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Abstract: Jack Herring had three mid-1960s numerical papers on Rayleigh-Bénard thermal convection
that might seem primitive by today’s standards, but already encapsulated many of the questions
that are still being asked. All of them use severely truncated versions of the incompressible Navier–
Stokes–Boussinesq equations with only one, or just a few, horizontal Fourier modes. In the first two
papers, 1963 and 1964, the presented results used only one Fourier mode α and three variables. The
single mode’s variables are its vertical velocity profile wα(z, t), its temperature profile θα(z, t) and
the horizontally uniform vertical profile of the background temperature ψ(z, t). All of the second-
and third-order terms are ignored except the convective heat flux wθ. The objective was to find
asymptotic steady-state solutions. Each paper found evidence for the one-third Nusselt versus
Rayleigh scaling of Nu∼Ra1/3, originally derived from Malkus’ maximum flux principle. The 1963
paper uses free-slip upper and lower boundaries, with magnitudes of Nu that are a factor of three
larger than the experiments. In the 1964 paper, by introducing no-slip/rigid boundary conditions,
the magnitude of Nu dropped to within 20% of the experimental values. Both Nu(Ra) relations are
in good agreement with circa-1990 direct numerical simulations (DNS). This dependence upon the
boundary condition at the walls suggests that to obtain physically realistic scaling, no-slip boundary
conditions are necessary. The third paper is discussed only in terms of what it might have been
aiming to accomplish and its relation to the earlier free-slip results.

Keywords: convection; turbulence; scaling laws

1. Introduction

When Jack Herring’s mid-1960s convection papers [1–3] were published, there were
already, as there are now, two primary predictions for the dependence of the dimensionless
heat flux, the Nusselt number, Nu, upon the Rayleigh number, Ra. From Malkus [4,5]
and Kraichnan [6], a scaling law for modest Rayleigh numbers was derived; from Kraich-
nan, an upper bound on the scaling for asymptotically large Ra was derived, suggesting,
respectively,

Nu ∼ CRa1/3 and Nu ∼ CRa1/2/(log Ra)3/2 with Ra ≡ αeg∆Td3

κν
. (1)

where the variables are as follows: αe is the linear coefficient of expansion; g is the gravi-
tational acceleration; ∆T = (TH − TC) is the temperature difference between the hot and
cold walls; d is the depth; κ is the thermal conductivity; and ν is the kinematic viscosity. A
Nu∼CRa1/2 scaling law had also been suggested by Spiegel [7].

To obtain some numerical insight into whether either prediction might hold, Herring
used very elementary numerics that incorporated the primary assumptions described by
Malkus and Veronis [5]. Using a few horizontal Fourier modes at most, the variables
of the reduced dynamics were the vertical profiles of the poloidal vertical velocities and
temperatures. Velocities and the vertical vorticity from the toroidal component [8] were
neglected. The goal was to find steady-state solutions by iterating in time. For the primary
calculations, only one Fourier mode was used and, in each case, the Nu∼CRa1/3 scaling
prediction was supported, with geometric and Reynolds-number-dependent coefficients,
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C, in approximate agreement with 1990s-era direct numerical simulations (DNS) for both
free(-slip) [9] and no-slip (rigid) boundaries [10]. No evidence was found for an ultra-high
Rayleigh number Nu∼Ra1/2 regime.

This review begins by describing the reduced equations and the iteration method and
then the results. First the free-slip calculations will be discussed, and then we will move
on to those with rigid boundaries. The 1966 paper is not discussed in any detail because
the 1963 scaling results are repeated. Then there is a discussion of energy budgets, the
relationships to the first DNS direct numerical simulations and the overall message.

2. Governing Equations

The full incompressible Navier–Stokes–Boussinesq equations for the velocity vector
v(r, t) and temperature fields T(r, t) for Prandtl number σ = ν/κ are:

∇ · v = 0 , (2)(
1
σ

∂

∂t
−∇2

)
∇2v =

1
σ
∇×∇× (v · ∇v) + Ra∇× (∇× kT) , (3)(

∂

∂t
−∇2

)
T = −∇ · (vT) . (4)

From these equations, the dimensional variables (denoted by primes) are made non-
dimensional using the depth d of the convection cell and κ.

v =
d
κ

v′, T = T′/d,

r = r′/d, t =
κ

d2 t′ .

