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Abstract: Based on the NDVI data of vegetation in Inner Mongolia from 1982 to 2015, the variational
mode decomposition (VMD) method, which has been well applied in the field of signal decomposition,
is introduced to study the periodicity of vegetation index in Inner Mongolia. The VMD method
is used to extract the monthly and annual NDVI and the long time series cycle characteristics of
temperature and precipitation in the same period from April 1982 to October 2015 in Inner Mongolia.
The results show that temperature and precipitation are important factors affecting the growth of
vegetation, and there are 6.99 and 3.49 months of the same oscillation cycle for monthly NDVI and
temperature and precipitation time series; when the central frequency is the same, the amplitude of
the monthly temperature and precipitation time series increases with the increase of the lag period.
The annual scale NDVI has the same period of 16.95, 6.8a, and 4.85a with precipitation, and the
same period of 6.8a and 4.85a with temperature. The Residue component shows that the overall
NDVI and temperature in Inner Mongolia have shown a significant slow growth trend in the past
30 years. Although the precipitation has shown a significant slow decline trend in the same time
period (p = 0.000), the grassland is still in the process of continuous improvement.

Keywords: NDVI; variational mode decomposition (VMD); temperature; precipitation; Inner
Mongolia

1. Introduction

As the main component of a terrestrial ecosystem, surface vegetation is the key link
connecting the material and energy exchange between soil and atmosphere, and plays the
role of “indicator” in global change research [1–4]. Using remote sensing to dynamically
monitor the temporal and spatial evolution of vegetation cover is of great practical signifi-
cance for in-depth study of the relationship between vegetation and climate change, as well
as human activities, and for revealing the evolution and change of regional environmental
conditions [5].

The normalized difference vegetation index (NDVI), as an index to characterize the
vegetation coverage, is widely used in the study of the laws and driving forces of long-time-
series vegetation evolution [6–10]. In recent years, using wavelet analysis and empirical
mode decomposition (EMD) methods, combined with NDVI data, to extract the periodic
characteristics of time series and study vegetation cover change has attracted extensive
attention from domestic scholars [11–20]. Wavelet analysis is a method of processing signals
and images, which is adaptive and can decompose complex time series composed of differ-
ent frequency components interwoven into sub sequences with different frequencies [21].
Liu et al. used wavelet transform to discuss the periodic change of NDVI of vegetation
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in Inner Mongolia from 1998 to 2008, and achieved good application results [22–24]. Em-
pirical Mode Decomposition (EMD) is a method proposed by Huang et al. to process
nonlinear and non-stationary signals [25]. EMD can adaptively decompose non-stationary
signals into a number of stationary eigenmode functions (IMF). It has the characteristics of
adaptability, orthogonality, and completeness, and is widely used in vegetation periodic
feature analysis, time series feature analysis, prediction, and forecasting [26]. For example,
Han et al. studied and analyzed the periodicity of NDVI in the Heihe River basin and its
relationship with climate factors using an empirical mode decomposition method; Chen
et al. used EMD signal trend extraction technology to remove noise and error information,
and accurately obtained the growth trend of different types of vegetation; Chen et al. ap-
plied the EMD method combined with the NDVI data of Huaihe River basin to analyze
the periodic change of vegetation in the basin; and Zhang et al. studied the evolution of
rainfall series characteristics in Hubei Province by coupling EEMD and EMD algorithms,
and also achieved the expected research results [27–29].

However, both wavelet analysis methods and EMD and EEMD methods still have
some shortcomings. For example, wavelet analysis has no theoretical standard for selecting
the best wavelet basis function, and EMD and EEMD methods have problems such as
mode aliasing and being greatly affected by sampling frequency [30–32]. In view of the
shortcomings of the EMD method, DRAGOMIRETSKIY et al. proposed a new adaptive
signal processing method, Variable Mode Decomposition (VMD), which is an improvement
of EMD [33]. It not only retains the advantages of EMD’s adaptive decomposition of
non-stationary signals, but also makes up for the shortcomings of the EMD method. It
transforms the signal decomposition into a non-recursive, variational mode decomposition
mode, and uses recursive iteration to calculate the optimal solution of the variational
model to determine the frequency center and bandwidth of each IMF component [21]. The
frequency center and bandwidth of the IMF change constantly in the iterative solution
of the variational model. It adaptively realizes the separation of the signal frequency
domain from each IMF. The frequency band of each modal component is around the center
frequency, and there will be no mode aliasing [26]. The VMD method has been widely
used in bearing fault characteristics, short-term charge, wind speed prediction, etc. Liu
Changliang et al. have carried out fault diagnosis for rolling bearings based on variational
mode decomposition and fuzzy C-means clustering [30]; Tang et al. applied the VMD
method to early fault diagnosis of rolling bearings [31]; and Ma et al. extracted the fault
features of rolling bearings based on the variational mode decomposition, and achieved
good application results [32]. Liang et al. used VMD to decompose the original historical
time series into several characteristic model functions, which improved the accuracy of
short-term prediction [34–40].

