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Abstract: The change in raindrop spectrum characteristics is an important factor affecting the accuracy
of estimations of precipitation. The in-depth study of raindrop spectrum characteristics is of great
interest for understanding precipitation process and improving quantitative radar precipitation
estimation. In this paper, the raindrop size distributions at Longli (57913), Puding (57808) and Luodian
(57916) stations in Guizhou were analyzed from the perspective of precipitation microphysical
characteristics. The results showed that the raindrop size distribution was different among different
regions. The correlation coefficients of the mass-weighted average diameter for the rain intensities at
these three stations were 46.89%, 49.51%, and 47.03%, respectively, which were slightly lower than
the normal correlation coefficients of the average volume diameter for the rain intensities: 67.80%,
71.28%, and 71.46%, respectively. Based on the data from the Guiyang weather radar, raindrop
spectrometer, and automatic rain gauge, the dynamic Z-I relationship method and the LSTM neural
network method were used to estimate precipitation. The correlation coefficients of the dynamic Z-I
relationship method and the LSTM neural network method at the three stations studied were 0.8432,
0.7763, and 0.8658 and 0.8745, 0.9125, and 0.8676, respectively. Regarding the process of stratiform
cloud precipitation, the correlation coefficients of the dynamic Z-I relationship method and LSTM
neural network method at the three stations were 0.6933, 0.0902, and 0.1409 and 0.7114, 0.4984, and
0.4902, respectively. In the estimation of cumulative precipitation for 45 days from 1 July to 16 August
2020, the relative errors of the neural network estimation at the three stations were −4.25%, −11.35%,
and −8.68% and the relative errors of the dynamic Z-I relationship estimation were −2.68%, −7.41%,
and −21.23%, respectively. The final relative error of the neural network was slightly worse than
that of the dynamic Z-I relationship in the cumulative precipitation estimations of Longli station and
Puding station, but the overall correlation coefficients of the LSTM neural network method were
better than those of the dynamic Z-I relationship method.

Keywords: raindrop spectrum; radar; dynamic Z-I; LSTM neural network; precipitation estimation

1. Introduction

Raindrop spectrum analysis is an important part of cloud precipitation physics.
Through the analysis of the raindrop spectrum, the accuracy of radar quantitative es-
timations of precipitation can be further improved. The accuracy of precipitation is of great
significance for predicting and preventing flood disasters; for forecasting hydrological wa-
ter resource systems, agricultural crop production, and ecological environmental changes;
and for providing decision-making support for the work of agricultural and water con-
servancy and other relevant departments, as well as for the formulation of corresponding
policy measures. As a device for directly detecting the ground raindrop spectrum, many
scholars have studied the distribution characteristics of the raindrop spectrum. Huang
et al. [1] classified the raindrop spectrum data of Anxi in Fujian Province from 2017 to
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2020 based on the precipitation season and type. The results showed that the raindrop
spectrum’s spectral width and number concentrations in summer are the highest in the
precipitation season. The raindrop spectrum of stratiform clouds is narrower than that of
convective clouds in their precipitation types. The average particle size is smaller and the
number and concentration are lower. Chakravarty et al. [2] statistically analyzed the parti-
cle distribution characteristics before, during, and after the monsoon in Pune, India. The
results showed that the strong updraft affected convective precipitation after the monsoon
period, which reduced the small particle size and increased the average particle diame-
ter. In order to study the influences of underlying surface, precipitation type, and other
factors on the characteristics of the raindrop spectrum, Zhao et al. [3] analyzed the parts
of the raindrop spectrum in the summer of 2017–2018 in mountainous and plain areas of
Beijing. The results showed that the particle size of the peak concentration of the raindrop
spectrum in mountainous regions is larger, and convective cloud precipitation has a larger
mass-weighted average diameter and spectral width than stratiform cloud precipitation.
Zhang et al. [4] analyzed the raindrop size distribution and microphysical characteristics
of different precipitation types in summer at the southern foot of the Qilian Mountains. It
was concluded that the number, concentration, average diameter, and maximum diameter
of convective cloud precipitation are higher than those of stratiform cloud precipitation.
The GAMMA distribution was closer to the actual raindrop size distribution. Chen [5]
used the machine learning method to establish a convolutional neural network model with
which to identify the type of precipitation based on the base data of the ground-based
raindrop spectrometer. The model was distinguished by extracting the characteristics of
particle size, particle velocity, and number density distribution in the raindrop spectrum
distribution image. Compared with the traditional measurement method, the accuracy rate
was improved by 11.87%.

With the deepening of the research on the raindrop spectrum, many scholars have
applied raindrop spectrometer data to radar quantitative precipitation estimation in order to
improve the accuracy of precipitation estimation. Jing et al. [6] used the observation data of
large-area heavy precipitation processes, collected with the ground raindrop spectrometer
and S-band weather radar in Guangzhou, to analyze and correct the deviation between the
aerial reflectance observed by radar and the ground reflectance obtained with the raindrop
spectrometer. The results showed that the relative error of precipitation estimated with the
raindrop spectrometer combined with the weather radar method was 25% higher than that
of the traditional Z-I relationship method. Liu et al. [7] used a ground raindrop spectrometer
combined with dual-polarization weather radar data for precipitation inversion research.
In the analysis of inversion results, it was found that the inversion effect was related to
the mass-weighted average diameter of the precipitation process and the size range of
precipitation intensity. Zhang et al. [8] used the raindrop spectrometer network method
and the traditional radar quantitative estimation method to estimate precipitation. The
results showed that the two methods have a better estimation effect on stratiform cloud
precipitation, and the raindrop spectrometer network method is more accurate. Zhou
et al. [9] analyzed the characteristics of the raindrop spectrum in the stratocumulus mixed
cloud precipitation process using the raindrop spectrometer’s observation data. The results
showed that the precipitation intensity mainly depends on the maximum raindrop diameter.
It is also positively correlated with the raindrop concentration, but has little relationship
with the average diameter. The fitting parameters of Γ distribution provide the exact
change trend with time, and the fluctuation of each appropriate parameter during the
heavy precipitation period is slow. The values remain at the same level.

