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Abstract: The non-equilibrium property of turbulence modifies the characteristics of turbulent trans-
port. With the aid of response function formalism, such non-equilibrium effects in turbulent transport
can be represented by the temporal variation of the turbulent energy (K) and its dissipation rate (ε)
along the mean stream through the advective derivatives of K and ε. Applications of this effect to the
turbulent convection with plumes are considered for the first time in this work. The non-equilibrium
transport effects associated with plumes are addressed in two aspects. Firstly, the effect associated
with a single plume is evaluated using data measured in the recent plume/jet experiments. The
second argument is developed for the collective turbulent transport associated with multiple plumes
mimicking the stellar convection zone. In this second case, for the purpose of capturing the plume
motions into the advective derivatives, use has to be made of the time–space double-averaging proce-
dure, where the turbulent fluctuations are divided into the coherent or dispersion component (which
represents plume motions) and the incoherent or random component. With the aid of the transport
equations of the coherent velocity stress and the incoherent counterpart, the interaction between the
dispersion and random fluctuations are also discussed in the context of convective turbulent flows
with plumes. It is shown from these analyses that the non-equilibrium effect associated with plume
motions is of a great deal of relevance in the convective turbulence modeling.

Keywords: turbulence; turbulence closure theory; modeling; non-equilibrium effect; convective plumes

1. Introduction

Turbulent flows encountered in astro/geophysical phenomena as well as laboratory
plasma ubiquitously have huge Reynolds numbers. Since the direct numerical simulations
(DNSs) of such flows are impossible in the foreseeable future, the turbulence or subgrid-
scale (SGS) modeling approach provides a powerful tool for analyzing turbulent flows in
these phenomena.

In conventional turbulence modeling, the simple expressions of turbulent fluxes such
as the eddy viscosity and eddy diffusivity representations are very useful and have been
extensively utilized [1]. For instance, the turbulent momentum flux, defined by the
Reynolds stress, is modeled by the turbulent transport coefficients, eddy viscosity, coupled
with the mean velocity strain. The eddy viscosity is expressed in terms of the quantities that
characterize the dynamics and statistical properties of the turbulence. In the mixing-length
formulation, the eddy viscosity νT is expressed by the characteristic turbulent velocity v
and length scale ` as νT = νT(v, `). In the standard K–ε model, νT is modeled in terms of
the turbulent kinetic energy K and its dissipation rate ε as νT = νT(K, ε). As compared
with the mixing-length formulation, the K–ε is more elaborated since the dynamics of the
turbulent fields and their interaction with the mean fields are taken into account through
the transport equations of K and ε [2,3].

In spite of the notable achievements of simple gradient-diffusion-type models for
turbulent fluxes with the eddy viscosity and eddy diffusivity representations, several
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situations exist wherein such models would completely fail. One such deficiency appears
when the eddy viscosity model is applied to a situation with cross-flow configuration. This
failure is caused by the lack of vorticity or rotation effects in the eddy viscosity model. An
alleviation of this deficiency of the eddy viscosity model was proposed with the aid of
an analytical statistical theory of inhomogeneous turbulence applied to a non-reflectional
symmetric system with an emphasis on the helicity effects [4,5]. Another kind of deficiency
shows up in the case of turbulence with non-equilibrium properties. For instance, in
homogeneous-shear turbulence, the evaluation of the eddy viscosity systematically fails
because of the overestimates of the turbulent energy K and its dissipation rate ε. There, the
energy injection increases with time, and the energy dissipation process cannot catch up
with the injection at the energy-containing scale. This is caused by the non-equilibrium
property of turbulence induced by the energy injection due to the flow shear. In order to
alleviate this flaw in the framework of the K–ε model with the eddy viscosity representation,
the non-equilibrium effect has to be incorporated into the eddy viscosity representation [6].

Employing the response function formalism in turbulence closure studies provides
a powerful way to construct a self-consistent turbulence theory without resorting to any
parameter. There are several classical modern theories of turbulence closure [7–10]. Starting
with the Liouville equation derived by Edwards [8], Herring [9,10] constructed a series
of self-consistent field (SCF) theories for turbulence closure. In the formulation, the cou-
pled equations of the two-time velocity correlation function and the response function
are derived under the requirement that the probability distribution functions satisfy the
self-consistency condition. The obtained equations for the correlation and response func-
tions are similar to the those obtained with the direct-interaction approximation (DIA)
by Kraichnan [7]. In the combination of the DIA with multiple-scale analysis, we address
the convective turbulence with variable density and velocity shear. One important con-
sequence of this multiple-scale DIA analysis lies in the point that it enables us to treat
the non-equilibrium effect of turbulence through the Lagrangian derivative of the turbu-
lence fields. If turbulence properties such as the turbulent energy K and its dissipation
rate ε are spatially developing in the streamwise direction, the non-equilibrium effects
are represented by the advective derivatives of K and ε, (U · ∇)K and (U · ∇)ε in the
Lagrangian derivatives. In the model for the homogeneous-shear turbulent flow [6], the
non-equilibrium properties of turbulence including the variations in the time and length
scales of turbulence are taken into account in the expression of the eddy viscosity through
the Lagrangian derivative along the mean velocity U of the turbulent energy and its
dissipation rate as νT = νT(K, ε, DK/Dt, Dε/Dt) where D/Dt = ∂/∂t + U · ∇.

There are several types of buoyant streams in nature. Some buoyant flows are purely
driven by thermobuoyancy (plumes) and others are driven by a combination of ther-
mobuoyancy and dynamical forcing (thermobuoyant jets, non-isothermal shear layers).
In the buoyancy-dominated turbulent flows, the turbulent convection is well represented
by large-scale plumes [11–14]. In order for a turbulence model to treat turbulent con-
vective flows, the turbulence interaction with coherent structures such as a large-scale
jet and plume has to be properly represented in the model. Because of the presence of
jets and plumes, the turbulent fluxes deviate from the usual gradient diffusivity, viscos-
ity, etc. [14]. The turbulent transport coefficients should properly reflect such coherent
structure effects. Another example in astrophysics can be seen in supernova explosion
studies. In the core-collapse supernovae (CCSNe) explosion problem, turbulent effects aid
the relaunch of blast shock waves due to the neutrino heating [15–21]. In order to identify
the turbulence effects most relevant to the explosion condition, Murphy and Meakin [21]
extensively examined several types of closure models. By comparing the model simulation
results with the 2D simulation counterparts, they found that the standard turbulent flux
models based on the gradient-transport approximation failed to reproduce the turbulent
transport of the mass, momentum and heat in the stellar interiors. This suggests that the
buoyancy-dominated flows of core-collapse convection are characterized by large-scale
plumes. The entrainment between the rising and sinking plumes strongly affects the



Atmosphere 2023, 14, 1013 3 of 22

transport properties of neutrino-driven turbulence. In particular, the turbulent dissipation,
which is balanced by the buoyancy drive, is dominantly controlled by the entrainment of
negatively buoyant plumes.

It has been theoretically and experimentally shown that the dissipation rates in jets
and plumes follow the Kolmogorov equilibrium law only if their spreading rates do not
vary with the streamwise distance [22,23]. Adopting the Lie symmetry group theory on the
statistical turbulent model equations, Sunita and Layek [24] recently argued the case of non-
equilibrium turbulent dissipation in buoyant axisymmetric plumes in unstratified stagnant
ambient at the infinite-Reynolds-number limit. They considered the relationship between
the dissipation rates of the turbulent kinetic energy and turbulent thermal fluctuation, and
the entrainment coefficients in the Kolmogorov and non-Kolmogorov regions of turbulent
dissipations. They showed that the well-known link between entrainment and dissipation
in the Kolmogorov region of turbulence is also established in the non-Kolmogorov region.