At present, the research results of VMD method in the time series analysis of vegetation
NDVI data are rare. This paper selects GIMMS NDVI3g data from April to October of
1982 to 2015, temperature and precipitation data from 1979 to 2015, uses VMD and FFT
algorithms to extract data cycle and trend information, discusses the periodic relationship
between vegetation and meteorological factors such as temperature and precipitation, and
then studies the dynamic trend of vegetation and its climate factors and the application
effects of the VMD method in surface vegetation monitoring data.

2. Materials and Methods
2.1. Study Area

The Inner Mongolia Autonomous Region (from 37◦01′ N to 53◦02′ N by 95◦02′ E
to 123◦37′ E) is located in the northern border region of China (Figure 1). The Inner
Mongolia grassland is the largest grassland pastoral area in China, located in the middle
of the Eurasian grassland belt, which is the transition zone between the northwestern
arid zone and the northeast humid zone and the dry farming region in North China.
The Inner Mongolia grassland’s elevation is about 88–3496 m, and the total area is about
1,183,000 km2, belonging to a typical kind of semi-arid temperate grassland ecosystem in the
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middle latitude with an annual precipitation of 100–450 mm, decreasing from east to west,
and an annual mean temperature of 0–8 ◦C, increasing from east to west in Inner Mongolia.
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2.2. Data Set

The NOAA/AVHRR data set GIMMS NDVI3g was selected (download website:
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/ (accessed on 5 March 2019)), the
time range was from April to October of each year from 1982 to 2015, the time resolution
was 15 days, and the spatial resolution was 8 km. In addition, the annual NDVI dataset is
the cumulative sum of NDVI from April to October of the corresponding year. Monthly me-
teorological datasets were obtained from the National Meteorological Data Sharing Service
Platform (http://data.cma.cn/ (accessed on 15 September 2018)), including monthly mean
temperature and precipitation data between 1982–2015 (January–October) for 47 meteoro-
logical stations in Inner Mongolia (Figure 1). In order for these data to match the NDVI
data (i.e., at a spatial resolution of 8 km), we employed the Kriging interpolation method
within the ARCGIS software; this resulted in temperature and precipitation datasets for the
entire study region. The annual precipitation is the cumulative monthly precipitation value
from January to October, and the annual temperature is the average value of the monthly
temperatures.

2.3. Research Method

The VMD algorithm is a new adaptive signal processing method [34–37]. Its decompo-
sition process is the solution process of the variational problem. Suppose each IMF contains
a limited bandwidth [32–34]. The variational problem is to seek K modal functions uk(t) to
minimize the estimated bandwidth sum of all modal functions. The sum of all modes is
equal to the constraint condition of the original input signal f.

The steps are as follows:
Hilbert transform is used to calculate the analytical signal of each modal function to

obtain the unilateral spectrum:

(δ(t) +
j
πt

)·uk(t) (1)

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
http://data.cma.cn/
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The center frequency of each modal analytical signal is estimated by mixing, and the
spectrum of each modal is modulated to the corresponding fundamental frequency band:

(((δ(t) +
j
πt

)·uk(t))e
−jwkt) (2)

Calculate the square L2 norm of the above demodulated signal gradient, and estimate
the signal bandwidth of each modal function. The constrained variational problem is as
follows: 

( main
{uk}{wk})

{
∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
·uk(t)

]
e−jwkt

∥∥∥2
2

}
s.t.∑

k
uk = f , {uk} := {u1 · · · uk}, {wk} := {w1 · · ·wk}, ∑

k
:=

k
∑

k−1

(3)

The quadratic penalty factor a and Lagrangian multiplier operator λ(t) are introduced
to construct extended Lagrangian expressions:⌈

(uk, wk, λ) = α∑
k

∥∥∥∥∂t[(δ(t) +
j
πt

)·uk(t)]e
−jwkt

∥∥∥∥2
2
+
∥∥ f −∑ uk

∥∥2
2
+
〈
λ, f −∑ uk

〉
(4)

Iteration is repeated to find the “saddle point” of the extended Lagrangian expression
and solve the minimum value to obtain the optimal solution. The optimal solution is the
eigenmode function uk and the respective center frequency wk.

