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Abstract: Due to the spillover nature of air pollution, the territorial separate governance mode is
ineffective in combating pollution, making Joint Prevention and Control of Air Pollution (JPCAP)
among multiple regions the only viable option. However, determining the appropriate scopes and
priorities for JPCAP is known to be a challenging and significant issue. To address this, we propose
a new two-stage hybrid model. In the first stage, making use of long-term, wide area monitoring
data provided by the air pollution monitoring network, we propose a new method for subdividing
large regions into sub-regions by using data mining techniques. In the second stage, we propose a
comprehensive decision-making framework to evaluate the priorities of JPCAP sub-regions from
three different perspectives, namely, the impact of a sub-region on the pollution level of the entire
target region, as well as the urgency and elasticity of sub-regional air pollution control. A case study
is conducted on 27 cities of the Yangtze River Delta region of China. The case study demonstrates the
validity and practicality of the proposed two-stage hybrid model. This work provides a viable tool
for the effective implementation of air pollution control in China and other regions of the world.

Keywords: regional air pollution; regional scope; priority evaluation; JPCAP

1. Introduction

With China’s rapid urbanization, air pollution dominated by PM2.5 (the smallest
category of particles, with an aerodynamic equivalent diameter of 2.5 µm or less) has
emerged as a persistent problem in recent years that urgently requires a solution [1]. Since
2015, the number of days with PM2.5 as the main pollutant has accounted for 66.8% of
the total pollution days in China [2]. PM2.5 poses a serious risk to human health [3,4],
and long-term exposure may cause respiratory and cardiovascular diseases [5]. PM2.5-
related deaths in China have increased by approximately 23% in the last 15 years [6].
Although China’s current air quality has improved significantly, the concentration of PM2.5
in residents’ living environment remains over 6 times higher than the standard set by the
World Health Organization [7,8]. The Chinese government has considered air pollution
to be a high priority political issue [9]. Accordingly, the control of PM2.5 pollution has
received extensive research attention.

The atmosphere is a very complicated system. As a pollutant, PM2.5 is suscep-
tible to transboundary transport via atmospheric circulation, resulting in regional air
pollution [10–12]. Hence, the air quality in one city could be highly influenced by neigh-
boring cities [13]. McDuffie et al. investigated the formation and development of air
pollution [14]. Greenstone et al. focused on transboundary pollution dispersion and interac-
tion to investigate the migration and spillover effects of atmospheric pollutants [15]. Crippa
et al. studied the spatial and temporal variability of regional air pollution in China [16].
These studies have indicated that PM2.5 in Chinese cities is significantly influenced by re-
gional transboundary transport. The regional characteristics of atmospheric pollution have
triggered many scholars to draw attention to joint pollution control [17–19]. Tomson et al.
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investigated the air pollution control of individual cities at the microscopic level [20]. Zou et
al. discussed the joint control of regional air pollution from a macroscopic perspective [21].
Song et al. analyzed the barriers existing in regional air pollution joint control and their
effects [22]. Zhou et al. investigated the cost-effectiveness of regional air pollution joint
control [23]. These studies have shown that joint air pollution control in specific regions is
more effective and efficient than implementing a single pollution control plan in each city.

Furthermore, numerous practical applications have shown that implementing Joint
Prevention and Control of Air Pollution (JPCAP) could effectively alleviate regional air
pollution problems [18,24,25]. To strengthen the joint governance of air pollution, China
has formulated and implemented a series of relevant policies. China designated 13 key joint
governance regions for the air pollution control based on the level of economic development
and the severity of air pollution in 2012 [26]. To ensure good air quality in Beijing during the
Asia-Pacific Economic Cooperation (APEC) period, Beijing and five neighboring provinces
implemented a stringent JPCAP. The joint policy produced excellent results, giving rise
to the “APEC Blue” phenomenon [27]. To improve the ambient air quality in the Beijing-
Tianjin-Hebei region and surrounding areas, Chinese government formulated a joint control
policy involving 28 cities (including 2 municipalities and 26 prefecture-level cities, referred
to as the policy of the “2 + 26” cities) in 2017 [28]. However, China’s current regional
environmental governance cooperation disregards the spatial and temporal heterogeneity
of air pollution [29,30]. The majority of joint control regions heavily overlap the scope
of urban economic zones, resulting in an overly broad scope of joint control regions
and difficult coordination. Furthermore, there are currently few studies investigating
JPCAP from the perspective of refined localized joint pollution control and differentiated
governance for an urban economic zone.