Meteorological data have the characteristics of solid periodicity, space–time, uncer-
tainty, and high attribute correlation, the variability of which make it challenging to analyze
and process meteorological data by conventional methods (Peng Yuzhong et al. [10]). In
recent years, with the continuous development of machine learning technology, researchers
are increasingly applying it to natural science. Machine learning is an artificial intelligence
algorithm different from traditional prediction methods. Because the machine learning
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model has strong expression and fitting ability, it is especially suitable for solving nonlinear
problems. Kang et al. [11] used nine input variables in order to construct a short-term
long memory (LSTM) model. They refined the selected meteorological variables, according
to the relative importance of the input variables, to reconstruct the LSTM model. The
LSTM model of the final selected input variable was used to predict precipitation, and the
performance was compared with other classical statistical and machine learning algorithms.
The results show that LSTM is suitable for precipitation prediction. Shen et al. [12] used
long-term and short-term memory networks in order to predict precipitation. The results
showed that the prediction capability of the LSTM network is better than those of the
stepwise regression, BP neural network, and model output methods. The LSTM network
has a specific prediction ability for the overall precipitation situation. Tang et al. [13] used
the LSTM method to predict short-term rainfall, and collected debris flow data and daily
cumulative rainfall data. The statistical classification method was used to delineate the
precipitation warning threshold of debris flow, and the predicted value and point were
compared. The results showed that the threshold warning accuracy of rainfall-induced de-
bris flow exceeds 90%, and the error of LSTM-predicted rainfall results is less than 1.5 mm.
Liu et al. [14] used a long short-term memory neural network (LSTM) to predict monthly
precipitation on the Qinghai–Tibet Plateau. The results showed that the spatial range of R2
≥ 0.6 in the LSTM model was much larger than that in the traditional model, and the RMSE
value of LSTM prediction was lower than that of other models under different prediction
lengths. Chen et al. [15] used the LSTM neural network in order to construct a monthly
precipitation prediction model. They compared the precipitation prediction accuracy based
on LSTM and random forest (RF) models under different covariates. The results show that
the LSTM model has higher accuracy when using climatic factors (C) and historical precipi-
tation data (H) as input variables than under single-input C and H variables. Compared
with the RF model, the LSTM-based precipitation prediction model has higher prediction
performance. Yashon O. Ouma et al. [16] applied the LSTM neural network and wavelet
neural network (WNN) in the spatiotemporal prediction of precipitation and runoff time
series trends in hydrological basins. The results showed that LSTM performed better than
WNN. Yang et al. [17] predicted precipitation with reasonable accuracy by establishing a
coupling model with the ensemble empirical mode decomposition and long short-term
memory neural network (LSTM).

Firstly, this paper analyzes the characteristics of Longli (57913), Puding (57808), and
Luodian (57916) stations in Guizhou, and finds the diameter parameter with a strong corre-
lation with precipitation intensity to pave the way for precipitation estimation. Thereafter,
based on the multi-source data from the Guiyang weather radar, raindrop spectrometer,
and automatic rain gauge, the precipitation is estimated using the LSTM neural network
method and the dynamic Z-I method.

2. Data and Quality Control
2.1. Data Sources
2.1.1. Weather Radar Data

The weather radar data comes from Guiyang CINRAD/CD new generation Doppler
weather radar in Guizhou Province, China. The station number is Z9851, located at
(106.7264◦ E, 26.5903◦ N), with an altitude of 1255.7 m, a reflectivity factor distance resolu-
tion of 250 m, and a maximum detection distance of 250 km. The radar volume scanning
mode of this department is VCP21; that is, one body scan can scan 9 elevation angles in
6 min, and the elevation angles are 0.5◦, 1.5◦, 2.4◦, 3.4◦, 4.3◦, 6.0◦, 9.9◦, 14.6◦, and 19.5◦.

2.1.2. Raindrop Spectrometer and Rain Gauge Data

The raindrop spectrometers used in this paper are all OTT-Parsivel laser raindrop
spectrometers, which detect the particle size and particle velocity by measuring the width
and time of the laser beam with a wavelength of 650 mm, through the plane of 30 mm wide
and 180 mm long. The rain gauge data used are from the tipping bucket rain gauge of
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the automatic meteorological observation station in Guizhou Province, and the detection
accuracy is 0.1 mm. In order to ensure the spatial position coincidence of the raindrop
spectrometer and rain gauge, the data from the two instruments used in this paper are
from the same meteorological station. The detection time resolutions of the raindrop
spectrometer and of the rain gauge are set to 1 min, which ensures the time matching of the
two data.Table 1 lists the basic site information.

Table 1. Basic information of raindrop spectrum stations.