3. Results and Analysis
3.1. Comparison and Analysis of EMD and VMD Algorithms

Based on the scale NDVI data of Inner Mongolia Autonomous Region from April 1982
to October 2015, the EMD and VMD algorithms were, respectively, used to decompose and
obtain multiple time-scale maps as shown in Figures 2 and 3.
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It can be seen from Figure 2A that the NDVI data were decomposed by EMD to obtain
four IMF components and one Residue component; Figure 2B is the FFT transformation of
NDVI and its components. The results show that NDVI has two wave periods, but IMF1
does not accurately decompose the two wave periods, and there is a phenomenon of “mode
aliasing”. Figure 3A shows that the NDVI data were decomposed by VMD to obtain two
IMF components and one Residue component; Figure 3B shows the FFT transformation
results of NDVI and its components, and we can find that it has two fluctuation cycles,
IMF1 and IMF2, respectively. In addition, the Residue component, as the last component,
represents the change trend characteristics of the entire NDVI time series.

3.2. Analysis of Monthly Scale Periodic Change

Based on the above research, this paper uses VMD and FFT methods to decompose
the monthly and annual NDVI data of the Inner Mongolia Autonomous Region from
April to October every year from 1982 to 2015. The decomposition results are shown in
Figures 3–6. Figures 4a–d and 5a–d were obtained via VMD decomposition of precipitation
and temperature series from April to October, March to September, February to August,
and January to July in the region from 1982 to 2015. Furthermore, Figures 7a–d and 8a–d
show the decomposition results of annual precipitation and annual average temperature
time series from 1982 to 2015, from 1981 to 2014, from 1980 to 2013, and from 1979 to 2012,
respectively.

Figure 3 shows that the NDVI time series data from April to October of 1982 to 2015
were decomposed into two IMF components and one Residue component by VMD, and
then FFT was performed to obtain the spectrum. Figure 3A is the VMD decomposition
result, and Figure 3B is the FFT transformation result of Figure 3A, wherein (a) in Figure 3A
is the NDVI time series, and (b) in Figure 3B indicates that the NDVI time series has two
dominant frequencies; (c,e,g) are first-order and second-order IMF components and Residue
components, respectively; the Residue component indicates that the overall change trend
of monthly NDVI shows a significant slow growth trend (p = 0.00, slope = 0.0076%/m),
and (d,f,h) are the corresponding frequencies.
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It can be seen from Figure 4a–d that the time series of rainfall from April to October,
March to September, February to August, and January to July in 1982–2015 were decom-
posed via VMD to obtain 1 IMF, 1 IMF, 2 IMF, and 3 IMF components, respectively, and
then FFT was performed to obtain the spectrum. The Residue component in Figure 4a–c
decreases at a rate of 0.013/month, 0.009/month, and 0.004/month, respectively, and
the Residue component in Figure 4d increases slowly and significantly at a linear rate of
0.02/month (p = 0.000).

It can be seen from Figure 5a–d that from 1982 to 2015, the time series of temperature
on the scale of April to October, March to September, February to August, and January to
July were decomposed via VMD to obtain 2, 3, 3, and 3 IMF components, respectively, and
the Residue component showed a significantly slow upward trend at the linear speed of
0.005/month, 0.084/month, 0.011/month, and 0.012/month, respectively (p = 0.000).

The IMF components and their FFT transformation results in Statistical Figures 3–5
are shown in Table 1.

• From 1982 to 2015, the center frequencies of the modal components of NDVI and tem-
perature IMF1 and IMF2 on the monthly scale from April to October were consistent,
0.143 HZ and 0.286 HZ, respectively, in which IMF1 showed a 6.99 month cycle and
IMF2 showed a 3.49 month cycle.
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• From March to September, February to August, and January to July in 1982–2015, the
monthly temperature had three IMF components, which are expressed as 6.99, 3.49,
and 2.33 month fluctuation cycles.

