
Citation: Kit, E.; Fernando, H.J.S.

Small-Scale Anisotropy in Stably

Stratified Turbulence; Inferences

Based on Katabatic Flows. Atmosphere

2023, 14, 918. https://doi.org/

10.3390/atmos14060918

Academic Editors: Boris Galperin,

Annick Pouquet, Peter Sullivan

and Paul D. Williams

Received: 23 April 2023

Revised: 16 May 2023

Accepted: 22 May 2023

Published: 24 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Small-Scale Anisotropy in Stably Stratified Turbulence;
Inferences Based on Katabatic Flows
Eliezer Kit 1,* and Harindra J. S. Fernando 2,3

1 School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
2 Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,

Notre Dame, IN 46530, USA; harindra.j.fernando.10@nd.edu
3 Department of Aerospace and Mechanical Engineering, University of Notre Dame,

Notre Dame, IN 46530, USA
* Correspondence: elikit@gmail.com or kit@tauex.tau.ac.il; Tel.: +972-3-6408-929

Abstract: The focus of the current study is on the anisotropy of stably stratified turbulence that is
not only limited to large scales and an inertial subrange but also penetrates to small-scale turbulence
in the viscous/dissipation subrange on the order of the Kolmogorov scale. The anisotropy of
buoyancy forces is well-known, including ensuing effects such as horizontal layering and pancakes
structures. Laboratory experiments in the nineties by Van Atta and his students showed that the
anisotropy penetrates to very small scales, but their experiments were performed only at a relatively
low Reλ (i.e., at Taylor Reynolds numbers) and, therefore, did not provide convincing evidence of
anisotropy penetration into viscous sublayers. Nocturnal katabatic flows having configurations of
stratified parallel shear flows and developing on mountain slopes provide high Reynolds number
data for testing the notion of anisotropy at viscous scales, but obtaining appropriate time series of the
data representing stratified shear flows devoid of unwarranted atmospheric factors is a challenge.
This study employed the “in situ” calibration of multiple hot-film-sensors collocated with a sonic
anemometer that enabled obtaining a 90 min continuous time series of a “clean” katabatic flow. A
detailed analysis of the structure functions was conducted in the inertial and viscous subranges at an
Reλ around 1250. The results of DNS simulations by Kimura and Herring were employed for the
interpretation of data.

Keywords: stratified shear flow; structure function; direct numerical simulation (DNS); intermittency;
skewness

1. Introduction

Stably stratified turbulence, as already discussed in many previous publications
(e.g., [1–3]), is an intriguing phenomenon. The more capabilities there are to delve into
smaller scales of stratified turbulence, the more it unravels the inherent complexity [4].
Stably stratified turbulence is ubiquitous in the ocean and atmosphere, and, on larger scales,
both stratification and the Earth’s rotation become important, leading to geostrophic turbu-
lence. These external effects were discussed by Lumley [5] in their seminal paper, which
also considered the effects of an external magnetic field and shear in causing departure
from Kolmogorov’s regime. It is quite obvious that external anisotropic forces lead to the
anisotropy of turbulence, a conspicuous example being the magnetic lines associated with
an external magnetic field that lead to directional effects. Columnar vortices with axes
parallel to magnetic lines do not naturally interact with magnetic lines, thus curbing the
Joule dissipation and increasing the survivability of such vortices. Such behavior was ob-
served in MHD experiments [6], opening up the possibilities for creating two-dimensional
turbulence in the laboratory. Attempts were made to employ an analogous approach to
strongly (stably) stratified flows. It is unclear, however, why columnar vertical vortices
should be more supplant. These vortexes are subject to zig-zag instabilities [7,8], leading
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to their collapse and the development of thin horizontal layers containing pancake vor-
texes. These layers, together with the thin layers separating the horizontal layers, form
cells of height Lv = u′/N, where Lv, u′, and N are the characteristic vertical scale, RMS
longitudinal turbulence velocity, and the Brunt–Väisälä frequency, respectively. Instead of
longitudinal velocity u′, the RMS of vertical velocity w′ is often used. It is possible that the
scaling in this case is strongly dependent on the above characteristic vertical scale.

Similar behavior could be expected when shear acts as an external forcing, although the
flow situation is essentially different, since the thin layers, above and below the horizontal
layers, are more prone to instability. The emergence of layers in a pure shear flow is,
apparently, less plausible. Layering with a long horizontal extent is also not expected in
flows with external rotation.