As mentioned above, with the aid of the response function formalism, the non-
equilibrium properties of plume motions can be expressed by the variations in the turbulent
kinetic energy and its dissipation rate along the plume motions. Recent elaborated labora-
tory experiments with jets and negatively or positively buoyant plumes provide detailed
data on the spatial distributions of the turbulent energy and its dissipation rate as well as
the jet and plume velocity distributions [25–28]. Utilizing these data, we can evaluate the
variation of the turbulent energy and its dissipation rate along the jet/plume motion. Such
an evaluation enables us to examine how much non-equilibrium effect may be present in
turbulent flows associated with the jet and plume. This is one of the novel points discussed
in this work.

Negatively or positively buoyant plumes play a dominant role in mass, momentum
and heat mixing in the stellar convection zone. In the stellar convection zone case, we have
to simultaneously treat the effects of numerous plumes on the turbulent fluxes, such as
the turbulent mass flux, momentum flux and heat or internal-energy flux, in the mean-
field equations. The non-equilibrium effect associated with these numerous plumes is
investigated with the aid of the numerical simulations of a simplified domain mimicking
the stellar convection zone. A turbulence model incorporating the non-equilibrium effect
into the expressions of the turbulence fluxes should be validated in comparison with
the direct numerical simulations (DNSs) of the turbulent mass, momentum and heat or
internal-energy fluxes. In order to properly capture the effects of plume motions, which
are part of fluctuating motions in the framework of the mean-field modeling, we introduce
some elaborated averaging procedures in this evaluation of the non-equilibrium turbulence
model. This is a time–space double-averaging procedure, which has been recently applied
to a stellar convection zone [29]. This point will also be discussed in this paper.

The organization of this paper is as follows. In Section 2, we present the mean-
field equations with the turbulence correlations, which should be expressed in terms of
the mean-field and transport coefficients representing the statistical properties of turbu-
lence. In Section 3, closure models for the turbulent fluxes are promoted with the aid of
their theoretical derivations, with special reference to the corrections to the conventional
gradient-transport approximations. There, modifications due to the non-equilibrium ef-
fects are presented. In Section 4, the roles of the non-equilibrium effects are suggested
in the context of recent plume/jet experiments. In Section 5, the role of the plumes in
the turbulent transport is discussed in the context of the stellar convection. In addition,
the interaction between the coherent and incoherent fluctuations is argued for using the
transport equations of each component of fluctuation energy. Concluding remarks are
given in Section 6.

2. Equations of Compressible Hydrodynamic Turbulence

The material of this work is plumes in compressible convective turbulence. The
turbulent fluxes, such as the turbulent mass flux, the Reynolds stress, the turbulent heat, or
internal-energy flux, in the mean-field equations are analyzed with the aid of the two-scale
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direct-interaction approximation (TSDIA) formulation. In this method, the response or
Green’s function is used to incorporate the non-equilibrium properties of the turbulence
along the mean or grid-scale (GS) flow into the turbulent transport coefficients. By applying
the present formulation to the statistical analysis of the turbulent transports in the presence
of numerous plumes, a time–space double-averaging procedure is adopted. Since there
is no general way of determining the time-domain filtering, we have to make use of the
physical considerations on the plume statistics and dynamics including its lifetime for
determining the filter in the time domain. This point should be further explored beyond
the present formulation described below.

2.1. Mean-Field Equations and Turbulent Correlations

We adopt the conventional Reynolds decomposition procedure

f = F + f ′, F = 〈 f 〉 (1)

with
f = (ρ, u, p, e) (2)

F = (〈ρ〉, U, P, E), (3)

f = (ρ′, u′, p′, e′), (4)

where ρ is density, u is the velocity, p is the pressure and e is the internal energy of fluid.
With the Reynolds averaging (1), the mean-field equations are obtained in the following
form, and the density equation:

∂〈ρ〉
∂t

+∇·(〈ρ〉U) = −∇·
〈
ρ′u′

〉
, (5)

the mean velocity equation:

∂

∂t
〈ρ〉Uα +

∂

∂xa 〈ρ〉U
aUα = −(γ− 1)

∂

∂xα
〈ρ〉E +

∂

∂xa µS aα

− ∂

∂xa

(
〈ρ〉
〈
u′au′α

〉
+ Ua〈ρ′u′α〉+ Uα

〈
ρ′u′a

〉)
+ 〈ρ〉gα, (6)

and the mean internal-energy equation:

∂

∂t
〈ρ〉E +∇·(〈ρ〉UE) = ∇·

(
κ

CV
∇E

)
−∇·

(
〈ρ〉
〈
e′u′

〉
+ E

〈
ρ′u′

〉
+ U

〈
ρ′e′
〉)

−(γ− 1)
(
〈ρ〉E∇·U + 〈ρ〉

〈
e′∇·u′

〉
+ E

〈
ρ′∇·u′

〉)
. (7)

In (6), Sαβ is the deviatric part of the mean velocity strain defined by

Sαβ =
∂Uβ

∂xα
+

∂Uα

∂xβ
− 2

3
∇·Uδαβ, (8)

and g = {gα} is the gravitational acceleration.
In the mean-field Equations (5)–(7), we have several second-order turbulence correla-

tions. They are the turbulent mass flux: 〈ρ′u′〉, the Reynolds stress: 〈u′u′〉, the turbulent
internal-energy flux: 〈e′u′〉, the internal-energy dilatation correlation: 〈e′∇·u′〉, the density
dilatation correlation: 〈ρ′∇·u′〉, and the density–internal-energy correlation: 〈ρ′e′〉. In the
conventional turbulence modeling approach, the expressions of these turbulent correlations
are modeled in a heuristic manner. In marked contrast, in a self-consistent turbulence
modeling approach based on an analytical theory, the expressions of these correlations are
obtained from a closure theory of inhomogeneous turbulence. In the present work, we
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use the analytical results from a multiple-scale renormalization perturbation expansion
method; two-scale direct-interaction approximation (TSDIA) analysis of the fluctuation
equations [3,30,31]. The analysis of incompressible and strongly compressible turbulence
with a magnetic field using the TSDIA formalism can be seen, for example, in [32–34].

2.2. Simplest Modeling Turbulent Fluxes

In the turbulence modeling approaches, in order to reduce the huge burden of treating
complexity of turbulent flows, it is often required that the turbulent fluxes be modeled in
the simplest possible manner. A heuristic approach of modeling is to adopt the gradient-
diffusion approximations for the turbulent fluxes appearing in (5)–(7). There, the turbulent
momentum, mass and energy fluxes are assumed to be written in the form:

〈u′αu′β〉D = −νTSαβ, (9)

〈ρ′u′〉 = −νT

σρ
∇〈ρ〉, (10)

〈e′u′〉 = −νT

σe
∇E, (11)

where the suffix D denotes the deviatoric or traceless part of a tensor as
Aαβ

D = Aαβ − (1/3)Aaaδαβ. Here, the transport coefficient νT is the turbulent or eddy
viscosity, and σρ and σe are the turbulent Prandtl numbers for the density and internal
energy, respectively. The turbulent transport coefficients represent the statistical properties
of turbulence. For example, the turbulent viscosity is expressed in terms of the intensity of
turbulence or turbulent energy (per mass) K(= 〈u′2〉/2).