• From April to October, March to September, February to August, and January to July of
each year from 1982 to 2015, the precipitation had a similar period of 6.99 months with
the IMF1 modal component of NDVI in April to October in the same time period. In
addition, the scale NDVI from April to October is consistent with the scale component
IMF2 of precipitation from February to August and from January to July, showing
a 3.49 month cycle change, which is half of the IMF1 cycle; the central frequency of
precipitation IMF3 from January to July is 0.429 HZ, and the period is 2.33 months,
which is one third of the oscillation period of IMF1.

• When the central frequency of IMF1 is the same, the average amplitude of monthly
scale temperature from low to high is 8.56 (April to October), 10.51 (March to Septem-
ber), 14.16 (February to August), and 16.45 (January to July); the average amplitude of
monthly precipitation from low to high is 29.9 (January to July), 33.45 (April to Octo-
ber), 33.91 (March to September), and 35.07 (February to August); when the central
frequency of IMF2 is the same, the average amplitude of monthly scale temperature
from low to high is 1.46 (April to October), 3.56 (March to September), 6.18 (February
to August), and 6.94 (January to July); when the central frequency of IMF 3 is the same,
the average amplitude of monthly scale temperature is 2.56 (March to September), 4.42
(February to August), and 5.44 (January to July) from low to high, showing that the
amplitude increases with the increase of the lag period.

Table 1. Statistical values of monthly scale time series FFT transformation from 1982 to 2015.

Month Factor Component Average Amplitude Center Frequency/HZ Average Period (Months)

4–10 NDVI IMF1 0.12 0.143 6.99
IMF2 0.04 0.286 3.49

temperature IMF1 8.56 0.143 6.99
IMF2 1.46 0.286 3.49

precipitation IMF1 33.45 0.143 6.99
3–9 temperature IMF1 10.51 0.143 6.99

IMF2 3.56 0.286 3.49
IMF3 2.56 0.429 2.33

precipitation IMF1 33.91 0.143 6.99
2–8 temperature IMF1 14.16 0.143 6.99

IMF2 6.18 0.286 3.49
IMF3 4.42 0.429 2.33

precipitation IMF1 35.07 0.143 6.99
IMF2 13.14 0.286 3.49

1–7 temperature IMF1 16.45 0.143 6.99
IMF2 6.94 0.286 3.49
IMF3 5.44 0.429 2.33

precipitation IMF1 29.9 0.143 6.99
IMF2 17.03 0.286 3.49
IMF3 12.33 0.429 2.33

3.3. Annual Scale Periodicity Analysis

Using ARCGIS software, the annual scale NDVI time series from 1982 to 2015 were
obtained by summing up the NDVI accumulatively from April to October of each year
from 1982 to 2015, the annual scale precipitation time series were obtained by summing
up the precipitation accumulatively from January to October of the corresponding year,
and the annual scale temperature data were obtained by averaging the temperature from
January to October of the corresponding year.

Figure 6A shows the IMF component map obtained by VMD decomposition of annual
scale NDVI time series from 1982 to 2015, and (Figure 6B) shows the FFT transformation
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result of Figure 6A. Figure 6(a) is the NDVI annual scale time series, Figure 6(c,e,g,i,k,m,o)
are 1–6 order IMF components and Residue components, respectively, reflecting the com-
plexity and multi time scale of NDVI changes in Inner Mongolia; the Residue component
indicates that the overall change trend of NDVI on an annual scale shows a significant slow
growth trend (p = 0.00, slope = 0.02/10a).

It can be seen from Figure 7a–d that 6, 7, 7, and 7 IMF components were obtained from
the time series of precipitation on the scale of 1982–2015, 1981–2014, 1980–2013, and 1979–
2012 after VMD decomposition, and the corresponding FFT transformation was performed
to obtain the spectrum map. The Residue component in Figure 7a–d changes at the speed
of −0.43/a, −0.53/a, −0.59/a, and −0.95/a, respectively (p = 0.000), reflecting that the
rainfall in Inner Mongolia has shown a significant decreasing trend in the past 30 years.

Figure 8a–d shows that six IMF components can be obtained from each time scale data
of the 1982–2015, 1981–2014, 1980–2013, and 1979–2012 scale temperature series after VMD
decomposition, and the corresponding spectrum can be obtained via FFT transformation.
In Figure 8a–d, the Residue component of the temperature in Inner Mongolia shows a
significantly slow upward trend at the speeds of 0.039a, 0.039/a, 0.044/a, and 0.052/a,
respectively (p = 0.000).

