sudden agglomerate fog,
resulting in 18 deaths, 21 injuries and 70 vehicles damaged.

Figure 6 provides the output of the risk prediction model of the expressway agglom-
erate fog-related accidents. It can be seen that the risk level in northwestern Anhui is
obviously higher than that in other road networks in the test area before and after the occur-
rence of accidents. Since the early morning of November 15, the coverage of higher-risk or
above of agglomerate fog-related accidents has gradually expanded from the northwest to
southeast, and rapidly weakened from southeast to northwest after reaching its peak during
06:00–07:00 BST. From 08:00 BST to 09:00 BST, there was generally no risk of agglomerate
fog-related accidents along the expressway in the test area, but the accident section still
showed the severe risk level, indicating that the simulation results are reasonable and can
provide targeted tips for determining the risk of local road traffic safety.
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Figure 6. Assessment results of the risk level prediction model of expressway agglomerate fog-related
accidents (from 04:00 BST to 10:00 BST on 15 November 2017).
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From the evolution of road traffic risks at the accident location (Figure 7), the entire
accident section (191–194 km) showed an extremely high risk level of traffic accidents
induced by agglomerate fog two hours before the first traffic accident. After 09:00 BST,
the entire accident section returned to a no-risk situation, coinciding with the end time of
this series of traffic accidents. Particularly, the section east of the accident location (Station
I3262) is the section with the earliest occurrence time of severe risk (Level I), and the closer
section west of the accident location (Station I2754) is the section where the risk of an event
at Level I finally disappears.
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Figure 7. Evolution process of the risk levels of agglomerate fog-related accidents in the accident
section (the shading indicates the period when the accident occurred).

6. Conclusions and Discussion

For severe weather-related traffic accidents, the key impact factors including mete-
orological conditions, road hidden dangers and traffic flow conditions are integrated to
establish the risk assessment procedure and risk level prediction model for expressway
agglomerate fog-related accidents, which consists of three core steps—discrimination of the
conditions for agglomerate fog occurrence, risk level initial prediction of agglomerate fog-
related accidents based on disaster-causing factors and risk level correction of agglomerate
fog-related accidents based on traffic and road factors.

The probability prediction value of meteorological conditions for fog-related accidents
is taken as the disaster-causing factor. The thresholds for five levels of disaster-causing
factor are determined according to the statistical relationship between the frequency of
historical fog-related events and the probability of meteorological conditions in the corre-
sponding periods. The validation reveals that approximately 72.3% of fog-related accidents
correspond to a hazard of the medium level or above.

The predicted value of hourly road traffic flow is taken as the traffic factor, and the
thresholds of traffic factor levels are determined in each province based on the variation
characteristics of the congestion index increasing with the traffic volume. There is a good
consistency between the traffic factor levels defined based on the parametric index of traffic
flow and the observed traffic data in 2021, where the traffic flow conditions with the same
type account for about 86.2%.

Based on the analysis and validation of seven cases of agglomerate fog-related acci-
dents from 2015 to 2021, it is found that three cases correspond to the level of higher risk
and three correspond to the level of severe risk, indicating that the prediction results can
support the demand for meteorological support for traffic safety under severe weather
conditions. In addition, the comprehensive consideration of traffic flow and road environ-
ment impacts can help in the accurate identification of key prevention areas on foggy or
agglomerate foggy days and the timely research and judgment of the risk periods, which
can improve the quality of prediction of the risk of agglomerate fog-related accidents.

This study proposes a new research idea and methodological exploration for the risk
prediction of agglomerate fog-related accidents, especially for the dynamic consideration
of the impact of road traffic flow conditions and the objective calculation of the factor
classification thresholds. However, the prediction accuracy is restricted by the limited
road condition data. In the model prediction, the real-time-measured information of
traffic flow parameters is not introduced, and some other factors such as road shape and
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vehicle type are not considered. In the future, we need to use more fog-accident data
and more detailed traffic and meteorological data to conduct studies on the influencing
mechanism of unfavorable weather conditions and the associated relationship. On this
basis, by introducing the real-time traffic flow parameters and more impact factors such
as road characteristics and vehicle types, we may continuously modify and improve the
risk prediction model of agglomerate fog-related accidents, which is beneficial to further
enhancing the reliability of the assessment results.
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