When laboratory grid-generated homogenous isotropic turbulence (HIT) [1] is sub-
jected to (thermally generated) stable stratification, turbulence becomes anisotropic, and the
relevant controlling parameter of the overall flow is the inverse of the internal/turbulent
Froude numbers, Fr = ε/Nu′2, where ε is the rate of dissipation. The above expression
can be modified by assuming that ε = u′3/Lh and using Fr = u′/(NLh), where Lh is the
horizontal length scale. The typical inverse Froude numbers assessed in our field exper-
iments, dubbed MATERHORN, were 2 ÷ 5 [9], coincidentally in the same range as that
observed in [10], though the Reλ is larger, thus allowing for some comparisons. Additional
references are given in the discussion chapter.

2. Methodology

In the nocturnal Atmospheric Boundary Layer (ABL), stable stratification evolves
overnight due to radiative cooling, thus leading to interesting small-scale phenomena that
was studied during MATERHORN (2011–2016) field experiments [11]. A novel probing
system was deployed to capture very small scales, down to Kolmogorov viscous dissipation
subrange [12,13]. The finer scales therein were captured by multiple hot-film probes placed
in the probe volume of a sonic anemometer, with the latter providing low frequency data
to calibrate the former by utilizing a neural network. This sonic- and hot-film anemometer
dyad (dubbed the “combo” probe) was placed on a horizontal pole at 6 m height of a
32 m high tower (labeled ES-2), equipped with an array of sonics and thermocouples at
various levels; see [12]. ES-2 had seven levels of sonics: 0.4, 4, 10, 16, 20, 25, and 28 m.
Careful analysis of data enabled identification of periods that fit the rubric of stratified
parallel shear flows, which emerged as katabatic (downslope) flows draining from the
nearby Granite Mountain.

After careful processing of sonic records of ES-2, which was a part of a densely
instrumented flux tower array (ES-1–ES-5) designed to study katabatic flows at night on the
east slope of Granite Mountain (for details see [11,12]), a 90 min period starting from 22:00
MDT (Mountain Daylight Time (local time)) on October 19, 2012 was selected for stratified
shear flow studies. Prior to the selected time interval, the wind speed rapidly increased from
~1 m/s to ~4 m/s at the combo probe height. The wind direction changed from its usual
oscillations before 22:00 MDT to a nearly constant direction, resembling a stratified parallel
flow with relatively low shear. Thereafter, the winds changed quite rapidly between 23:30
MDT and midnight [12]. Although mean quantities were quasi-steady during the selected
period, 22:00–23:30 MDT, careful inspection of turbulence statistics showed considerable
variability. An analysis of approximately homogeneous subintervals, identified based
on stability (Fr), enabled focusing on structure function analysis in the subinterval SIdevd
(22:50–23:10 MDT). This subinterval was considered as fully developed turbulence, since
flow variations were modest, and appearance of small-scale bursting events [12] was very
limited (less than 2% of the time).
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3. Stratified Turbulence in Field Experiments and DNS
3.1. Puzzling Observations in the MATERHORN Campaign

The detailed results concerning nocturnal turbulence observed during the MATER-
HORN campaign were published in a series of papers [5,11,12]. In these studies, different
data analyses and presentation methods were employed, viz., the spectral approach in
Fourier space [12] and the structure functions approach in physical space [4]. Although
both approaches are inter-related, each of them better reflects specific features of nocturnal
turbulence. In particular, a small-scale bursting phenomenon was uncovered using the
spectral approach [12], and the celebrated Kolmogorov −5/3 spectrum appropriately de-
scribed the measured spectral behavior in the inertial subrange for so-called no-bursting
intervals, where “bursts” were effectively removed from the time series using proper
thresholds based on KE dissipation. At the same time, the structure functions approach
enabled the discovery of inertial and viscous (dissipation) subintervals with separate, cor-
responding power exponents for the bursting and no-bursting intervals. In this paper, we
limit ourselves to the time series where the bursting events are removed.

In particular, our recent paper [4], on the stably stratified turbulence occurring in
the nocturnal turbulence observed during MATERHORN [11,12], reported an unexpected
behavior of the canonical (normalized) third-order longitudinal structure function (Figure 1).
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Figure 1. Comparison of the canonical third-order moments obtained in the field campaign [11,12] at
Reλ = 1250 and DNS for the second-highest Reλ = 264 and 383.