Since joint air pollution control is more effective and efficient than implementing
a single pollution control plan in individual cities [31–33], the scientific formulation for
JPCAP is a reliable path to improving both local and global air quality levels [34]. There are
currently few long-term JPCAP practices in China, and the key JPCAP elements (such as
the scopes and priorities of joint control regions) require further clarification [6,35]. There
are two major families of methods for determining the region scopes of JPCAP, one based
on economic and social development status and the other on Air Basin theory [36,37]. The
former’s application in China includes the joint control regions of Beijing-Tianjin-Hebei,
Yangtze River Delta (YRD), and Pearl River Delta [38]. The latter application practices
include the Southern California Coastal Air Pollution Control Zone in the United States
and the Acid Rain Control Zone and Sulfur Dioxide Pollution Control Zone in China [19].
However, both of two family methods have flaws. The former disregards the impact of a
number of factors on regional division, such as local terrain, climate, pollutant transmission,
and pollutant composition. The latter fails to account for administrative division, which
will impede future coordination of joint control regions.

Regional air quality is the result of a combination of multiple factors such as regional
geographical conditions, meteorological conditions, economic development status, popula-
tion distribution, industrial structure, and pollution emissions [10,39,40]. On the one hand,
the level of pollution transmission between cities is heavily influenced by geographical and
meteorological conditions [10,12]. On the other hand, the pollution emission characteristics
of each city are significantly influenced by its economic development status, population
distribution, industrial structure, and pollution emission [40]. Many studies have shown
that the focus and difficulty of regional air pollution control lies in reducing and weakening
the degree of interaction between sub-regions of the target region [12,41]. Therefore, cities
with high pollution transmission and similar emission characteristics should be clustered
together for joint pollution control [42]. Given that long-term pollutant monitoring data
is in fact the result of a combination of geographical, meteorological, economic, and so-
cial factors, cities with the most correlated pollutant monitoring data should be divided
into the same JPCAP sub-region. In this paper, we will explore a novel idea of deter-
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mining the scopes of JPCAP sub-regions by analyzing and mining long-term pollutant
monitoring data.

To further enhance air pollution control in China, it is imperative to implement more
refined localized joint control and differentiated governance within urban economic zones
that are densely populated and highly industrialized. This study proposes a novel two-
stage hybrid model to address the challenges of determining the scopes and priorities of
JPCAP sub-regions. Based on air pollutant monitoring data sequences from January 2016
to December 2021 (72-month study period), the cities in the target region are first classified
using the hierarchical cluster analysis. The issue of determining the optimal cluster partition
is a significant and challenging one, and this work employs the silhouette coefficient to
evaluate the quality of each cluster partition. As the quality of cluster partitions improve,
the silhouette coefficients increase. Therefore, the optimal cluster partition can be identified
by means of the silhouette coefficient. A multi-criteria decision-making framework is
proposed to determine the sub-regional governance priority for JPCAP by defining three
indicators: health damage caused by sub-regional air pollution, the impact of sub-regional
pollution on the entire region, and the elasticity in sub-regional air pollution control. Next,
we propose a weighted ViseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)
method to support the decision-making process. Its advantage lies in that it considers
not only the maximization of group utility (namely, total score across all indicators) and
minimization of individual regret (namely, the lowest score of all indicators), but also the
weighting of evaluation indicators, making the decision more rational.

The primary contributions of this study are as follows.

• We define an indicator system to evaluate the priority of JPCAP sub-regions for air
pollution control, including the impact of a sub-region on the pollution level of the
entire region, as well as the urgency and elasticity of sub-regional air pollution control.

• We propose a new two-stage hybrid model based on the data mining techniques and
multi-attribute decision making method for determining the appropriate scopes and
priorities of JPCAP sub-regions.

• This work conducts a case study with 27 cities in the YRD region. The experimental
results demonstrate that the proposed model is scientific and reasonable.

The remainder of this paper is organized as follows. Section 2 describes the proposed
two-stage hybrid model in detail. In Section 3, we apply the proposed model to a case
study region, and analyze the results further. Finally, the conclusion and policy implication
is presented in Section 4.

2. Methods

As previously stated, the implementation and optimization of JPCAP for a specific
region is critical for controlling air pollution. In this paper, we propose a new two-stage
hybrid model for determining the scopes and priorities of JPCAP sub-regions, laying the
groundwork for effective regional joint air pollution control. In particular, in the first
stage, we propose a method for determining the scope of the joint action based on regional
long-term pollution monitoring data. In the second stage, we first identify the key elements
of regional joint air pollution control and define an evaluation indicator system for joint
action priorities. Then we propose a method for prioritizing JPCAP sub-regions based on
the multi-attribute comprehensive evaluation theory. Figure 1 depicts the process of the
proposed two-stage hybrid model for determining the scopes and priorities of air pollution
control, which is detailed below.
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Figure 1. The flowchart of the proposed two-stage hybrid model.