In the mixing-length theory (MLT) model, the turbulent viscosity is written as

νT = v`C (12)

apart from the numerical factor, where v is the characteristic intensity of turbulent velocity
and `C is the characteristic length in the energy-containing eddies. In practical applications
of the model to the geophysical and astrophysical turbulent flows, depending on the
problem we consider, the pressure or density-scale height is often adopted as the mixing
length. In terms of the turbulent energy K, Equation (12) is expressed as

νT = K1/2`C (13)

(the Kolmogorov–Prandtl expression).
This model expression for the turbulent viscosity νT can be obtained from the con-

sideration of the equilibrium energy spectrum of turbulence as follows. The Kolmogorov
scaling of turbulence is based on the local equilibrium between the production rate PK and
the dissipation rate εK of the turbulent energy as

PK ' εK. (14)

Hereafter, the dissipation rate of turbulent energy, εK, is simply denoted as ε. Assuming
the equilibrium scaling of Kolmogorov:

E(k) = Ko ε2/3k−5/3 (15)

(Ko (' 1.5): Kolmogorov constant), the turbulent energy is expressed as

K =
∫

dkE(k) =
∫ ∞

k=kC

dkKo ε2/3k−3/5 = CK0ε2/3`2/3
C , (16)
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where `C(= 2π/kC) is the largest eddy size. Here, we simply related it to the infrared
cut-off wavenumber kC, and CK0 is the model constant linked to the Kolmogorov constant
Ko. With (13), the turbulent or eddy viscosity νT in (9)–(11) is evaluated as

νT = K1/2`C = ε1/3`4/3
C = K2/ε (17)

apart from the numerical factors. The final equality is the well-known eddy viscosity ex-
pression in the standard K–ε model. With this turbulent viscosity expression, Equation (9)
constitutes the eddy viscosity representation of the Reynolds stress or turbulent momen-
tum transport.

3. Non-Equilibrium Effect
Non-Equilibrium Effect on Eddy Viscosity

In the standard K–ε model, the turbulent viscosity is expressed in terms of the turbulent
energy K and its dissipation rate ε as

νT = Cν
K2

ε
, (18)

where Cν is model constant usually taken as Cν = 0.09. However, it has long been known
that the standard K–ε model with the turbulent viscosity (18) applied to practical flows
has some obvious drawbacks. The representative situations where the standard K–ε model
fails include the cross-flow configuration with the circumferential or rotating velocity
component as well as the axial one, which impinges flow configuration. Another example
is the overestimate of the turbulent energy K and its dissipation rate ε in the homogeneous-
shear turbulence. The results of the standard K–ε show a tremendously overestimated
turbulent energy K as compared with the counterpart in the direct numerical simulations
(DNSs) as schematically depicted in Figure 1. Even in one of the simplest flow geometries
such as the homogeneous shear, a simple turbulent viscosity model fundamentally fails to
reproduce turbulent flow characteristics.

StSt0

K

DNS

Standard K–ε
model

Nonequilibrium
model

Onset of 
model simulations

Time

Turbulent energy

Figure 1. Schematically depicted evolution of the turbulent energy in the simulations of
homogeneous-shear flow. •: DNS, − −: standard K–ε model simulation; and : non-equilibrium
model simulation. Onset of the model simulations is set at a scaled time St0 using the DNS data (S:
shear rate).

In order to rectify such drawbacks of the standard K–ε model, several improvements
to the model have been proposed. A possible improvement of the model is the implemen-
tation of the non-equilibrium effect on the basis of a statistical theory of inhomogeneous
turbulence. The non-equilibrium effect on turbulent viscosity was investigated with the
two-scale direct-interaction approximation (TSDIA) [30,35]. In the framework of the TS-
DIA, the formal solution of the lowest-order turbulent velocity arising from the large-scale
inhomogeneities in space and time is given in terms of the homogeneous isotropic basic
field u′0(k; τ1) and the response function G′(k; τ, τ1) as
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u′1
α(k; τ) =

∂Ub

∂Xa

∫ τ

−∞
dτ1G′αb(k; τ, τ1)u′0

a(k; τ1)

−
∫ τ

−∞
dτ1G′αa(k; τ, τ1)

Du′0
a(k; τ1)

DT
(19)

+2Mdab(k)
∫∫

δ(k− p− q)dpdq
∫ τ

−∞
dτ1G′αd(k; τ, τ1)

qb

q2 u′0
a(p; τ1)

∂u′c0(q; τ1)

∂Xc

−Mabcd(k)
∫∫

δ(k− p− q)dpdq
∫ τ

−∞
dτ1G′αd(k; τ, τ1)

∂

∂Xc (u
′
0

a(p; τ1)u′0
b(q; τ1)).

Here, the second term on the right-hand side related to the Lagrange derivative repre-
sents the non-equilibrium properties of the turbulent field along the flow. The turbulent
kinetic energy K with the non-equilibrium effect is written as

K = 〈u′2〉/2 =
1
2

∫
dk 〈u′`(k; τ)u′`(k′; τ)〉/δ(k + k′)

= (〈u′0`u′0`〉+ 〈u′0`u′1`〉+ 〈u′1`u′0`〉+ · · · )/2 (20)

= CK1ε2/3`2/3
C − CK2ε−3/2`4/3

C
Dε

Dt
− CK3ε1/3`1/3

C
D`C

Dt
,

where `C is the length scale of the largest eddy and D/Dt(= ∂/∂t + U·∇) is the Lagrange
or material derivative along the mean-flow velocity. Here, CKn(n = 1–3) are the model
constants whose magnitudes are related to those of the energy spectrum and the time scale
of turbulence (σ0 in (A5) and ω0 in (A6)). A brief derivation of (20) is given in Appendix A.

We solve (20) with respect to `C by an iteration method with the first term of (20) as
the starting term:

K = CK1ε2/3`2/3
C . (21)

Then, we have `C as
`C = C`1K3/2ε−1, (22)

where C`1 is the model constant. With (13), this lowest-order expression of the length scale
corresponds to the simplest eddy viscosity model (18).

Substituting (18) into (20), we have the first iteration result as

`C = C`1K3/2ε−1 + C`2K3/2ε−2 DK
Dt
− C`3K5/2ε−3 Dε

Dt
(23)

(C`2 and C`3 are model constants). The second and third terms of (23) represent the
non-equilibrium effect. Equation (23) shows that the length scale of turbulence, as well as
the time scale and energy of turbulence, is corrected by the D/Dt-related non-equilibrium
effect terms. Equation (23) can be approximated as

`C = `E

(
1− C′N

1
K

D
Dt

K2

ε

)
, (24)

where `E is the equilibrium characteristic length defined by

`E = K3/2/ε, (25)

and C′N is the non-equilibrium-effect-related coefficient. Depending on the streamwise
development of the turbulent energy K and its dissipation rate ε, the length scale of
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turbulence changes as compared to the equilibrium cases. At the same time, the time scale
of the non-equilibrium turbulence may be expressed as

τNS =
`NS

K1/2 ' C−3/2
S

K
ε

(
1− C′N

1
K

D
Dt

K2

ε

)
. (26)

This indicates that the effective time scale may change depending on the D/Dt effect.
The non-equilibrium turbulent viscosity νT can be expressed as

νT = Cν
K2

ε
− CνK

K2

ε2
DK
Dt

+ Cνε
K3

ε3
Dε

Dt
, (27)

where Cν, CνK and Cνε are the model constants whose values can be evaluated from
theoretical analyses. Equation (27) is rewritten as

νT = Cν
K2

ε

[
1−

(
CNK

1
ε

DK
Dt
− CNε

K
ε2

Dε

Dt

)]
, (28)

or approximately

νT = Cν
K2

ε

(
1− CN

1
K

D
Dt

K2

ε

)
(29)

(CNK, CNε and CN: model constants). Here, we should note that this non-equilibrium effect
does not necessarily require compressibility. This effect shows up even in incompress-
ible cases.