In Figure 1, the canonical third-order structure function measured at a 6 m height from
the ground was compared with the same structure functions evaluated for nearly isotropic
turbulence obtained by classical box DNS computations [14]. In the field, the Reλ was 1250,
whereas in the DNS computations the Reλ was 264 and 383. While in the inertial subrange
(r/η = 20 ÷ 200), both the qualitative and quantitative agreements were very good, in the
viscous subrange (r/η ≤ 10) the results were conspicuously different, and the difference
increased with the decrease in separation. It is worth noting that at small normalized
separations r/η < 10, the scaling exponents were even of different signs for the field and
DNS data. Since, in the viscous subrange, one can expect linear dependence between
velocity and separation, e.g., [15], the scaling exponent for the conventional third-order
structure function should be about zero to satisfy Kolmogorov’s Self-Similar Hypothesis
(KSSH) [16].

This difference of scaling exponents in the viscous subrange of field experiments
and DNS is puzzling, especially when there is a clear agreement among the scaling expo-
nents in the inertial subrange with each other and with the Kolmogorov inertial subrange
scaling. To shed light on this perplexing behavior, the canonical normalized third-order
structure function was computed at various separations; it is defined as the third-order
structure function L3 divided by the second-order structure function L2 to the power 1.5,
e.g., H3(r) = L3(r)/(L2(r))

3/2 , which also represents the skewness of the structure func-
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tion. In Figure 2, we separately consider the third- and second-order structure functions,
both normalized according to KSSH [16].
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The third-order structure function in Figure 2a yields, in the viscous subrange, the ex-
pected linear dependence of the characteristic velocity increment ∆u(x, r) on the separation
r, e.g., ∆u(x, r)~r1. However, the second-order structure function in Figure 2b corresponds
to a different type of dependence, namely, ∆u(x, r)~r5/6. This explains the scaling exponent
observed for the canonical third-order structure function in Figure 1.

However, as shown in Figure 1, the power exponent of the canonical structure function
is relatively small, ~−0.1 in the DNS computations of the approximately homogeneous
isotropic turbulence, compared to ~+0.5 obtained in the field experiment. The determi-
nation of the separate scaling exponents from the DNS data, in a manner similar to that
of the field data, as shown in Figure 2, yielded the following dependencies, ∆u(x, r)~r0.87

for third-order and ∆u(x, r)~r0.91, for second-order structure functions. It is worth noting
that the expectation of identical behavior by odd and even structure functions is generally
unjustified, despite it being widely quoted and often used, in particular, in the Extended
Self-Similarity (ESS) approach. In previous research [4], we found that all even (second,
fourth, and sixth in this study) structure functions yield ∆u(x, r)~r5/6 in the viscous sub-
range. Then, it was found that all the odd structure functions (first, third, and fifth in
this study) constructed using the modulus of velocity increment |∆u(x, r)| yield a similar
relation, namely, ∆u(x, r)~r5/6 in the viscous subrange; here, ∆u(x, r) is the characteristic
velocity increment at selected separation r. The consistent and significant difference be-
tween the power exponents of the third- and second-order structure functions is responsible
for the substantial power exponent 0.5 at the small scales of the conventional third-order
structure function/skewness. In isotropic DNS, this power exponent is about −0.1, which
is much closer to zero, though of a different sign. This result is somewhat perplexing, given
the expectation that, due to the local isotropy at small scales, the power exponent tends to
be zero. Even more puzzling is that, in the inertial subrange, the behavior of the canonical
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third-order structure function in the DNS and field experiments shows full (qualitative and
quantitative) agreement.