Station Number Station Name Geographical
Coordinates Distance from Radar

57913 Longli 106.98◦ E, 26.45◦ N 30.21 km
57808 Puding 105.74◦ E, 26.31◦ N 99.95 km
57916 Luodian 106.76◦ E, 25.43◦ N 129.03 km

2.2. Data Quality Control
2.2.1. Data Quality Control of Raindrop Spectrometer

Firstly, the gross error is eliminated. The research shows that raindrop particles more
than 6 mm in nature are extremely rare, so this part is destroyed. Subsequently, in order to
ensure the stability of the droplet spectrum measurement, the data in which the number of
detected raindrops is less than 10 in a single sample are removed as noise. Finally, according
to the local D-V relationship, the errors of particle overlap and raindrop spectrometer rain
cover splashing particles are eliminated.

ATLA D et al. [18] (1973) found that the final velocity formula of precipitation particles
under ideal windless conditions is as follows:

v = 0, x < 0.03 mm
v = 4.323× (x− 0.03)
v = 9.65− 10.3× e−0.6x, x > 0.6 mm

, 0.03 mm < x ≤ 0.6 mm (1)

In the formula, x is the particle diameter, whose unit is mm; v represents the final
velocity of the particle, whose unit is m/s.

By counting different types of precipitation samples, the D-V curve of local precipi-
tation particles is fitted, representing the particle size and particle velocity characteristics
of regional precipitation. Referring to the data method proposed by Kruger et al. [19] to
eliminate the excessive dispersion of velocity sampling, the threshold is set to eliminate
the particles in the interval with significant deviation from the reference curve, and the
precipitation particles can be retained.

2.2.2. Weather Radar Data Quality Control

Weather radar will detect both meteorological and non-meteorological echoes in the
detection process. For some isolated echoes, or thin line-shaped echoes caused by birds,
insects, aircraft, etc., speckle filtering can be used to eliminate them. The formula is as follows:

PX = N/Ntotal (2)

In the formula, Ntotal is the total number of distance libraries contained in the 5 × 5 grid
centered on the X-th distance library, N is the number of libraries with radar reflectivity
values in Ntotal, and Px is the percentage of radar reflectivity in the grid. When Px is less
than a certain threshold (default 75% in this paper), the X-distance library calibrated in the
radar base data is regarded as the non-meteorological echo being eliminated.

However, it is difficult to eliminate large-scale ground clutter in some areas close to
the radar using speckle filtering alone. For this part of the clutter, texture filtering is needed
to eliminate it. Firstly, the horizontal texture feature parameter TdBZ is calculated. The
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horizontal texture feature parameter TdBZ can describe the smoothness of adjacent distance
and radial data in the same elevation layer. The formula is as follows:

TdBZ =
NA

∑
j=1

NB

∑
i=1

(
Zi,j − Zi,j+1

)2/(NA × NB) (3)

In the formula, Zi,j is the radar reflectivity intensity, whose unit is dBZ; i and j are the
distance library serial number and the azimuth serial number in the reflectivity library,
respectively. NA and NR are the numbers of calculation libraries centered on the calibration
distance library in distance and azimuth, respectively.

The vertical texture feature parameter VdBZ can describe the continuity of the echo
in the adjacent elevation layers of the same distance library. The VdBZ of the calibrated
distance library can be calculated using the following formula:

VdBZ = (Zi − Zi+1)/(Hi+1 − Hi) (4)

In the formula, Zi and Zi+1 are the radar reflectivity intensity of the upper elevation
angle of the calibration range library and the calibration range library, respectively, and
their unit is dBZ. Hi and Hi+1 correspond to the elevation angles of the upper layer of the
calibration distance bank and the calibration distance bank, respectively.

The horizontal texture features can distinguish stratiform cloud precipitation echo and
convective cloud echo, but cannot distinguish precipitation echo and non-precipitation echo.
The vertical texture features can distinguish non-precipitation echo and stratiform cloud
echo, but cannot distinguish non-precipitation echo and convective cloud echo. Therefore, it
is necessary to combine the two. The non-precipitation echo formula is as follows:{

VdBZ > 20dB/km

TdBZ > 10dB2 (5)

It can be seen from Figure 1 that the ground clutter in the area near the radar is effectively
suppressed, and some sporadic echoes at the edge of the precipitation echo are also eliminated.
After quality control, a complete precipitation echo area can still be obtained.

Figure 1. Quality control effect diagram of weather radar base data (a) before quality control and
(b) after quality control.
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3. Calculation and Characteristic Analysis of Raindrop Spectrum Parameters
3.1. Calculation of Raindrop Spectrum Parameters
3.1.1. Number Density

The particle number density N(D) represents the total number of raindrop particles
per unit volume, and its unit is m−3m−1. The calculation formula is as follows:

N(D) =
32

∑
i=1

32

∑
j=1

nij

A× ∆T ×Vj
(6)

In Equation (6), nij represents the number of particles in the i-th particle diameter and
the j-th particle velocity; A is the sampling base area of raindrop spectrometer 5400 mm2;
∆T is the sampling time of 60 s; Vj is the sampling particle velocity in m/s.

3.1.2. Precipitation Intensity

The precipitation intensity is the amount of precipitation per unit of time, and the unit
is mm/h. The calculation formula was proposed by Pruppacher and Klett [20] as follows:

I =
6π

104

32

∑
i=1

D3
i V(Di)N(Di) (7)

In Equation (7), Di represents the diameter of the sampled particle, and N(Di) is the
number of particles at the current particle diameter and particle velocity.