In order to further study the accurate periodic characteristics of each IMF component,
the IMF components and their corresponding FFT transformation results in Figures 6–8 are
shown in Table 2.

Table 2. Statistical values of annual scale time series data after FFT transformation.

Time Parameter Modal Components Fluctuation Center Frequency/HZ Period/a

1982–2015 NDVI IMF1 0.044 0.059 16.95
IMF2 0.019 0.147 6.8
IMF3 0.023 0.206 4.85
IMF4 0.012 0.294 3.4
IMF5 0.011 0.353 2.83
IMF6 0.009 0.382 2.61

temperature IMF1 0.418 0.118 8.47
IMF2 0.255 0.147 6.8
IMF3 0.248 0.235 4.26
IMF4 0.085 0.324 3.09
IMF5 0.145 0.412 2.43
IMF6 0.115 0.441 2.27

precipitation IMF1 17.19 0.059 16.95
IMF2 9.709 0.147 6.8
IMF3 20.15 0.206 4.85
IMF4 5.8 0.265 3.77
IMF5 7.694 0.324 3.09
IMF6 11.13 0.412 2.43

1981–2014 temperature IMF1 0.268 0.118 8.47
IMF2 0.195 0.147 6.8
IMF3 0.182 0.265 3.77
IMF4 0.136 0.324 3.09
IMF5 0.141 0.412 2.43
IMF6 0.168 0.441 2.27

precipitation IMF1 18.45 0.059 16.95
IMF2 11.71 0.147 6.8
IMF3 11.5 0.206 4.85
IMF4 10.92 0.235 4.26
IMF5 6.607 0.265 3.77
IMF6 9.558 0.412 2.43
IMF7 8.825 0.441 2.27
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Table 2. Cont.

Time Parameter Modal Components Fluctuation Center Frequency/HZ Period/a

1980–2013 temperature IMF1 0.194 0.118 8.47
IMF2 0.197 0.206 4.85
IMF3 0.288 0.235 4.26
IMF4 0.114 0.324 3.09
IMF5 0.129 0.412 2.43
IMF6 0.191 0.441 2.27

precipitation IMF1 17.54 0.059 16.95
IMF2 11.29 0.088 11.36
IMF3 15.49 0.177 5.65
IMF4 13.58 0.206 4.85
IMF5 9.749 0.324 3.09
IMF6 13.94 0.412 2.43
IMF7 8.661 0.441 2.27

1979–2012 temperature IMF1 0.339 0.118 8.47
IMF2 0.201 0.147 6.8
IMF3 0.23 0.265 3.77
IMF4 0.131 0.324 3.09
IMF5 0.164 0.412 2.43
IMF6 0.167 0.441 2.27

precipitation IMF1 13.6 0.059 16.95
IMF2 8.611 0.118 6.8
IMF3 19.88 0.206 4.85
IMF4 7.008 0.234 4.27
IMF5 8.422 0.324 3.09
IMF6 16.57 0.412 2.43
IMF7 7.885 0.441 2.27

• There are several periods of NDVI on the scale of 1982–2015, which are about 16.95,
6.8a, 4.85a, 3.4a, 2.83a, and 2.61a, respectively; the scale temperature in 1982–2015,
1981–2014, 1980–2013, and 1979–2012 has the periodic characteristics of 8.47a, 6.8a,
3.09a, 2.43a, and 2.27a; and the corresponding precipitation periods are 16.95a, 6.8a,
4.85a, 3.09a, 2.43a, and 2.27a.

• The annual scale temperature IMF1 center frequency is 0.118 HZ, and the period is
8.47, which is half of the NDVI IMF1 period; the temperature is consistent with the
cycle of NDVI IMF2.

• The periodic characteristics of NDVI in 1982–2015 are the same as the corresponding
precipitation periods in 1982–2015, 1981–2014, and 1979–2012, which are 16.95a, 6.8a,
and 4.85a, respectively.

• The center frequency of IMF1 and IMF4 components of precipitation in 1980–2013 is
consistent with that of NDVI IMF1 and IMF3 in 1982–2015, which are 0.059 HZ and
0.147 HZ, respectively, and the period is 16.95a and 4.85a.