This apparently contradicts with the postulate of local isotropy (PLI), which entails
better isotropy whence the separation (r/η) is diminishing. Cambon et al. [17], however,
predicted such behavior in cases where external anisotropic forces such as rotation (Coriolis)
and stable stratification (buoyancy) do not produce turbulent energy. In particular, they
state the following: “It is often considered that anisotropy only affects the largest scales of
the turbulent flow, so that the cascade of anisotropy only mildly penetrates toward the scales
in the inertial range, with eventually no direct impact on the dissipative range, according to
the view inherited from Kolmogorov [16]. In this scheme, the large-scale anisotropy induced
by body forces and/or mean gradients is just considered as a particular modality of ‘forcing’
the largest scales. This viewpoint is radically questioned for flows in which the body force
responsible for anisotropy is energy conserving.” Moreover, they state that “Anisotropy
develops from isotropic initial conditions due to nonlinear energy transfer towards the
plane of zero frequency in wave-vector space. However, two-dimensionalization does not
occur: the fraction of energy at or near the zero-frequency plane remains small at all times.
The cascade to small scales is strongly anisotropic, producing angle-dependent spectra
which become more and more (not less) anisotropic, the smaller the scale considered”.

Obviously, in shear flows, turbulent energy is produced, notwithstanding, the labora-
tory experiments with homogeneous shear flow by Warhaft and their co-workers [18–20]
unambiguously showed that the return to isotropy expected at the small scales does not
occur either at a lower Reλ~O(100) [18] or at a higher Reλ~O(1000) [19], which was again
ascribed to shear penetrating to smaller scales. To quote [19], “The results show that PLI
is untenable, both at the dissipation and inertial scales, at least to Rλ~1000, and suggest
it is unlikely to be so even at higher Reynolds numbers.” See more considerations in the
Discussion section.

Our results [4] appear to strongly support the observation that stratified turbulence
differs from nearly isotropic turbulence, even at small scales corresponding to the dissipa-
tion (viscous) sublayer, and raise a question about the PLI for this important case. It was
very desirable to assert the validity of our results by independent measurements at a higher
Reλ~O(1000) or the DNS computations of stably stratified turbulence.

Unfortunately, the laboratory experiments of stably stratified turbulence are limited
to a relatively low Reλ (<100), and, thus, high-quality field experiments with continuous
measurements at high sampling rates are called for. In fact, during the entire MATERHORN
campaign, only a few records provided “clean” data sets for the nocturnal stably stratified
turbulence strongly affected by thermal stratification. It should be stressed that these
measurements were possible due to our novel calibration approach that enabled in situ
calibration of a multi-hot-film probe based on the simultaneous measurements of low-
frequency 3D-velocity data of a collocated sonic anemometer. Employing machine learning
(neural network training) enabled the calibration of the hot-film probe in situ, thus avoiding
problems with the hot-film’s potential deterioration in hostile field environments. The
efficacy of this calibration method [21] was tested in a series of papers [22–24] and proved
to be very efficient, even in the presence of noise to some degree.

In the current work, the neural network procedure was based on the Multi-Layer
Perceptron (MLP) approach. MLP contains one input layer, one or two hidden layers, and
one output layer. The number of nodes of the input layer and the number of input signals
are the same. We used a fully connected network. In this case, each node of the input layer
duplicates and sends its input signal to every neuron of the first hidden layer. The hidden
layer consists of a number h of neurons. For the training of MLP, the Back Propagation and
Conjugate Gradient Descent methods were sequentially used. In all cases, the number of
epochs that was necessary for the generation of the neural network did not exceed 100.

The use of two collocated x-probes (oriented in the horizontal and vertical planes) at a
very small separation allowed for the measurement of the full 3D velocity vector. Via the
Taylor hypothesis, the time series of the velocity components could be converted into a
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velocity series in the mean wind direction. As expected, the processed data records were
limited in time (about 1 min) to keep the mean transverse velocity components as small
as possible. Directly after the end of the record, the probe was aligned with the mean
horizontal velocity that was evaluated during the last 5 s of the record. Each record was
flagged as successful if the mean wind direction differed by less than 10◦ from its value at
the beginning of the record.

Stratified turbulence is essentially anisotropic (at least at large scales) and is char-
acterized by horizontal pancake-like layering; thus, we posit that the surprising result
observed in Figure 1 is related to anisotropy and layering. The DNS of the stably stratified
turbulent flow in a box could help in this regard, notwithstanding its idealized nature.
DNS simulations were conducted by Jack Herring in collaboration with Yoshi Kimura and
were presented in two seminal papers, one in the Journal of Fluid Mechanics [2] and the
other in Physica Scripta [25]. The significance of their work is limited not only to the very
detailed and comprehensive presentations of the spectra and structure functions obtained
at a relatively high Reλ but also to the elegant methodology of velocity data analysis based
on Craya–Herring decomposition. The latter approach allows for the separation of the
entire oscillating flow into 2 types of modes: horizontal and vortical; vertical and wavy [2,23].
In Section 3.2, the puzzling results (the penetration of the anisotropy caused by stratification
into small scales) of our study are discussed in light of [2].