In practical situations wherein turbulent flows are simulated, a large positive D/Dt
term may occur locally; in such a case, (29) may lead to a physically undesirable negative
turbulent viscosity. In order to alleviate such an unphysical model result to enhance the
applicability of the model expression, we use a simple Padé approximation to (29) and have

νT =


νTE

(
1 + CN

1
K

D
Dt

K2

ε

)−1

for
D
Dt

K2

ε
> 0,

νTE

(
1− CN

1
K

D
Dt

K2

ε

)
for

D
Dt

K2

ε
< 0,

(30)

where the equilibrium eddy viscosity νTE is defined in the same form as (18) by

νTE = Cν
K2

ε
. (31)

Equation (30) indicates that, depending on the sign of the Lagrangian or material
derivative (D/Dt)(K2/ε), the turbulent viscosity is effectively decreased or increased by
the non-equilibrium effect. In the case of (D/Dt)(K2/ε) > 0, νT is decreased, while in
the case of (D/Dt)(K2/ε) < 0, νT is increased. This implies that, in this case, the non-
equilibrium effect works in the direction to stabilize the deviation from the equilibrium
state (return to equilibrium).

The non-equilibrium model expression for the eddy viscosity (30) has been applied to
the homogeneous-shear turbulence, where the standard K–ε model with the conventional
eddy viscosity (31) leads to an overestimated turbulent energy K and its dissipation rate ε
as compared to the DNS results (Figure 1). It was reported that the non-equilibrium model
(30) with CN = 0.8 leads to the results consistent with the DNS ones [6]. In this sense, the
validity of the non-equilibrium effects in turbulent mixing has been already confirmed in a
simple geometrical flow.
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4. Non-Equilibrium Effects in Jet and Plume Experiments

As was referred to in Section 1, in the buoyancy-dominated turbulent flows, the turbu-
lent convection is characterized by large-scale plumes. As this consequence, the turbulent
fluxes are deviated from the usual gradient-transport approximation. It has been recog-
nized that entrainment dominates the evolution of buoyant plumes [11]. As was shown
in a previous study of a supernova convection [21], global turbulence models introduc-
ing the entrainment parameters provide the best results for describing the evolution of
buoyant plumes. However, such models highly depend on the geometrical configurations
of the simulation, and are difficult to apply to a general 3D situation. In this sense, it is
preferable to develop a local model without resorting to global parameters, provided that
the local model works well enough for reproducing the basic behavior of the convection
turbulence with plumes. In order to validate the model, here we consider turbulent flows
with much simpler geometrical configurations, namely jets and plumes, utilizing recent
experimental results.

The non-equilibrium effect may help develop such a local model. In the presence of
a plume, we can expect that the turbulence properties vary in the plume-flow direction.
The non-equilibrium effect associated with the plume motion can be incorporated through
the variation in the turbulent energy K and its dissipation rate ε along the plume motion
in terms of the Lagrangian or advective derivatives, DK/Dt = [(∂/∂t) + U · ∇]K and
Dε/Dt = [(∂/∂t) + U · ∇]ε (Figure 2). The effect of non-equilibrium turbulence can be
implemented into the model of turbulent viscosity as (30) with the equilibrium turbulent
viscosity given by (31).

U

DK

Dt
= 

∂

∂t
+ U ⋅ ∇⎛

⎝
⎞
⎠
K

Dε

Dt
= 

∂

∂t
+ U ⋅ ∇⎛

⎝
⎞
⎠

ε

Heating

Figure 2. The non-equilibrium effect associated with a plume motion. A plume is thermobuoyantly
formed above a heat source. The non-equilibrium effect is taken into account through the Lagrangian or
advective derivatives of the turbulent energy K and its dissipation rate ε, DK/Dt = (∂/∂t + U · ∇)K
and Dε/Dt = (∂/∂t + U · ∇)ε, where U is the plume velocity.

Recently, a series of detailed experimental studies of the budgets of turbulent energy,
Reynolds stresses and dissipation rate has been performed in single- and multi-phase
jets/plumes, including a turbulent round jet discharged into an initially stationary am-
bient [27], a buoyant multi-phase bubble plume [28], a negatively buoyant multi-phase
particle plume [25] and a variable density round jet with co-flow [26].

4.1. Round Jets

Using a set of stereoscopic particle image velocimetry (SPIV) measurements of a tur-
bulent round water jet, the budget of the turbulent energy equation was investigated in
Lai and Socolofsky [27]. In this experiment, it was reported that the magnitudes of the
normal Reynolds stresses Rii decreased by 30 % over 27 ≤ x/D ≤ 37 in the downstream
direction (D: exit diameter of the jet nozzle). In particular, the streamwise variation of the
axial velocity fluctuation 〈(u′x)2〉/

√
ε at the jet centerline shows a decreasing tendency

at the major region of the axial locations 31 ≤ x/D ≤ 37 (Table 1). Although in Lai and
Socolofsky [27], these experimental results are argued in the context of the approximate
achievement of the self-preserving state in the jet [36]; this decrease tendency may be inter-
preted as a deviation from the self-preserving state due to the non-equilibrium effect. Since
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the magnitude of axial velocity fluctuation
√
〈(u′x)2〉 is similar to and just slightly larger

than the horizontal counterparts of the velocity fluctuations,
√
〈(u′y)2〉 and

√
〈(u′z)2〉, and

since the energy dissipation rate ε is well represented by that of the isotropic turbulence, εiso,
the evolution of squared axial velocity fluctuation, 〈(u′x)2〉/√εiso, provides a reasonable
surrogate for the basic behavior of K2/ε:

K2

ε
∝
[
〈(u′x)2〉√

εiso

]2

. (32)

Table 1. Streamwise variation of normalized turbulent intensities, turbulent energy and turbulent
axial velocity fluctuation normalized by the square root of the dissipation rate at the jet centerline.
x/D: jet streamwise length, D: jet nozzle exit diameter (D = 11 mm), Uc: centerline jet velocity
(Uc = 50 mm s−1). Data are taken from Figures 7 and 8 of Lai and Socolofsky [27].

x/D
√
〈(u′x)2〉/Uc

√
〈(u′y)2〉/Uc

√
〈(u′z)2〉/Uc K/U2

c 〈(u′x)2〉/√εiso

31 0.26 0.20 0.19 0.1437 3.25 × 10−2

37 0.26 0.20 0.19 0.1437 2.65 × 10−2

(−20%)

The decrease in 〈(u′x)2〉/√εiso in the downstream direction indicates that the sign of
the non-equilibrium effect term is negative as

D
Dt

K2

ε
< 0 (in turbulent round jets). (33)

It follows from (30) that the turbulent viscosity is enhanced by the non-equilibrium
effect as

νNE = νE

(
1− CN

1
K

D
Dt

K2

ε

)
> νE. (34)