• In addition, the annual scale precipitation in 1982–2015, 1981–2014, 1980–2013, and
1979–2012 included a 2.43a oscillation period, and in 1982–2015, 1980–2013, and 1979–
2012 also included a 3.09a fluctuation period.

4. Discussion and Conclusions
4.1. The Periodic Variation Characteristics of Meteorological Factors and Their Impact on
Regional Vegetation

Based on temperature and precipitation data between 1982–2015 (April–October) of
47 meteorological stations in Inner Mongolia (Figure 1), the VMD method and Fourier
transform FFT method were used to study the changes in temperature and precipitation.
Based on this, the periodic changes and trends of the above meteorological parameters were
analyzed. The experimental results confirm that both the temperature and precipitation
series data exhibit significant interannual and intra-year variations. During the year, the
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patterns of temperature and precipitation changes are basically the same, generally increas-
ing gradually from April to May, reaching a peak in July, and then gradually decreasing.
From interannual analysis, both temperature and rainfall have obvious periodicity, with
an average time of 6.99 months and 3.49 months, with dominant frequencies of 0.143 HZ
and 0.286 HZ, respectively. From the trend of change, temperature shows a significant slow
increase, while precipitation shows a slow decrease trend. Affected by this, the NDVI of
vegetation in Inner Mongolia showed a slow improvement trend from 1982 to 2015.

A correlation analysis was conducted between NDVI and Climatic Factors based on
an Annual Scale from 1982 to 2015; the results are shown in Figure 9. On the annual scale,
the vegetation NDVI showed a good correlation with the temperature and precipitation in
our study period, and 70.2% and 85.26% of the area had a positive correlation, respectively.
Excluding the influence of periodic variables, temperature and precipitation promote
vegetation growth, and the above research results are basically consistent with the results
of Meng Meng [41] and Mu et al. [42].

Existing studies have proved that [42], due to the influence of sunspot activities,
climate factors, especially temperature and precipitation, have periodic changes, and it is
generally believed that the most basic period of changes in meteorological factors on the
earth is 2–3 years. However, the results obtained in this paper show a definite difference
with this conclusion, and we believe that the reason should be related to the movement
of celestial bodies and the period of changes in the strength of sunspots. Some research
data show that the intensity of sunspot activity is closely related to the change of climate
factors [43].
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Figure 9. Correlation coefficients between NDVI with growing season vegetation and average
temperature and cumulative precipitation of Inner Mongolia in 1982–2015.

4.2. Vegetation NDVI Periodic Change Characteristics

The time series decomposition results indicate that there are 6.99 (whole growing
season) and 3.49 months of the same oscillation cycle for monthly NDVI and temperature
and precipitation time series. The experimental results indicate that NDVI is positively
regulated by temperature and precipitation, and the driving force of precipitation on veg-
etation is slightly higher than the impact of temperature on vegetation. It can be seen
from the annual spatial distribution map of NDVI of vegetation (Figure 10) that, in spa-
tial distribution, the vegetation at different locations in Inner Mongolia is distributed by
gradient, and the NDVI value of Inner Mongolia gradually increases from southwest to
northeast, while in terms of time, in April, the vegetation coverage was not significant,
with only a slight greenness in the northeast region. Over time, the NDVI value gradually
increased from southwest to northeast, and the vegetation gradually turned green. In
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July and August, the vegetation was most lush, mainly distributed in the northeast of
Inner Mongolia; this time period coincides with the period with the highest rainfall and
average temperature. The above research results are generally consistent with the findings
of scholars such as Mu [42] and Meng Meng [41] that the overall spatiotemporal distribu-
tion of NDVI in Inner Mongolia is showing an upward trend. This further indicates the
high correlation between regional vegetation growth and temperature and precipitation,
which has supporting significance for scientific decision-making on grassland ecological
environment protection. Through reviewing the relevant literature, it was found that the
NDVI change rate of vegetation in Inner Mongolia from 1982 to 2015 was faster than that
of the entire vegetation of China (0.007/10a from 1982 to 2011) [44,45], and also faster than
that of the Loess Plateau (0.025/10a from 1982 to 2013) [44] and the Tibet Plateau (0.004/10a
from 1982 to 2012) [46]. This indicates that the Inner Mongolia grasslands have received
good ecological restoration in the past thirty years.