3.2. DNS of Stably Stratified Turbulence by Kimura and Herring 2012 [2]

As shown in [2], the second-order structure function St2(d, u, x) for the longitudinal
velocity component u at separation d (r in our notations) in the x-direction can be presented
as the superposition of two terms following Craya–Herring decomposition (expression 4.4
in [2]).

St2(d; u, x) = 2π
∞∫
−∞

dkz
∞∫
0

k⊥dk⊥[Φ1(k⊥, kz)
(

1− 2 J1(k⊥d)
k⊥d

)
+

+ 3k2
z

k2
⊥+k2

z
Φ2(k⊥, kz)

(
1− 4

3 J0(k⊥d) + 2
3

J1(k⊥d)
k⊥d

)
]

where Φ1 and Φ2 are defined as energy densities; the k⊥ and kz components of vector
number k are in the horizontal plane and the vertical direction, respectively; and J0 and
J1 denote the Bessel function of the corresponding order. While Φ1 contributes only
to velocities in the horizontal plane and is determined by vertical vorticity component
ωz, Φ2 is contributing to both horizontal and vertical velocity components and can be
determined using only the vertical velocity component w, as presented in expressions 2.9
and 2.10, respectively [2]. Since, in a stratified flow, the vertical direction coincides with
gravitational acceleration g, the second term of the decomposition may account for the
internal waves. Indeed, the behavior of the second-order structure function due to the
first term only, evaluated in [2], is practically the same as that of the isotropic turbulence
(see Figure 14 in [2]), while adding the second term accounting for buoyancy leads to
behavior of the second-order structure function that substantially differs from that of the
isotropic turbulence.

The second-order longitudinal structure function in the x-direction (see Figure 15a
in [2]) is shown below in Figure 3. Unfortunately, the authors do not use normalization that
follows KSSH for data presentation as it is made in our Figure 2b. Notwithstanding, it is
clear that, in the inertial subrange, the scaling exponent is greater than Kolmogorov’s value
of 2/3, which is similar to our result. With the addition of buoyancy effects (the second
term), the viscous subrange scaling exponent for the velocity increment’s dependence on
the separation is close to 5/6 (see the estimated slope 5/3 for the second-order structure
at low separations). Unfortunately, [2] does not present the third-order structure function,
which could adumbrate Kolmogorov’s 4/5 law in the inertial subrange for the horizontal
longitudinal third-order structure function of stratified turbulence.
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In recent studies [26,27], the DNS of rotating turbulence in a box was reported as
enabling the derivation of the third-order structure functions at different polar angles for
examination of their shapes, in particular the penetration of anisotropy to scales in the
viscous subrange. It is important to emphasize that rotation, similarly to stratification, leads
to modifications, from isotropic to axisymmetric, of the turbulence structure, by generating
columnar vortices around the rotation axis. The resemblance is, obviously, not exact and
does not include horizontal layering by pancake structures in the horizontal plane, as
predicted and observed in stably stratified turbulence. A mechanism of the formation of
pancake structures from columnar vortices in stratified turbulence, as mentioned above, is
often related to zig-zag instability.

An interesting result observed in the Ph.D. research of Vallefuoco [27] is the develop-
ment of the clear anisotropy of third-order moments as a function of the polar angle. While
DNS without rotation yielded perfect isotropy with moments for polar angles 0 and π/2
that practically coincided in both inertial and viscous subranges, when rotation is present
the moments differ across the scales, including at very small scales on the order of the
Kolmogorov scale (see Figure 4.31a,c in [27]).

3.3. A Simplified Model

Inspired by the derivations and results of [2], as presented in Section 3.2., we suggest
an (over)simplified model. This model assumes that the longitudinal velocity u(x) measured
at a 6 m height consists of two contributions: u1(x), representing pure HIT (isotropic and
asymmetrical), and u2(x), the strongly stratified turbulence (anisotropic and symmetric,
with respect to the vertical), with a low correlation between the two. The PDF of u1 is
essentially asymmetrical for the longitudinal velocity derivative, while the PDF of u2 may
be assumed to be symmetrical. It follows that the third-order structure function for ∆u(x, r)
is determined by u1 only.