3.1.3. Mean Diameter

The average diameter is the sum of the diameters of all raindrops divided by the total
number of raindrops. The formula is as follows:

Dl =

32
∑

i=1
N(Di)Di

32
∑

i=1
N(Di)

(8)

3.1.4. Mass-Weighted Average Diameter

The mass-weighted average diameter is the average diameter of the weighted mass of
all particles in the unit volume relative to the total mass of the particles. The unit is mm.
The calculation formula is as follows:

Dm =

32
∑

i=1
N(Di)D4

i

32
∑

i=1
N(Di)D3

i

(9)

3.1.5. VMD

The average volume diameter represents the diameter of the equivalent raindrop
whose volume is equal to the average raindrop volume. Its unit is mm. The calculation
formula is as follows:

Dv =


32
∑

i=1
N(Di)D3

i

32
∑

i=1
N(Di)


1
3

(10)
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3.1.6. M-P Distribution and GAMMA Distribution

Marshall and Palmer [21] first proposed the M-P distribution. They found that the
exponential function can be used to describe the distribution of raindrop size distribution,
and established the following formula:

N(D) = N0 × exp(−λD) (11)

In Equation (11), the unit of the particle number density parameter N0 is mm−1m−3,
and the unit of the particle size parameter λ is mm−1.

It can be seen from previous studies that the M-P distribution formula is simple and
easy to calculate. Still, when describing the small-particle-size and large-particle-size
regions, there is an inevitable error between the actual observation data. To illustrate the
raindrop size distribution more accurately, Ulbrich [22] proposed a method based on the
M-P distribution to regard the raindrop size distribution as the GAMMA distribution. This
method can correct the distribution pattern in the regions with small particle size or large
particle size. At this time, the raindrop spectrum description function changes from the
original two-parameter exponential function to the three-parameter function form. The
formula is as follows:

N(D) = N0 × Dµ × exp(−λD) (12)

The shape factor u in Equation (12) is a dimensionless parameter. When µ > 0, the
function curve bends upward. When µ < 0, the function curve bends downward. When
µ = 0, the formula becomes an M-P distribution.

3.2. Analysis of Raindrop Spectrum Characteristics

In Figure 2, the horizontal axis is the particle diameter, the vertical axis represents the
final velocity of the particle, and different particle number densities are distinguished by
color. It can be seen from the average distribution of particles from March to August 2020 in
the figure that the corresponding particle size terminal velocities and particle distribution
patterns of the three stations are similar, and they are concentrated in the small-particle-size
area. The difference is that the particle concentration from the Longli (57913) station, in the
range of 1–1.5 mm, is more dispersed than those of the other two stations, and the spectrum
width of the Luodian (57916) station is wider than those of the other two stations.

Figure 2. Particle distribution map: (a) Longli (57913) station, (b) Puding (57808) station, and
(c) Luodian (57916) station.

Figure 3 shows the particle number density distribution corresponding to each particle
size in the average raindrop spectrum. The horizontal axis represents the particle size,
and the vertical axis represents the particle number density. The fitting coefficients of the
three-site M-P distribution and the GAMMA distribution are shown in Table 2.
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Figure 3. Average raindrop size distribution, M-P distribution, and GAMMA distribution fitting:
(a) Longli (57913) station, (b) Puding (57808) station, and (c) Luodian (57916) station.

Table 2. Mean raindrop spectrum M-P distribution fitting parameters.

Station Name Station Number N0 λ Correlation Coefficient

Longli (57913) 85.5219 −1.1507 83.52%
Puding (57808) 84.5301 −1.0243 85.25%
Luodian (57916) 69.1213 −0.9158 81.69%

The correlation coefficient parameters in Tables 2 and 3 show that the GAMMA
distribution’s fitting effect is significantly more potent than that of the M-P distribution.
The three-parameter GAMMA distribution is more flexible than the two-parameter M-P
distribution, which can depict more curve details. At the same time, the natural raindrop
spectrum of the three stations is unimodal, resulting in a significant error between the
M-P distribution and the actual value in the small-particle-size area. When the GAMMA
distribution fits the unimodal particle spectrum, the steeper the curve on both sides of
the peak, the larger the µ and λ values needed. Still, this would cause a great N0 value
to reduce the error between the peak value of the fitting curve and the actual value. It
would also lead to underestimation in the large-particle-size (D > 1 mm) area, where the
slope of the actual value curve is relatively moderate, and the M-P distribution in the large
particle-size-area performs better.

Table 3. GAMMA distribution fitting parameters of average raindrop size distribution.

Station Name Station
Number N0 µ λ Correlation Coefficient

Longli(57913) 1,177,999.13 6.0209 11.1092 95.65%
Puding(57808) 154,920.62 5.1694 8.6301 95.84%
Luodian(57916) 62,872.31 4.3027 7.7396 94.82%

The average diameter, mass-weighted average diameter, and average volume diameter
are used as parameters that can reflect the characteristics of the particle spectrum. Finding
the parameters with the highest consistency with rainfall intensity lays the foundation
for estimating precipitation later. The correlation coefficient between each diameter and
rainfall intensity is shown in Table 4.

The data used in Table 4 are the precipitation data of three stations, taken from March
to August 2020. To ensure the quality of the sample, the samples with rainfall intensity of
less than 1 mm/h are eliminated. The data in the table show that the correlation coefficient
between the average diameter and rainfall intensity is the lowest, and the correlation
between the average volume diameter and rainfall intensity is the highest. Figure 4 selects
a heavy precipitation process in order to find the area where the mass-weighted average
diameter and the average volume diameter differ.
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Table 4. Correlation coefficients between diameter and rainfall intensity.