Atmosphere 2023, 14, x FOR PEER REVIEW 16 of 19 
 

 

Figure 9. Correlation coefficients between NDVI with growing season vegetation and average tem-
perature and cumulative precipitation of Inner Mongolia in 1982–2015. 

4.2. Vegetation NDVI Periodic Change Characteristics 
The time series decomposition results indicate that there are 6.99 (whole growing 

season) and 3.49 months of the same oscillation cycle for monthly NDVI and temperature 
and precipitation time series. The experimental results indicate that NDVI is positively 
regulated by temperature and precipitation, and the driving force of precipitation on veg-
etation is slightly higher than the impact of temperature on vegetation. It can be seen from 
the annual spatial distribution map of NDVI of vegetation (Figure 10) that, in spatial dis-
tribution, the vegetation at different locations in Inner Mongolia is distributed by gradient, 
and the NDVI value of Inner Mongolia gradually increases from southwest to northeast, 
while in terms of time, in April, the vegetation coverage was not significant, with only a 
slight greenness in the northeast region. Over time, the NDVI value gradually increased 
from southwest to northeast, and the vegetation gradually turned green. In July and Au-
gust, the vegetation was most lush, mainly distributed in the northeast of Inner Mongolia; 
this time period coincides with the period with the highest rainfall and average tempera-
ture. The above research results are generally consistent with the findings of scholars such 
as Mu [42] and Meng Meng [41] that the overall spatiotemporal distribution of NDVI in 
Inner Mongolia is showing an upward trend. This further indicates the high correlation 
between regional vegetation growth and temperature and precipitation, which has sup-
porting significance for scientific decision-making on grassland ecological environment 
protection. Through reviewing the relevant literature, it was found that the NDVI change 
rate of vegetation in Inner Mongolia from 1982 to 2015 was faster than that of the entire 
vegetation of China (0.007/10a from 1982 to 2011) [44,45], and also faster than that of the 
Loess Plateau (0.025/10a from 1982 to 2013) [44] and the Tibet Plateau (0.004/10a from 1982 
to 2012) [46]. This indicates that the Inner Mongolia grasslands have received good eco-
logical restoration in the past thirty years. 

 
Figure 10. The spatial distribution of NDVI in Inner Mongolia from April to October 2000. Figure 10. The spatial distribution of NDVI in Inner Mongolia from April to October 2000.

4.3. Delay Analysis of Vegetation Caused by the Meteorological Factors

The influence of climate on vegetation growth has a certain delay, and this conclusion
has been recognized by many studies (Davis, 1989 [47]; Gessner U et al., 2013 [48]; Saatchi
et al., 2013 [49]; Chen et al., 2014 [50]; Wu D et al., 2015 [51]; Xie B et al., 2016 [52]). In
our study, we analyzed the correlation between monthly-scale NDVI and corresponding
temperature and precipitation, and also found that temperature and precipitation have a
lag effect on vegetation growth. For the monthly NDVI data from April to October, 1982
to 2015, there is a lag between the temperature, precipitation data, and NDVI. NDVI has
the same period of 6.99 and 3.49 months with the temperature of the same time data, and
6.99 months with precipitation. If the lag influence factor is considered, the monthly scale
temperature data of 1–3 months in the lag period mainly contains the periodic laws of
6.99, 3.49, and 2.33 months, and the monthly scale precipitation data of 1–3 months in the
lag period mainly contains the periodic laws of 6.99, 3.49, 3.49, and 2.33 months, which is
obviously different from that without considering the lag. The data analysis also found that
when the center frequency is the same, the amplitude of the monthly scale temperature and
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precipitation time series data increases with the increase of the lag period. Therefore, when
conducting research on vegetation growth patterns based on meteorological factors, it is
necessary to take into account the issue of delay and study how to quantitatively calculate
the duration of lag and the degree of influence of different factors.

Admittedly, because of the complex multi-scale characteristics between climate change
and vegetation growth (Hawinkel P et al., 2015 [53]; Bunting E L et al., 2017) [54] and the low
extraction accuracy of earth vegetation, the spatial resolution of MODIS is relatively coarse,
and the density of meteorological stations is relatively low. Additionally, as this paper only
takes the monthly delay as an example to verify and apply the method in the experimental
verification section, further research needs to be carried out in combination with high-
resolution images and high-density meteorological observation data, and particularly
extended to the feature analysis of lag effects between climate and vegetation growth in
different scales.
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