From below expression for L3(r), following above assumptions,

L3(r) = 〈(∆u(x, r))3〉 = 〈(∆u1(x, r))3 + 3(∆u1(x, r))2∆u2(x, r) + 3∆u1(x, r)(∆u2(x, r))2 + (∆u2(x, r))3〉

it can be easily assessed that, at the right hand side, the second and third terms are zero,
due to the lack of correlation between u1 and u2, and the fourth term is zero due to the
symmetry of the probability density function of u2, leaving the first term as the nonzero
term. The situation is different for the higher-order odd longitudinal structure functions.



Atmosphere 2023, 14, 918 8 of 11

For example, in the fifth-order structure function, the first 〈(∆u1(x, r))5〉 and the third
terms 10 ∗ 〈(∆u1(x, r))3〉 ∗ 〈(∆u2(x, r))2〉 are nonzero. This simplified model, therefore,
may explain the intriguingly different behaviors in the viscous subrange of the odd third-
and fifth-order structure functions for ∆u(x, r). That is, the expected linear dependence of
velocity increment on separation r for the third-order structure function (Figure 5a in [4])
and an oscillating slope (scaling exponent) for the fifth-order structure functions (Figure 8a
in [4]).

The odd first-, third-, and fifth-order structure functions evaluated for |∆u(x, r)| in
the viscous subrange yield the same r5/6 dependence (i.e., scaling exponent p*5/6; Figure 9
in [4]) as all the even structure functions. It is obvious that all the structure functions for the
absolute velocity increments include both contributions (u1 and u2). Therefore, the scaling
exponent, in general, can be different from that of the homogeneous turbulence. Relatively
weak anomalies only start to appear at p = 6. However, presently, we are unable to offer a
sound explanation for the distinct shape (5/6 scaling exponent) in the above dependence.

Kimura and Herring [2] obtained a surprising result: the ratio of potential energy
to kinetic energy for all N is about the same, about 0.1. According to [2], “This potential
energy is attributable to the three-dimensional turbulence that occupies the space between
the quasi-horizontal layers.” They note the following: “Why this value asymptotes to
~0.1 of the kinetic energy is a mystery to us.” Our belief is that the characteristics of these
quasi-horizontal layers are of the utmost importance for the strongly stratified turbulence
in the viscous subrange, so the appropriate answer to each one of the above questions
might be the key to the mystery. The low Reynolds number laboratory experiment by
Fincham et al. [28] illustrates that the interactions between the turbulence in the layers and
strong shear between (highly dissipative) layers are characteristics of decaying stratified
turbulence, similar to the observations noted by Métais and Herring [29].

The model offered above is simplistic, so a more rigorous attempt to separate isotropic
and anisotropic contributions can be made in the framework of SO(3) formalism [30],
by conducting the decomposition of the appropriately measured structure or correlation
functions into spherical harmonics. This is left for future work.

4. Discussion

Our study concerns the anisotropy of stably stratified turbulence that is limited not
only to large scales and inertial subrange but also to penetrating the (smaller-scales) domain
of the viscous/dissipation subrange on the order of the Kolmogorov scale. The anisotropy of
buoyancy forces as well as their propensity for developing horizontal layering and pancakes
structures are widely known and may be related to this anisotropy across the scales.

In a recent work [31], direct numerical simulations were performed for the assessment
of the local isotropy of dissipative scales for stably stratified flows. It is claimed that the
estimation of the dissipation rate of turbulent kinetic energy and density variance can be
approximated using the isotropic assumption for the turbulent Froude number Fr ≥ O(1).
There is a clear departure from isotropy for Fr < O(1). However, in another work [32], it was
shown that dissipation-scale isotropy is determined by Reb, the buoyancy Reynolds number,
only. The authors also performed direct numerical simulations to investigate the anisotropy
of stratified turbulence and the transition to isotropy at small length scales. Turbulence was
generated by forcing large-scale vortical modes, an approach that is broadly consistent with
geophysical stratified turbulence. The authors’ results suggest that Reb ≥ 500 is required to
obtained the same degree of small-scale isotropy seen in the unstratified turbulence at a
similar Re.