Station Name Station
Number

Correlation Coefficient
between Average Diameter

and Rainfall Intensity

Correlation Coefficient
between Mass Weighted
Average Diameter and

Rainfall Intensity

Correlation Coefficient between
Average Volume Diameter and

Rainfall Intensity

Longli (57913) 25.04% 46.89% 67.80%
Puding (57808) 28.45% 49.51% 71.28%
Luodian (57916) 18.13% 47.03% 71.46%

Figure 4. Changes in mass-weighted average diameter and average volume diameter with precipita-
tion intensity.

Figure 4 shows a heavy precipitation process on 28 June. The horizontal axis represents
the precipitation process time, the left axis represents the precipitation intensity, and the
right axis represents the particle diameter of the mass-weighted average diameter and the
average volume diameter. The precipitation intensity value of this process shows a bimodal
distribution. It can be seen that, when the precipitation intensity is not high early, late, and
between the two peaks of precipitation, the curves of the mass-weighted average diameter
and average volume diameter almost coincide, which are in good agreement with the
precipitation intensity value. However, the performance of the average volume diameter in
the heavy precipitationarea is better than that of the mass-weighted average diameter. The
correlation coefficients between the mass-weighted average diameter and average volume
diameter, and the precipitation intensity were 54.84% and 69.15%, respectively.

4. Precipitation Estimation Method and Result Analysis
4.1. Precipitation Estimation Method
4.1.1. Dynamic Z-I Relationships

The dynamic Z-I relationship method is based on the Z = aIb index relationship, and the
fast real-time updated radar-automatic rainfall station data adjust the a and b coefficients
in the relationship. Different Z-I relationships can be used to estimate precipitation with
the change in the precipitation process. This method uses the weather radar detection data
and the automatic rainfall station data from the previous hour to calculate the optimal
parameters of the current Z-I relationship. It uses this relationship to estimate the recent
precipitation. Firstly, the value range of the a and b coefficients is determined. Wang
et al. [23] pointed out in their study that the value range of a is 16–1200, and that of b is
1–2.87. In order to save calculation time, when calculating the optimal coefficient, 60 a
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values are taken, from 16 to 1200 with an interval of 20, and 38 b values are taken, from 1 to
2.87 with an interval of 0.05, to calculate 60 × 38 groups of Z = amIbn (m = 1, 2, . . . . . . .,
59, 60; n = 1, 2, . . . .., 37, 38), and simultaneously calculate 60 × 38 discriminant functions,
CTF2 (Zhang Peichang et al. [24]), as follows.

CTF2 = min
{
∑
(
(Hi − Gi)

2 + (Hi − Gi)
)}

(13)

In Equation (13), Hi is the inversion precipitation of the Z-I relationship, Gi is the pre-
cipitation measured at the automatic rainfall station, and i is the sequence of the automatic
rainfall station. The Z-I relationship with the lowest CTF2 value is the optimal one to apply
to radar echo estimation precipitation.

4.1.2. Neural Network Method

Considering the temporal characteristics of precipitation, this paper uses the LSTM
neural network to build and train the model. In terms of data, Guiyang weather radar data,
raindrop spectrometer, and the automatic rain gauge data from Longli (57913), Puding
(57808), and Luodian (57916) automatic weather stations were used. The data overview is
shown in Table 5.

Table 5. Data Overview.

Data State Start Time Deadline Sample Size

Raindrop spectrometer,
weather radar,

automatic rain gauge

train 15 April 2019 0:00
3 March 2020 0:04

17 July 2019 23:58
30 June 2020 23:57 49,297

inspection 1 July 2020 0:03 16 August 2020 06:05 12,126

The construction of the data set is significant for using the neural network to estimate
precipitation. The closer the relationship between the input eigenvalues and the calibration
values to be output, the more accurate the final training results. The calibration value to
be estimated in this paper is precipitation. Therefore, the reflectivity data in the weather
radar, as well as the particle diameter, particle falling speed, and particle number density
parameters in the inversion formula of the raindrop spectrum precipitation intensity were
selected as the input eigenvalues of the neural network. Considering the distance between
the raindrop spectrum station and the radar station, and drawing on experience in the
process of model debugging, select 1–3 lamination scan data as feature value input, as
shown in Table 6.

Table 6. Estimated neural network input overview.

Eigenvalue Estimated Value

Radar reflectivity intensity (1–3 layers)

A rain gauge measures precipitation

Inversion of particle number density with
raindrop spectrometer

Average particle velocity inversion with
raindrop spectrometer

Raindrop spectrometer inversion average
volume diameter

When establishing the neural network input data set, the time sliding construction
is used to enrich the data set, and the input diagram of the estimated data set is shown
in Figure 5.
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Figure 5. Estimate network and benchmark network input diagram.

As shown in Figure 5, the X input of the estimation network keeps the ten sample
sizes unchanged and slides on the time axis in turn. The Y input maintains the time
corresponding to the last sample of the X input—that is, using the data from the previous
hour to estimate the current time’s precipitation.

The basic structure of the neural network is shown in Figure 6.

Figure 6. The basic structure diagram of the estimated neural network.

The data are first entered into the LSTM layer for temporal feature extraction, and
then the dropout layer is used to increase the network’s generalization ability. Finally, the
predicted value is output in the BP layer of a single neuron.