In order to evaluate the non-equilibrium effect, we introduced the non-equilibrium
correction factor Λ by

Λ = CN
1
K

D
Dt

K2

ε
, (35)

where CN is the model constant estimated as the order of unity (CN = 0.8) through
applications to the homogeneous-shear flow turbulence [6]. This factor is approximated in
terms of the Lagrangian derivative as

Λ ' CN
1
K
(U·∇)

K2

ε
. (36)

Using the data of Lai and Socolofsky [27], Λ is estimated as

Λ ' CN

(
Uc√
〈(u′x)2〉

)2
1

Uc

∆{[〈(u′x)2〉/
√
〈εiso〉]2}

D∆(x/D)
' 1.7 (37)

with CN = 1 (Table 1). Here, ∆{[〈(ux)2〉/
√
〈εiso〉]2} in the nominator and ∆(x/D) in the de-

nominator are the increments in [〈(ux)2〉/
√
〈εiso〉]2 and x/D along the jet

streamwise direction.
In Lai and Socolofsky [27], the budgets of the turbulent energy and dissipation rate

equations were also investigated. Using the balance in the budgets, the coefficients of
each term of the K–ε model were examined. They suggested the befitting directions for
the change in model coefficients. The eddy viscosity constant Cν was increased from the
standard value of Cν = 0.09 to 0.09–0.27, whereas a reduction of Cν to 0.07 is suggested
from the matching for the jet spreading rate. This implies that it is inadequate to use a
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constant model coefficient Cν for the turbulent viscosity. The enhancement of eddy viscosity
due to the non-equilibrium effect is basically in the correct direction to the evaluation of Cν,
and the estimated value of Λ (37) is consistent with the suggested change of Cν. The degree
of enhancement/suppression should be determined by the non-equilibrium property of
the turbulence, which depends on the spatial location.

4.2. Buoyant Bubble Plumes

In Lai and Socolofsky [28], the turbulent energy budgets in bubble plume were ex-
perimentally investigated. There, the turbulent energy evolution was measured both in
the adjustment phase of the plume dependent on the source conditions (source size and
geometry) and in the asymptotic phase independent of the source condition.

These experimental results show that, in the asymptotic phase (Case A), the turbulent
energy K, its dissipation rate ε and K2/ε in the plume core region (r ≤ bg) decrease in the
axial or downstream direction along the plume velocity, while in the adjustment phase
(Case B) K, ε and K2/ε increase (Table 2). However, the relative variation in the turbulent
kinetic energy at the downstream to the upstream is much higher in the adjustment phase
(Case B) than in the asymptotic phase (Case A). This means that the turbulent energy
inhomogeneity along the plume flow, which may lead to the non-equilibrium effect is more
prominent in the adjustment phase than in the asymptotic phase. This is natural since
the non-equilibrium property is expected to be much higher in the adjustment phase than
in the asymptotic phase. In the adjustment phase, the Lagrangian derivative of K2/ε is
positive as

D
Dt

K2

ε
> 0 (in the adjustment phase of buoyant bubble plume). (38)

In this case, from (30)

νNE = νE(1 + Λ)−1 < νE (in the adjustment phase of buoyant bubble plume). (39)

In the experiment of Lai and Socolofsky [28], Λ is estimated as

Λ ' CN
1
K

Wc
∆(K2/ε)

D∆(z/D)
' 0.20 (40)

with CN = 1 (Table 2). Here, ∆(K2/ε) and ∆(z/D) are the increments of K2/ε and z/D
along the vertical streamwise height, respectively. This suggests that due to the non-
equilibrium effect, the turbulent mixing in the buoyant bubble plumes is expected to be
suppressed by a few 10% as compared to the standard equilibrium turbulent transport.

Table 2. Evolutions of turbulent energy and its dissipation rate along the plume flow. Case A is the
asymptotic phase and Case B is the adjustment phase. z/D: vertical streamwise height; D: dynamic
length scale (D = 6.8 cm for Case A and D = 20.4 cm for Case B); Wc: plume centerline velocity; and bg:
Gaussian plume radius. Data are taken from Figures 20 and 25 of Lai and Socolofsky [28].

Case A (Asymptotic Phase)

z/D Wc ( cm s−1) bg K/W2
c (ε/W3

c )bg × 103 K (cm2 s−2) ε (cm2 s−3) K2/ε (cm2 s−1)

6.6 20.64 5.46 0.135 0.04 57.51 64.42 51.34
11.0 17.90 8.00 0.165 0.086 52.87 61.65 45.34

(−8.1%) (−4.3%) (−11.7%)

Case B (Adjustment Phase)

z/D Wc ( cm s−1) bg K/W2
c (ε/W3

c )bg × 103 K (cm2 s−2) ε (cm2 s−3) K2/ε (cm2 s−1)

2.19 28.50 5.27 0.15 0.035 121.84 153.74 96.56
3.66 25.14 8.53 0.225 0.0896 142.20 165.78 121.97

(+16.7 %) (+7.8%) (+26.3 %)
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4.3. Variable Density Jets

There are several studies on the buoyancy-driven variable density turbulence with
jets and plumes [26,37]. In recent experiments by Charonko and Prestridge [26], variable
density effects in turbulent round jets with co-flow at high- and low-density ratios are
experimentally investigated. There, the axial and radial mixing mechanisms of jet are
compared between the cases with low and high variable density contrast. It was confirmed
that the Reynolds stress is suppressed by the turbulent mass flux in the increased variable
density case. It was also reported that the radial transport of momentum and the energy
cascade down to small scales are significantly suppressed in the variable density case.
These suppressions mostly take place in locations where the density fluctuation is large.

At the upstream region (x1/d0 < 16.3, x1: axial location; d0: inner diameter), the
turbulent energy—regardless of both whether averaging is mass-weighted or the Reynolds
and whether turbulent energy is normalized by excess momentum or the initial kinetic
energy of the mean flow—develops with a downstream distance along the centerline as

DK
Dt

> 0 (at upstream region of variable density jets). (41)

This increase in turbulent energy along the mean flow takes place in both the small-
and large-density variation cases. Since the evolution of the dissipation rate ε with
the axial distance is not explicitly presented in Charonko and Prestridge [26], that of
K2/ε cannot be accurately evaluated. However, the analysis of several flows later in
Section 5.1 implies that the trend of the K2/ε evolution along the mean flow or the sign
of K2/ε can be surmised from the evolution of K itself. From the non-equilibrium effect
D(K2/ε)/Dt[∼ (K/ε)DK/Dt] in (30), we see that the turbulent transport is suppressed at
the upstream region.

At the same time, Charonko and Prestridge [26] showed that the variable density
effects decrease both the peak and asymptotic values of turbulent energy. By considering
the budget in the evolution equation of turbulent energy, they suggested that in the high
variable density case, the density fluctuation contributes to the suppression of energy
transfer into small-scale fluctuations and preserving the mean-flow structures further
downstream. These features can be well understood from the viewpoint of a density-
variance effect; the presence of density variance Kρ(= 〈ρ′2〉) leads to the suppression of
turbulent transport as in (30). Charonko and Prestridge [26] concluded that the variable
density effect must be modeled to accurately capture dynamical mixing in jets and other
variable density flow phenomena. The combination of the non-equilibrium and density-
variance effects proposed in the present work is a candidate for modeling the variable
density effect in these flows.