The double curl has eliminated the pressure from the equations and by considering
only the poloidal component, one is left with only one velocity component: the vertical
velocity w(r, t). The temperature field T(r, t) is then separated into a fluctuating part θ and
a horizontally uniform background field ψ(z, t).

T(r, t) = −z + ψ(z, t) + θ(r, t) with β(z) = − ∂

∂z
T(z) = 1− ∂ψ

∂z
, (5)

where T(z) is the horizontally averaged temperature. The boundary conditions at z = 0
and z = 1 on the temperature components are

ψ(0, t) = ψ(1, t) = 0 (6)

θ(x, y, 0, t) = θ(x, y, 1, t) = 0. (7)

Upon horizontally averaging the equations, and removing all except one of the hori-
zontal advection and second-order fluctuation terms, the system can be reduced further,
with the exception being the vertical heat transport wθ that is forcing the horizontally
averaged temperature ψ and its derivative β.(

1
σ

∂

∂t
−∇2

)
∇2wα = Ra∇2

⊥θα , (8)

(
1
σ

∂

∂t
−∇2

)
θα = βw , (9)(

∂

∂t
− ∂2

∂z2

)
β = +

∂2

∂z2 wθ . (10)

where ∇⊥ = ∂2
x + ∂2

y. This is the later 1964 version of the reduced Equations [2].
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The horizontally fluctuating terms are then decomposed into horizontal Fourier modes
w(αj, z, t) and θ(αj, z, t), where αj represents a horizontal wavenumber (kx, ky)j.

There are two nonlinear terms. βw in (9) and wθ in (10). Today, these terms would be
found in physical space, transformed to Fourier space using an FFT, derivatives taken, then
transformed back to z-profiles. These calculations were pre-FFT, so the derivatives in the
nonlinear terms are included using convolution—that is, summing in Fourier space the
nonlinear, multiplied terms.

Once the time derivatives are set, time-iteration using simple forwards Euler is applied
to determine if a steady state can be reached. If a steady state is obtained, this question
can be posed: Are the steady-state solutions for the two geometries, free-slip and rigid,
consistent with our current understanding, numerical or experimental, of convection in
those geometries?

3. Herring 1963 Results

In a 1963 paper [1], only one horizontal Fourier mode was used in each simulation
and the vertical profiles of all the variables expanded as sums of vertical sine functions.
This imposes free-slip boundaries at z = 0 and 1 and makes the convolution sums for the
nonlinear terms particularly easy.

Choosing values of α and the Rayleigh number that would support convection and not
be unstable was not trivial. One restriction due to marginal stability [8] is that the system
will not support convection if

(1 + α2)3

α2 ≥ Ra
π4 . (11)

In Section 5 of Ref. [1], the stability is summarized with its Figure 17, including an observa-
tion that a small α is enormously unstable. The figures below come from the stable range of
α and Ra.

As Ra increases, the variations in the boundary layers become stronger, with profiles
that are qualitatively similar to those from free-slip DNS [9]. Furthermore, the fit for
Nu(Ra) = C Ra1/3 (1) gives C = 0.31, which with some digging, is exactly what the
free-slip DNS finds for Ra = 5× 105 with Nu = 23.7 [9].

4. Herring 1964 Results

In the 1964 paper, rigid, no-slip boundary conditions were applied [2].
However, applying the sine function algorithms used for the free-slip calculations

directly to the rigid case is impossible because at each wall the vertical velocity has two
boundary conditions, not one.

w(0, t) =
∂w
∂z

(0, t) = w(1, t) =
∂w
∂z

(1, t) = 0 . (12)

To handle this, in the appendix of [2], inhomogeneous combinations of sinh and cosh
functions [8] of παz are added to terms based upon sines. The inhomogeneous parts allow
all four boundary conditions in (12) to be satisfied. Then, Green’s functions relating those
inhomogeneous plus homogeneous functions to sines are computed.

With those Green functions, a time-advancing iteration procedure analogous to
Equations (8)–(10) can be implemented.

Furthermore, to make things simpler, the Prandtl number limit σ→∞, σ−1→0 was
taken, hoping that this would include the σ∼1 of the air around us, an assumption that is
partially borne out by the DNS of Kerr and Herring [11].