In this paper, according to the method of dividing convective clouds and stratiform
clouds proposed by Tokay et al. [25], two representative precipitation processes and 45-day
cumulative precipitation were selected to estimate rainfall using the dynamic Z-I method
and neural network method, respectively. The data were used to compare the effects of
the Longli (57913), Puding (57808), and Luodian (57916) automatic weather stations. The
station information is shown in the table.
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In terms of the estimation accuracy evaluation index, correlation coefficient (Cor),
mean relative error (MRE), mean absolute error (MAE), and root mean square error (RMSE)
are used. The calculation formula is as follows:

Cor =

n
∑

i=1

(
Rest(i)− Rest

)(
Rreal(i)− Rreal

)
√

n
∑

i=1

(
Rest(i)− Rest

)2(Rreal(i)− Rreal
)2

(14)

MRE =
1
n

n

∑
i=1

|Rest(i)− Rreal(i)|
Rreal(i)

× 100
0
0

(15)

MAE =
1
n

n

∑
i=1
|Rest(i)− Rreal(i)| (16)

RMSE =

√
1
n

n

∑
i=1

(Rest(i)− Rreal(i))
2 (17)

The correlation coefficient can compare the linear correlation between the two se-
quences. The higher the correlation is, the closer the correlation coefficient is to 1. The
average absolute error is the average value of the fundamental error, which can reflect the
positive and negative offset parts of the error. The average relative error is the average
value of the absolute error percentage to the actual value, representing the measurement
results’ reliability. The root means the square error is the square root of the mean fair sum
of the deviation between the observed value and the actual value, and is used to measure
the divergence between the observed value and the actual value. It is more sensitive to
singular values.

4.2. Analysis of Precipitation Estimation Results

Firstly, a convective cloud precipitation process occurring on 18 July 2020 was selected
for analysis. The weather development process is as follows.

As shown in Figure 7, at 5:57 on 18 July 2020, an unmistakable echo appeared near
the junction of Bijie, Zunyi, and Luzhou in Sichuan Province, in the northwest direction
from Guiyang. The maximum combined reflectivity reached 53.2 dBZ, and the echo
continued to develop and move southeastward. At about 8:00 BST, a strong echo band
appeared over the junction of southwest Anshun and southwest Guizhou in the southwest
of Guiyang, and quickly moved to the northeast. From Figure 7d, it can be seen that the
echo gradually evolved into a northeast–southwest squall line echo. At this time, the lower
atmosphere in southern Guizhou showed a strong wind field convergence phenomenon.
At 14:00, with the continuous development of the weather phenomenon, the squall line the
squall line gradually gradually weakens and tends to die, but the rear part of the squall
line still maintains a high reflectivity intensity. The echo area covered most of southern
Guizhou, and the two independent echoes were connected and began to merge, affecting
the region. At 18:00, the echo over the Qiannan area dissipated, but the precipitation cloud
was continuously transported from the solid southeast wind to the Qiannan area. Within
a few hours, the echo area slowly moved southward, the precipitation echo was evenly
distributed, and the intensity remained unchanged with short-term strong wind. Until
5 o’clock on 19 July 2020, the precipitation area continued to dissipate.

The convective cloud precipitation estimated with the neural network method and
dynamic Z-I relationship method is shown in Figure 8.
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Figure 7. Radar echo of precipitation process on 18 July 2020: (a) 07/18 05:57, (b) 07/18 08:54,
(c) 07/18 10:30, (d) 07/18 12:12, (e) 07/18 15:15, (f) 07/18 18:02, (g) 07/18 22:25, (h) 07/19 01:19, and
(i) 07/19 05:01.

Figure 8. Rainfall estimation of convective cloud precipitation process: (a) Longli (57913) station,
(b) Puding (57808) station, and (c) Luodian (57916) station.

The real-time estimation of the rainfall evaluation index is shown in Table 7.

Table 7. Evaluation index of rainfall estimation in convective cloud precipitation process.

Site Estimating Method Real-Time Correlation
Coefficient MRE MAE RMSE

Longli (57913) Dynamic Z-I 0.8432 0.5046 0.1462 0.2745
Neural network 0.8745 0.4646 0.1228 0.2454

Puding (57808) Dynamic Z-I 0.7763 0.8039 0.1324 0.2962
Neural network 0.9125 0.7628 0.0935 0.1884

Luodian (57916)
Dynamic Z-I 0.8658 0.7799 0.1357 0.3379

Neural network 0.8676 0.7986 0.1372 0.3412
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From the fitting curve in Figure 8 and the data in Table 7, it can be seen that the neural
network method outperforms the dynamic Z-I relationship method at all three stations
in terms of real-time correlation coefficients. For MRE, MAE, and RMSE, the error of the
neural network method in the Longli (57913) and Puding (57808) stations is smaller than
that of the dynamic Z-I relationship method, and slightly higher than that of the dynamic
Z-I relationship method at Luodian (57916) station. Dynamic Z-I relationship: The Z-I
relationship is corrected using the first ten body sweep data and raingauge data. When the
automatic rain gauge does not detect precipitation information, the Z-I relationship is set
Z = 16 × I1.0. Only a tiny intensity of radar reflectivity can invert a certain precipitation
intensity. The advantage of this setting is that it can make up for the residual error from
the tipping bucket of the automatic rain gauge to a certain extent. Still, it is limited to
the quality of the radar data and the automatic rain gauge data. If the radar detection
echo is shorter before the precipitation data, it will prevent the precipitation from being
overestimated. The neural network method is less effective at estimating the precipitation
start period, and there is a specific lag phenomenon. This is because the neural network
needs to learn from rich samples in order to establish the model, including precipitation
samples, non-precipitation samples, and some samples with mismatched precipitation
information. Therefore, for the neural network to determine the precipitation start time,
the input sample needs to contain a sufficient amount of precipitation samples, so it will
affect the determination of the precipitation start time. When the precipitation intensity in
the latter part of the precipitation is large and the precipitation is continuous, the actual
precipitation can be accurately reflected regardless of the neural network or the dynamic Z-I
relationship. The dynamic Z-I relationship and the neural network method can accurately
describe the convective cloud precipitation process, independent of the distance from the
station to the radar.