5. Plumes in Stellar Convection Zone

In the previous section, we argued the non-equilibrium effect associated with a single plume
and jet. In modeling such a situation, the velocity of the single plume/jet is treated as the local
mean velocity, and the non-equilibrium effect associated with the mean velocity can be captured
by the Lagrangian or advective derivative D/Dt = ∂/∂t + U · ∇ [U(≡ 〈u〉): mean velocity].
However, in the practical application of the turbulence model to geo/astrophysical flow
phenomena, we often encounter situations where the effect of numerous plumes and jets
on the global or averaged flow dynamics must be properly evaluated.

One example is the turbulent transport in the stellar convection zone. In some flow
configurations, such as in the convective motion in a closed domain, the mean velocity
formulated with a simple ensemble average or averaging in the statistically homogeneous
plane is very small because of the statistical cancellations due to symmetry. Furthermore,
such an averaged quantity cannot capture localized flow structures such as plumes. Because
of the small mean flow (〈u〉 ≡ U ' 0), the non-equilibrium effect represented by the mean
flow advection, (U·∇)K2/ε in DK/Dt, is not suitable for capturing the plume effects.
With a simple ensemble or space-averaging procedure, the direct impact due to the non-
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equilibrium effect might be negligible. However, the presence of grid-scale (GS) or large-
eddy velocity component suggests that the counterpart of the non-equilibrium effect at GS
may arise as a result of the alternation of the subgrid-scale (SGS) turbulent transport.

5.1. Non-Equilibrium Effect in the Stellar Convection

Recently, in the context of the stellar convection, the non-equilibrium effects asso-
ciated with the convective plume motion were investigated in the framework of double
averaging [29]. For the purpose of exploring the non-equilibrium effect associated with
the plumes, fluid dynamics in the stellar convection zone was investigated with the aid of
direct numerical simulations (DNSs). In the setup of the simulations, the diving plumes are
driven by the cooling layer at the upper surface of the stellar convection zone. Because of
the cooling, the surface layer is convectively unstable.

In the non-locally driven convection case, there exist a lot of downward plumes in the
shallow region of the convection zone as in the lower plot of Figure 3b.

Figure 3. Entropy distributions in the direct numerical simulations (DNSs) for the locally driven
case (a) and the non-locally driven case (b). The horizontal cross-sections of the entropy fluctuation
s′(= s − 〈s〉) at the top surface (Top). In the non-locally or cooling-driven case, the horizontal
extension of the cell structures is much more limited than the counterpart in the locally driven case.
The vertical cross-sections of the entropy fluctuation s′ from the horizontal mean (bottom). In the
non-locally driven case, the low-entropy down flow or plume structures produced at the surface are
prominent in the upper region.

In order to capture the dynamics of plume motion, the time–space double-averaging
procedure was adopted there. A field quantity f is divided into

f =

f︷ ︸︸ ︷
〈 f 〉+ f̃︸︷︷︸

f − 〈 f 〉
coherent

fluctuation

+ f ′′︸︷︷︸
f − f

incoherent
fluctuation

, (42)

where f denotes the time average, 〈 f 〉 denotes the space or ensemble average and
f̃ (= f − 〈 f 〉) denotes the residual of the temporal average subtracted by the ensemble av-
erage part. This part may be called the dispersion or coherent fluctuation of f , f ′′(= f − f ),
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the fluctuation around the time average f . As for the time averaging, the resolved part of a
quantity f , f , is defined by the relation

f (x; t) =
∫

f (x; s)G(t− s)ds (43)

with the simplest top-hat time filter function G(t− s) defined by

G(t− s) =
{

1/T (|t− s| ≤ T/2),
0 (otherwise).

(44)

Here, T is the averaging time window, which should be put in the range:

τ � T � Ξ, (45)

where τ is the eddy turnover time of turbulence and Ξ is the time scale of the
mean-field evolution.

In this formalism, the fluctuation around the space or ensemble average, f ′, is divided
into the coherent and incoherent parts as

f ′ = f̃ + f ′′. (46)

With this double-averaging procedure, the time-averaged velocity u is divided into
the space-averaged velocity 〈u〉 and the dispersion velocity ũ as

u = 〈u〉+ ũ. (47)

The non-equilibrium effect along the plume motion is represented by the factor

Λ̃D =
〈
(ũ · ∇)u′2

〉
. (48)

This means that, if the turbulent energy is inhomogeneous along the plume motion ũ,
the turbulent fluxes are enhanced or suppressed depending on the sign of Λ̃D.

Realizations of the non-equilibrium factor Λ̃D = 〈(ũ · ∇)u′2〉 in the stellar convection
simulations are plotted in Figure 4. In this case, statistically, the plume velocity is in the
downward direction (ũz < 0) while the turbulent energy u′2 decreases in the downward di-
rection (∂u′2/∂z > 0). As a result, the non-equilibrium factor Λ̃D is statistically negative as

Λ̃D =
〈
(ũ · ∇)u′2

〉
=

〈
ũz ∂u′2

∂z

〉
< 0. (49)

The spatial distribution of Λ̃D is concentrated in the region near the surface where the
diving plume structures are prominently observed. The magnitude of Λ̃D shows a much
larger value in the case with the smaller averaging time window T defined in (44). This
clearly shows that the non-equilibrium effect associated with the plume motion can be
captured by the Lagrangian derivative of the turbulent energy along the plume motion.
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Figure 4. Spatial distributions of the non-equilibrium effect factor Λ̃D = 〈(ũ · ∇)u′2〉. The left axis
1− (z/d) is the depth from the surface (z = d). The magnitude of the non-equilibrium effect factor
|Λ̃D| depends on the time averaging window T.

In the framework of the time–space-averaging procedure, the non-equilibrium effect
is incorporated into the turbulent internal-energy flux. On the basis of the eddy viscosity
expression (30) in the usual ensemble averaging procedure, the turbulent internal-energy
diffusivity κT with the non-equilibrium effect in the time–space-averaging procedure may
be formulated as

κT = κTE

(
1− C̃〈ρ〉−1/3Λ̃D

)
, (50)

where κTE is the equilibrium turbulent internal-energy diffusivity, 〈ρ〉 is the horizontally
averaged density and C̃ is the model constant. The mean density dependence 〈ρ〉−1/3 in
(50) is obtained from the argument that the coherent dissipation rate ε̃ is proportional to the
cubic root of the buoyancy flux associated with a plume. See Section 6.3 and Appendix C
of Yokoi, Masada and Takiwaki [29] for the detailed arguments on this dependence.

The turbulent internal-energy flux 〈e′u′z〉 obtained from the DNSs in the locally and
non-locally driven convection cases, which, respectively, correspond to (a) and (b) of
Figure 3, are plotted in Figure 5. We see from the figure that the spatial profiles of these two
cases are fairly different. First, the magnitude of 〈e′u′z〉 is much larger in the non-locally
driven convection case. At the same time, turbulent transport is significantly localized near
the surface region in the non-locally driven case. These prominent properties of turbulent
transport in the non-locally driven convection cannot be properly reproduced by the usual
gradient-diffusion model with the mixing-length theory.

The spatial distribution of 〈e′u′z〉 calculated by the model with the non-equilibrium
effect (50):

〈e′u′z〉 = −κT∇E (51)

which is also plotted in Figure 5 (E: mean internal energy). The comparison with the DNS
results shows that the spatial distribution of 〈e′u′z〉 in the non-locally driven convection is
well reproduced by the present model with the non-equilibrium effect.
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Figure 5. Spatial distributions of the turbulent internal-energy flux 〈e′u′z〉 obtained by the direct
numerical simulations (DNSs) and the model with the non-equilibrium effect. The left axis 1− (z/d)
is the depth from the surface (z = d). The DNS results for the locally driven convection case (· · · ), for
the non-locally driven convection case (−−) and the result from the model with the non-equilibrium
effect for the non-locally driven convection case (—–).