In relatively old but very comprehensive study [33] in 1981, the authors have al-
ready performed direct numerical simulations of decaying homogeneous turbulence in
density-stratified fluids. They have examined in particular the energetics, the evolution
of characteristic length scales and the importance of nonlinearities in the computed flow
fields. They have found that stratification introduces wave-like characteristics into the flow
fields. This is exemplified by exchange from (and to) kinetic energy to (and from) potential
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energy and the development of counter-gradient buoyancy fluxes. Stratification tends to
enhance the growth of horizontal scales while inhibiting the growth of vertical scale.

Per a referee, we would also like to point out the very interesting work [34] by Smith
and Waleffe, with the title “Generation of slow large scales in forced rotating stratified turbulence”,
but their focus is on large scales in forced rotating stratified turbulence, so it appears to have
a lesser relevance to our work. Indeed, the authors discussed the cases of pure stratified
turbulence that was randomly forced at small scales. Their interests are mainly related
to the inverse cascade. The same remarks are applicable to the comprehensive study of
Delache et al. [35], which dealt with anisotropy in freely decaying rotating turbulence.

Following the comments of reviewers, we carefully evaluated various options for
the modeling generation of anisotropic small-scale structures. To do so, we referred to
additional studies [36–38] such as Kerstein 1999, Wunsch 2000, and Wunsch and Kerstein
2001 that describe the horizontal layering in stably stratified turbulence, which suggested
a one-dimensional turbulence (ODT) model for this analysis. In essence, this model lo-
cally applies mixing length theory throughout the simulation domain, defining a wide
range of possible mixing lengths and corresponding time scales for each point in space.
Turbulent mixing is then randomly applied throughout the system at all length scales,
based on the locally appropriate time scales. It is a stochastic model and can be very useful
in applications.

Finally, we refer to the most up-to-date monograph [39], which summarized the recent
theoretical, computational, and experimental results dealing with homogeneous turbulence
dynamics. A large class of flows was covered: flows governed by anisotropic production
mechanisms (e.g., shear flows) and flows without production but dominated by waves
(e.g., homogeneous rotating or stratified turbulence).

While laboratory experiments in the 1990s showed the penetration of anisotropy to
very small scales, such experiments were performed at a relatively low Reλ and, therefore,
did not provide convincing evidence of anisotropy penetration into the viscous subrange.
Measurements in the atmosphere during the MATERHORN project could provide such
evidence as discussed in this paper, where the viscous subrange was accessed via a special-
ized (combo) probe, which is an assembly of a high (space-time)-resolution, multi-sensor
hot-film probe array collocated with a sonic that measures the full velocity vector at a
low-frequency resolution.

By employing machine learning based on a neural network algorithm during post-
processing, “in situ” calibration of the combo probe was accomplished. “Clean” stratified
turbulence data unblemished by other effects were observed in the Katabatic flows devel-
oping near the mountain slopes during nocturnal events, which can provide appropriate
data for stratified turbulent studies. As explained in Section 2, 90 min of clean stratified
shear flow data could be gleaned, based on which detailed structure function analyses
were conducted in the inertial and viscous subranges. Anisotropic behavior in the viscous
subrange was revealed at an Reλ around 1250, which can be considered substantial. The
seminal paper of Kimura and Herring [2] on the DNS of stably stratified turbulence was
employed for data interpretation.

Our results strongly support that stratified turbulence differs from nearly isotropic
turbulence even at a smaller dissipation (viscous) subrange. To the best of our knowledge,
this is the first time that such inferences are made at a relatively high Taylor-based Reynolds
number of Reλ ~1250. This result contradicts the hypothesis of the postulate of local isotropy
(PLI), which posits enhanced isotropy, whence the separation (r/η) is diminishing. In fact,
Cambon et al. [17] predicted kindred behavior when external anisotropic forces, such as
rotation (Coriolis) and stable stratification (buoyancy), do not produce turbulent energy.

The Craya–Herring decomposition used in [2] allowed for presenting the second-order
structure function for the longitudinal velocity increment at separation r in the x-direction
as a superposition of two terms: the turbulence determined by vertical vorticity ωz and
the internal waves determined by vertical velocity component uz. While the former term is
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essentially isotropic on the horizontal plane, the latter term is responsible for anisotropy,
which we used to qualitatively interpret the observations.
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