Secondly, a continuous stratiform cloud precipitation process on 19 July 2020 was
selected for analysis. The weather process is as follows.

As shown in Figure 9, at 12:00 on 19 July, scattered echoes appeared and developed
slowly over the junction of southern Guizhou, Guangxi, and Yunnan. During this period,
the wind force in Guizhou was low, and the wind field was relatively stable. At 17:00, the
echo development gradually covered the target site. At this time, under the influence of
slight southeast wind, the echo development accelerated but remained stable, and the space
did not change much. The echo gradually attenuated and dissipated by 0:00 on 20 July.
Then, a slight southerly wind carried a large area of echoes and continued to affect the
southern part of Guizhou until the end of the weather process at 13:00 on 20 July. From
the radar echo map, the weather phenomenon has low precipitation intensity and a simple
process. The echo is not seen in the second and third layers of the radar volume scan, it
indicating that the development of precipitation clouds is thin, and the wind direction and
wind speed are relatively stable during the entire duration of precipitation, and there is no
apparent convergence phenomenon.

The convective cloud precipitation estimated with the neural network method and
dynamic Z-I relationship method is shown in Figure 10.

Table 8 shows the real-time rainfall estimation evaluation indicators.

Table 8. Rainfall estimation and evaluation index of the stratiform cloud precipitation process.

Site Estimating Method Real-Time Correlation
Coefficient MRE MAE RMSE

Longli (57913) Dynamic Z-I 0.6933 0.8068 0.0267 0.0479
Neural network 0.7114 0.8008 0.0401 0.1047

Puding (57808) Dynamic Z-I 0.0902 0.9794 0.0704 0.1721
Neural network 0.4984 0.8771 0.0564 0.1416

Luodian (57916)
Dynamic Z-I 0.1409 0.9396 0.0880 0.1445

Neural network 0.4902 0.8409 0.1183 0.3211
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Figure 9. Radar echo of precipitation process on 19 July 2020: (a) 07/19 12:01, (b) 07/19 15:09,
(c) 07/19 20:39, (d) 07/19 22:22, (e) 07/20 00:43, (f) 07/20 05:12, (g) 07/20 08:04, (h) 07/20 12:50,
(i) 07/19 15:10.

Figure 10. Estimated precipitation of stratiform cloud precipitation process: (a) Longli (57913) station,
(b) Puding (57808) station, and (c) Luodian (57916) station.

It can be seen from the data shown in Table 8 that, except for the similar results
obtained using the two methods at Longli (57913) station, which is close to the radar station,
the neural network method is far better than the dynamic Z-I method in the precipitation
estimation of the other two stations. Still, the overall estimation effect is far less than the
convective cloud process estimation. Figure 10b,c show that the dynamic Z-I relationship
method does not invert precipitation on the time series estimated at the Puding (57808) and
Luodian (57916) stations. From the weather background, it can be seen that the precipitation
process is weak, and the clouds are thin. Examining the radar base data, it is found that
the two stations far from the radar station can detect very little echo information, which
directly affects the estimation effect of the dynamic Z-I relationship. The neural network
method uses multi-source data from radar and a raindrop spectrometer for estimation.
Compared with the single-source data, the dependence is reduced, and the estimation
effect is improved compared with the dynamic Z-I relationship method. However, due
to the lack of precipitation information detected during the stratiform cloud precipitation



Atmosphere 2023, 14, 1031 16 of 19

process and the frequent interruption of precipitation, the estimation effect still needs to be
significantly different from that of convective cloud precipitation.

Finally, the neural network and the dynamic Z-I methods were used to estimate the
total precipitation of the three stations for 45 days from 1 July 2020, to 16 August 2020,
respectively. Calculating cumulative rainfall in an area can reflect the applicability of the
estimation method and the universality of different types of precipitation. The cumulative
precipitation of rain gauges at the Longli (57913), Puding (57808), and Luodian (57916)
stations during the selected period were 340.0 mm, 312.0 mm, and 264.6 mm, respectively.
The results are shown in Figure 11.

Figure 11. Comparison of estimated cumulative rainfall: (a) Longli (57913) station, (b) Puding (57808)
station, and (c) Luodian (57916) station.

Table 9 lists the estimated cumulative rainfall evaluation indexes of the three stations.

Table 9. Estimated cumulative rainfall evaluation index.