5.2. Interaction between Coherent and Incoherent Fluctuations

In this double-averaging formulation, the fluctuation around the space or ensemble
average, f ′, is divided into the coherent and incoherent components as f ′ = f̃ + f ′′. These
two components are not independent but interact with each other. For instance, let us
consider the Reynolds stress in the time–space double-averaging procedure. The evolutions
of the Reynolds stress of the coherent velocity fluctuation, 〈ũũ〉, are subject to(

∂

∂t
+ 〈u〉 · ∇

)
〈ũiũj〉 = P̃ij + Π̃ij − ε̃ij +

∂T̃ij`

∂x`
+ P̃ ij, (52)

where P̃(= {P̃ij}), Π̃(= {Π̃ij}), ε̃(= {ε̃ij}) and ∇ · T̃(= {∂T̃ij`/∂x`}) are the production,
re-distribution, dissipation and the transport rates of the coherent components, respectively.
They are defined as

P̃ij = −〈ũjũ`〉∂〈u〉
i

∂x`
− 〈ũiũ`〉∂〈u〉

j

∂x`
, (53)

Π̃ij = − 1
ρ0

〈
p̃
(

∂ũi

∂xj +
∂ũj

∂xi

)〉
, (54)

ε̃ij − 2ν

〈
∂ũi

∂x`
∂ũj

∂x`

〉
, (55)

∂T̃ij`

∂x`
= +

∂

∂x`

(
−
〈

ũ`ũiũj
〉
+ 〈 p̃ũi〉δ`j + 〈 p̃ũj〉δ`i + ν

∂

∂x`
〈ũiũj〉

)
. (56)

On the other hand, the evolution of the Reynolds stress of the incoherent velocity
fluctuation, 〈u′′u′′〉, is subject to(

∂

∂t
+ 〈u〉 · ∇

)
〈u′′ iu′′ j〉 = P′′ ij + Π′′ ij − ε′′ ij +

∂T′′ ij`

∂x`
+ P ′′ ij, (57)

where P′′(= {P′′ ij}), Π′′(= {Π′′ ij}), ε′′(= {ε′′ ij}) and ∇ · T′′(= {∂T′′ ij`/∂x`}) are
defined as

P′′ ij = −〈u′′ ju′′`〉∂〈u〉
i

∂x`
− 〈u′′ iu′′`〉∂〈u〉

j

∂x`
, (58)

Π′′ ij = − 1
ρ0

〈
p′′
(

∂u′′ i

∂xj +
∂u′′ j

∂xi

)〉
− 2ν

〈
∂u′′ i

∂x`
∂u′′ j

∂x`

〉
, (59)
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ε′′ ij = −2ν

〈
∂u′′ i

∂x`
∂u′′ j

∂x`

〉
, (60)

∂T′′ ij`

∂x`
= +

∂

∂x`

(
−
〈

u′′`u′′ iu′′ j
〉
+ 〈p′′u′′ i〉δ`j + 〈p′′u′′ j〉δ`i + ν

∂

∂x`
〈u′′ iu′′ j〉

)
. (61)

The terms (53)–(56) and (58)–(61) are similar to the counterparts of the Reynolds
stress equation without using the double-averaging procedure. Actually, for example, the
addition of P̃ij and P′′ ij just gives the usual production term of 〈u′ iu′ j〉. On the other hand,
the final terms in (52) and (57) originate from the double-averaging procedure. These terms,
P̃ ij and P ′′ ij, are defined by

P ′′ ij = −
〈

ũ′′`u′′ j
∂ũi

∂x`

〉
−
〈

ũ′′`u′′ i
∂ũj

∂x`

〉
= −P̃ ij, (62)

and represent the transfer rates between the coherent and incoherent components. Here,
the dispersion part of the incoherent Reynolds stress is defined by

ũ′′ iu′′ j = u′′ iu′′ j −
〈

u′′ iu′′ j
〉

. (63)

If we add (52) and (57), these two terms cancel each other out, and will not contribute
to the budget of the total Reynolds stress 〈u′u′〉 but to the transfer between the coherent and

incoherent components. The dispersion part of the incoherent Reynolds stress ũ′′`u′′ j (63)
coupled with the spatial structure of the coherent motion, ∂ũj/∂x`, the turbulent stress are
transferred between the coherent and incoherent components.

Taking the contraction of i and j in (52) and (57), we obtain the evolution equations of
the coherent and incoherent energies as(

∂

∂t
+ 〈u〉 · ∇

)〈
1
2

ũ2
〉

= P̃− ε̃ +∇ · T̃ +

〈
ũ′′`u′′m

∂ũm

∂x`

〉
, (64)

(
∂

∂t
+ 〈u〉 · ∇

)〈
1
2

u′′2
〉

= P′′ − ε′′ +∇ · T′′ −
〈

ũ′′`u′′m
∂ũm

∂x`

〉
, (65)

where P̃ and P′′ are the production rates, ε̃ and ε′′ are the dissipation rates,∇ · T̃ and∇ · T′′
is the transport rate of the coherent and incoherent turbulent energies, respectively. The
final terms in (64) and (65) represent the energy transfer rates between the coherent and
incoherent turbulent energies. They are denoted by

PK′′ = −
〈

ũ′′`u′′m
∂ũm

∂x`

〉
= −PK̃. (66)

If we approximate the dispersion part of the Reynolds stress by the eddy viscosity-type
model by

ũ′′`u′′m ' −ν̃
∂ũm

∂x`
, (67)

the energy transfer rate from the coherent to incoherent fluctuations, PK′′ , is expressed as

PK′′ = −
〈

ũ′′`u′′m
∂ũm

∂x`

〉
' +ν̃

(
∂ũm

∂x`

)2
> 0. (68)

As (66) shows, the sink of the coherent fluctuation energy, PK̃ < 0, corresponds to the
production of the incoherent fluctuation energy, PK′′ > 0. In this case, the kinetic energy
of the plume or coherent fluctuation motion driven by the surface cooling is transferred
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towards the kinetic energy of the random or incoherent fluctuation motions as schematically
depicted in Figure 6.

Cooling

Plume

(Coherent fluctuation)

Random noise

(Incoherent fluctuation)
PK"

Figure 6. Schematic picture of the interaction between the coherent and incoherent fluctuations.
Plumes (coherent fluctuations, depicted by thick black curved lines) are driven by the surface cooling.
The energy of the plume motions are transferred to the energy of the random noise (incoherent
fluctuation, depicted by gray circle eddies) by the interaction PK′′ if PK′′ > 0.

In this picture, the diving plumes driven by the surface cooling enhances the turbulent
transport through the non-equilibrium effect along the plume motions. During this process,
the energy of plumes (coherent fluctuations) is transferred to the energy of random noises
(incoherent fluctuations) through the inhomogeneous motions of plumes ∇ũ coupled with
the incoherent fluctuations ũ′′u′′. Of course, there are several other mechanisms such as the
production P′′, dissipation ε′′, etc. in (65), that contribute to the evolution of the incoherent
fluctuation energy 〈u′′2〉. In this sense, the present picture is a fairly simplified one.