5. Discussion

In the first paper [1], it was shown how a single horizontal Fourier mode with simple
parameterizations could generate the proposed Nu∼Ra1/3 scaling [4] for the heat flux. In
the second paper [2], by imposing no-slip boundary conditions on the velocity, instead of
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free-slip, it was shown how two results could be generated and this was consistent with
the observations: the coefficient on the Ra1/3 scaling and the vertical profiles of w and θ.

However, this unanswered remains question: Does the asymptotic Kraichnan [6]
upper bound for high Rayleigh number scaling, Nu∼Ra1/2, have any relevance? Today,
this hypothetical regime is called the ultimate regime.

The third paper [3] was an attempt to pre-condition and accelerate the iteration
towards a steady state in order to determine whether there might be additional scaling laws
at much higher Rayleigh numbers, as suggested by that upper bound. The pre-conditioning
was only applied to the free-slip geometry and there was no evidence for any new regimes
as the earlier free-slip results [1] were reproduced.

Another concept being introduced to numerics was the role of what we now call the
energy budget [1]. For Rayleigh-Bénard convection, there are two energy functions,

EK = 1
2{w

2}v and EP = 1
2

{
|θ|2 + |ψ|2

}
v

, (13)

the kinetic energy EK [5] and the potential energy EP, which is called entropy in the paper.
The v-subscripts indicate integration over the volume and the total energy is EP + EK. The
EP equation is

∂

∂t
EP +

{
|∇θ|2 + |∇ψ|2

}
v
= {wθ}v . (14)

The energy flow in this reduced system of just wα, θα and β is as follows:

• The inflow begins as the vertical velocity w interacts with the mean temperature
gradient β in (9), whose volume integral is {βw}v.

• EP then flows to the kinetic energy through the ∇−2
⊥ Ra∇2

⊥θ term in (8).
• This is then dissipatively removed by ∇−2

⊥ inverting the ∇4
⊥ term of (8):

∇−2
⊥

{
∇2
⊥∇

2
⊥w
}

.

• Meanwhile, β is modified by (10).

Similarities and differences. Figures 1 and 2 for no-slip boundaries have the follow-
ing similarities with, and differences from, the free-slip results in Figures 3 and 4,

• T(z) and β(z) profiles are similar. Except at the walls where ∂β/∂z∼0.
• Similarly for w(z) and θ(z), except again ∂w/∂z = 0 at the walls.
• For no-slip (rigid) walls the coefficient in front of the Ra1/3 given in the abstract is

C = 0.1153 and is within 20% of the experiments. And consistent with Ra < 106

DNS [10] for which C ≈ 0.09∼0.11 if strictly Nu∼Ra1/3 scaling is assumed.

Figure 1. Rigid (no-slip) boundaries with Ra = 105 and πα = 5. (a) Mean temperature T(z).
(b) Mean gradient β(z). β(z) has been normalized by the total heat transport Nu = 6.7. Figure 6a,b
from Ref. [2].
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Figure 2. (a) 7.85× 10−3w and 2.23 θ for Ra = 105 and πα = 5. (b) The heat flux Nu as a function of
Ra1/3 from three estimates: Nmax is the maximum value of Nu (over different πα) for each given Ra.
NRS is the flux predicted by the relative stability criterion, and NS is the heat transported by stable
single-α solutions. The Nmax coefficient given in the abstract is C = 0.1153. Figures 5 and 12 from
Ref. [2].

(a) (b)

Figure 3. h-slip with Ra = 105 and α = 1.5. (a) Mean temperature T(z). (b) Mean gradient β(z).
β(z) has been normalized by the total heat transport Nu = 13.82. Figure 7 from Ref. [1].

(a)
(b)

Figure 4. (a) 4.33× 10−3w and 9.42 θ for Ra = 105 and α = 1.5. (b) Maximum total heat flux Numax

as a function of Ra1/3. Figures 6 and 16 from Ref. [1].

The overall message is that, even for these early calculations, to obtain physical
convective heat fluxes, rigid (no-slip) boundary conditions were required. This influenced
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my decision [10] to skip free-slip boundaries and proceed straight to the task of simulating
thermal convection with no-slip boundaries.
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