Site Estimating
Method

Correlation
Coefficient MRE MAE RMSE Relative Error

Longli (57913) Dynamic Z-I 0.9951 0.0816 19.4211 22.0374 −2.68%
Neural network 0.9998 0.0526 10.3156 10.5963 −4.25%

Puding (57808) Dynamic Z-I 0.9938 0.0986 9.3672 11.4746 −7.41%
Neural network 0.9992 0.0911 14.3672 16.8846 −11.35%

Luodian (57916)
Dynamic Z-I 0.9862 0.1542 26.6712 32.5039 −21.23%

Neural network 0.9996 0.1122 16.4154 17.3465 −8.68%

From the precipitation measured with the rain gauge, the rainfall estimated using the
neural network, and the precipitation estimated using the dynamic Z-I relationship shown
in Figure 11, along with the comprehensive evaluation index, it can be seen that the rainfall
estimates made using the dynamic Z-I relationship method and the neural network method
have a firm consistency with the measured rainfall. Still, the dynamic Z-I relationship is
reflected in some weak precipitation processes, but the dynamic Z-I relationship did not
reflect satisfactory effects in some weak precipitation processes, such as Puding (57808);
the dynamic Z-I relationship of multiple inefficient precipitation processes after August in
Luodian (57916) station also shows apparent underestimation, and a weak precipitation
process on July 10 was overestimated. By examining the base data and radar echo map on
10 July, it is found that the radar detected a strong echo lasting about one hour before the
automatic rainfall station detected the precipitation. Because the dynamic Z-I relationship
was Z = 16 × I10 when the rainfall data of the rainfall station is 0, the strong echo in the
period of 0 times the rainfall station data caused the weak precipitation process to be
overestimated. The relative errors of Longli (57913), Puding (57808) and Luodian (57916)
stations using dynamic Z-I relationships to estimate cumulative precipitation were −2.68%,
−7.41% and −21.23%, respectively, and the relative errors estimated by neural networks
were −4.25%, −11.35% and −8.68%. With regards to the cumulative precipitation of the
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Longli and Puding stations, the final relative error of the neural network is slightly worse
than that of the dynamic Z-I relationship. Still, the neural network is better than the dynamic
Z-I relationship in terms of the correlation coefficient index. Combined with Figure 11a, it
can be found that the dynamic Z-I relationship shows a certain underestimation in several
heavy precipitation processes. Still, it shows apparent overestimation in several weak
precipitation processes in August, and finally offers a small cumulative error and low
correlation coefficient. From Figure 11c, it can be obtained that dynamic Z-I is affected
by the quality of radar detection data, and the estimation effect of stratomorph cloud
precipitation is poor at a distance from the radar station, which is directly reflected in the
cumulative precipitation error of −21.23% at Luodian (57916) station.

5. Conclusions

In this paper, the characteristics of the raindrop spectra of Longli (57913), Puding
(57808), and Luodian (57916) stations in Guizhou Province were analyzed to find the
diameter parameters with a strong correlation with rainfall intensity. Thereafter, the multi-
source data from weather radar, raindrop spectrometer, and surface rain gauge in Guiyang,
Guizhou Province, were used to estimate precipitation. The conclusions are as follows:

(1) After analyzing the raindrop spectral distribution at Longli, Puding, and Luodian
stations, it was found that the peak value and spectral width of particle distribution at
Luodian (57916) station were different from those of the other two stations, indicating that
the raindrop spectral distribution was further between different regions. The correlation
coefficients of the three sites, as fitted using the M-P distribution, were 83.52%, 85.25%, and
81.69%, respectively. The correlation coefficients provided using the GAMMA distribution
were 95.65%, 95.84%, and 94.82%, indicating that the fitting effect of the GAMMA distribu-
tion was better. The correlation coefficients between the mass-weighted average diameter
of the three stations and the rainfall intensity were 46.89%, 49.51%, and 47.03%, respectively,
slightly lower than the 67.80%, 71.28%, and 71.46% of the mass-weighted average diameter.
Using a heavy rainfall example, it was found that the two diameters had the same fitting
effect on the rainfall intensity at low rainfall intensity. Still, the average volume diameter
was more sensitive at heavy rainfall intensity.

(2) Based on the three-source data from the Guiyang weather radar, Parsivel raindrop
spectrometer, and automatic rain gauge, the neural network and dynamic Z-I relationship
methods were used to estimate the precipitation. In the process of convective cloud
precipitation, the correlation coefficients of the neural network method and the dynamic Z-I
relationship method at the three stations were 0.8745, 0.9125, and 0.8676 and 0.8432, 0.7763,
and 0.8658, respectively. This shows that the dynamic Z-I relationship and the LSTM neural
network method are both consistent with the measured rainfall of the automatic rain gauge.

(3) In stratiform cloud precipitation, the correlation coefficients of the neural network
and dynamic Z-I relationship methods at the three stations were 0.7114, 0.4984, and 0.4902
and 0.6933, 0.0902, and 0.1409, respectively. The dynamic Z-I relationship method is greatly
affected by weather radar detection data. At stations where the echo development is
thin and far away from the weather radar, the weather radar cannot stably provide high-
quality detection data. Currently, the neural network method using multi-source data has
more advantages.

(4) Based on the three-source data from the Guiyang weather radar, Parsivel raindrop
spectrometer, and automatic rain gauge, the neural network method and the dynamic
Z-I relationship method were used to estimate the total precipitation of the three stations
for 45 days. In the comparison of cumulative estimated rainfall, it was found that there
is a strong consistency between the dynamic Z-I relationship method and the neural
network method to estimate precipitation and the measured precipitation. The relative
errors of the three sites using neural network estimation were −4.25%, −11.35%, and
−8.68%, respectively. The relative errors of the cumulative precipitation estimated using
the dynamic Z-I relationship were −2.68%, −7.41%, and −21.23%, respectively. The final
comparable mistake of the neural network in the cumulative precipitation of the Longli
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and Puding stations was slightly worse than that of the dynamic Z-I relationship. Still, the
correlation coefficient between the precipitation estimated using the neural network and
the real value remained higher than that of the dynamic Z-I relationship.
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