With the non-equilibrium effect, the energy transfer rate to the incoherent component
of the fluctuation is written as

PK′′ = −
〈

ũ′′`u′′m
∂ũm

∂x`

〉
' +ν̃

(
1− Λ̃D

)(∂ũm

∂x`

)2
. (69)

As the DNSs of the surface cooling case show (Figure 4), the non-equilibrium-effect
coefficient Λ̃D is negative:

Λ̃D < 0. (70)

In this case, the energy transfer to the incoherent or random fluctuation is enhanced by
the non-equilibrium turbulence effect along the plume motion. This matches the tendency
of the surface cooling-driven convection case. The presence of the diving plumes strongly
enhances the turbulence mixing through the non-equilibrium effect. This picture is based
on several simplifications, but still suggests the importance of the non-equilibrium effect
associated with the plume motions in the turbulent transport in convection.

6. Conclusions

Linear gradient-transport-type turbulence models for the turbulent fluxes with the
eddy viscosity and diffusivity representation work poorly in some turbulent flows. For
example, the K–ε turbulence model based on the eddy viscosity νT = CνK2/ε cannot be
applied to the homogeneous-shear turbulence; it leads to the overestimation of K and ε.
Convective turbulence with plumes/jets and supersonic turbulence accompanying shocks
constitute other examples. Simulations with a simple linear model provide substantially
over- or underestimated turbulent transports (turbulent viscosity, mass flux, heat flux,
etc.). To rectify this deficiency of linear gradient-transport models, in this work, the non-
equilibrium effect mediated by the streamwise variation in turbulence are incorporated into
the turbulence model. A turbulence model with these effects implemented in combination
was proposed. In the model, in addition to the usual eddy viscosity and diffusivity
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representations for the turbulent transports, deviations from the simple representations
due to the non-equilibrium effect are taken into account.

Relevance of the non-equilibrium effects was argued with utilizing recent elaborated
experiments in turbulent jets and plumes. It was pointed out that the expected results of
the non-equilibrium effect on turbulent transports in the turbulent jets and plumes are
transport enhancement or suppression due to the non-equilibrium effect (depending on
the turbulence variation along the jets/plumes). These evaluations of turbulent transports
seem to be in preferable directions to correct the discrepant results obtained from simple
conventional gradient-transport-type models.
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Appendix A. Non-Equilibrium Turbulent Energy from the Two-Scale
Direct-Interaction Approximation Analysis

From the two-scale direct-interaction approximation (TSDIA) analysis, the turbulent
energy K(≡ 〈u′2〉/2) is known to be expressed in terms of as [30]

K =
∫

dk Q(k; τ, τ)−
∫

dk
∫ τ

−∞
dτ1 G(k, X; τ, τ1)

DQ(k, X; τ, τ1)

DT
, (A1)

where Q(k, X; τ, τ′, T) and G(k, X; τ, τ′, T) are the energy spectral function and the response
function defined by

Q(k, X; τ, τ′, T) = σ(k, X; T) exp
[
−ω(k, X; T)|τ − τ′|

]
, (A2)

G(k, X; τ, τ′, T) = H(k, τ − τ′) exp
[
−ω(k, X; T)(τ − τ′)

]
, (A3)

respectively. Here the Heaviside step function defined by

H(x) =
{

1 for x ≥ 0,
0 for x < 0,

(A4)

and
σ(k, X; T) = σ0ε(X, T)2/3k−11/3, (A5)

ω(k, X; T) = ω0ε(X, T)1/3k2/3. (A6)
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As we see below, Equation (A5) corresponds to the Kolmogorov scaling of homoge-
neous and isotropic equilibrium turbulence.

Substituting (A2)–(A6) into Equation (A1), we have

K =
∫

dk σ(k, X; T) exp[−ω(k, X; T)|τ − τ|]

−
∫

dk
∫ τ

−∞
dτ1H(τ − τ1) exp[−ω(k, X; T)(τ − τ1)] (A7)

× D
DT

σ(k, X; T) exp[−ω(k, X; T)|τ − τ1|]

The first term of (A7) denoted by KE is evaluated as

KE =
∫

dk σ(k, X; T) exp[−ω(k, X; T)|τ − τ|]

= 4π
∫ ∞

kC

dk k2σ0ε2/3k−11/3 = 4πσ0

∫ ∞

kC

dk ε2/3k−5/3, (A8)

where
kC = 2π/`C (A9)

is the infrared cut-off wave number representing the largest eddy size of turbulence, `C.
We further introduce the scale transformation

s = k/kC (A10)

to express the relative scale based on the infrared cut-off wave number. With this length
scale, the equilibrium energy part can be expressed as

KE = 4πσ0ε2/3kC

∫
s≥1

ds s−5/3 = 6πσ0ε2/3k−2/3
C

= 3(2π)1/3σ0ε2/3`2/3
C . (A11)

The second term in (A7) represents the non-equilibrium effect on the turbulent energy.
This part is evaluated as

KN = −
∫

dk
∫ τ

−∞
dτ1H(τ − τ1) exp[−ω(k, X; T)(τ − τ1)]

× D
DT

σ(k, X; T) exp[−ω(k, X; T)|τ − τ1|]

= −
∫

dk
∫ τ

−∞
dτ1

Dσ(k, X; T)
DT

exp[−2ω(k, X; T)(τ − τ1)]

+
∫

dk
∫ τ

−∞
dτ1(τ − τ1)σ(k, X; T)

Dω

DT
exp[−2ω(k, X; T)(τ − τ1)] (A12)

= −
[

4π
∫

k2dk
1

2ω

Dσ

DT
exp[−2ω(k, X, T)(τ − τ1)]

]τ

τ1=−∞

+

[
4π
∫

dk k2 σ

2ω2
Dω

DT
exp[−2ω(k, X; T)(τ − τ1)]

]τ

τ1=−∞

= −2π
∫

dk k2
(

1
ω

Dσ

DT
− σ

2ω2
Dω

DT

)
Here, in integration with respect to τ1, we integrated by parts, and used the fact that

neither σ nor ω explicitly depend on τ1. With Equations (A5) and (A6), (A12) is calculated as

KN = −π
σ0

ω0
k−4/3

C ε−2/3 Dε

DT
+

π

6
σ0

ω0
ε1/3k−7/3

C
DkC

DT
. (A13)
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It follows from Equation (A9) that the non-equilibrium part of the energy is expressed
in terms of ε and `C as

KN = −1
2
(2π)−1/3 σ0

ω0
ε−2/3`4/3

C
Dε

DT
− 1

12
(2π)−4/3 σ0

ω0
ε1/3`1/3

C
D`C

DT
. (A14)

With the addition of (A11), the turbulent energy is expressed as

K = 3(2π)1/3σ0ε2/3`2/3
C − 1

2
(2π)−1/3 σ0

ω0
ε−2/3`4/3

C
Dε

DT
− 1

12
(2π)−4/3 σ0

ω0
ε1/3`1/3

C
D`C

DT
, (A15)

or with model constants CK1, CK2 and CK3, the expression for the turbulent kinetic energy
is written as

K = CK1ε2/3`2/3
C − CK2ε−3/2`4/3

C
Dε

Dt
− CK3ε1/3`1/3

C
D`C

Dt
, (A16)

where the model constants are defined as

CK1 = 3(2π)1/3σ0, CK2 =
1
2
(2π)−1/3 σ0

ω0
, CK3 =

1
12

(2π)−4/3 σ0

ω0
. (A17)

Equation (A16) is Equation (20) in Section 3.
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