2.1. Stage 1: Determining the Sub-Regional Scopes of JPCAP Based on an Extended Hierarchical
Cluster Analysis Technique

Many studies have shown that the focus and difficulty of regional air pollution control
lies in reducing and weakening the degree of interaction between sub-regions of the entire
region [35,43]. Cities with high pollution transmission and similar emission characteristics
should be clustered together for joint governance. The goal of this stage is to divide a large
target region with m cities into several sub-regions using the hierarchical clustering analysis
and silhouette coefficient, and the specific steps are as follows.

i: Based on long-term and wide-area air pollutant monitoring data, we conduct air
pollution correlation analysis between cities in the target region with the Pearson cor-
relation coefficient, and construct a correlation matrix P = (rij)m×m on m cities, where
rij refers to the correlation between city i (i = 1, 2, . . . , m) and city j (j = 1, 2, . . . , m).

ii: Divide the cities of the target region into different clusters by means of agglomerative
hierarchical clustering. At first, consider each city to be a separate cluster. Then, we
merge the two clusters with the highest correlation coefficient to form a new cluster.
Repeat the procedure until all clusters have been assigned to a large cluster.

iii: Identify the optimal cluster partition by means of the silhouette coefficient. Researchers
frequently use the cohesion and separation coefficients to evaluate the quality of cluster
partition [44]. The cohesion coefficient quantifies the degree of agglomeration of cities
within a cluster by quantifying the similarity of any city to other cities in the cluster.
The separation coefficient assesses the degree of separation of cities between clusters by
quantifying the distance of any city from cities in other clusters. It’s worth noting that
the distance between cities is the inverse of their similarity. The silhouette coefficient,
which combines the effects of intra-cluster cohesion and inter-cluster separation, is
thus more rational. According to the silhouette coefficient definition, the larger the
silhouette coefficient is, the tighter the connections within clusters and the sparser
connections between clusters are. The cluster partition with the highest silhouette
coefficient is optimal and should be chosen.

2.2. Stage 2: Determining the Priorities of JPCAP Sub-Regions Based on a Comprehensive
Decision-Making Framework

Regional differentiation governance in JPCAP is directly related to the cost-effectiveness
of air pollution control, which can be improved through reasonable sub-regional priority
setting. To assign appropriate priorities to sub-regions of JPCAP, a new weighted VIKOR
method is proposed in this work. Firstly, we define three evaluation indicators from var-
ious perspectives, namely, the impact of a sub-region on the pollution level of the entire
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region, as well as the urgency and elasticity of sub-regional air pollution control. Secondly,
we construct a decision matrix and develop an optimization method for determining the
indicator weights. Finally, we prioritize JPCAP sub-regions using the weighted VIKOR
method. The specific process is as follows.

2.2.1. Define Evaluation Indicators

In this paper, we determine the joint action priorities of JPCAP sub-regions by taking
into account the impact of sub-regional pollution on the entire region, as well as the urgency
and elasticity of sub-regional air pollution control, avoiding the one-dimensional analysis
that results from only considering pollutant concentrations. First of all, the degree of
impact of a sub-region on the pollution level of the entire region should be used as an
evaluation indicator. Sub-regions that have a greater impact on the entire region should
be prioritized. Next, the ultimate purpose of JPCAP is to reduce the health damage from
air pollution. Hence, it is necessary to define a pollution control urgency indicator for a
sub-region from the perspective of reducing the health damage caused by sub-regional air
pollution. Moreover, each sub-region has a different elasticity of pollution control (i.e., the
natural variation in the level of a pollutant) from others due to its different geographical
location, climate, and pollution purification conditions. Thus, we choose the elasticity of
sub-regional air pollution control as one of the evaluation indicators in this study. The three
evaluation indicators are defined in detail below.

First, Imi denotes the impact of the pollution from sub-region i (i = 1, 2, . . . , k, where
k is the number of sub-regions) on the entire region. The impact depends mainly on
two factors: the correlation of the pollution and the sub-region area. Sli denotes the
correlation between sub-region i (i = 1, 2, . . . , k) and the entire region regarding the air
pollutant monitoring data sequences. Specifically, a linear regression is performed on the
two monitoring data sequences, and the slope of the linear function is taken to denote
the correlation degree. Ari denotes the area of sub-region i (i = 1, 2, . . . , k), and ∑k

j=1 Arj
represents the area of the entire region. Therefore, the correlation Sli can be expressed by
Equation (1) and the impact Imi of sub-region i can be presented by Equation (2). The
definition details are as follows

Sli =
Trp− ci

Srpi
, (1)

Imi = Sli ×
Ari

∑k
j=1 Arj

, (2)

where Trp represents the daily average concentration of a pollutant in the entire region, and
Srpi denotes the daily average concentration of a pollutant in sub-region i (i = 1, 2, . . . , k).
ci is a constant parameter. The greater the value of Imi is, the higher the priority for
sub-region i in implementing JPCAP is.

Second, Hdi represents the health damage from air pollution within sub-region
i (i = 1, 2, . . . , k). The health damage from pollution is the most important factor in
determining the priorities of pollution control in sub-regions. Over the years, researchers
have carried out numerous studies aimed at quantifying the health impacts of specific air
pollutants. Tang et al. discovered a significant positive correlation between the air quality
index and the respiratory illness cases after conducting a thorough data analysis [45]. Maji
et al. applied epidemiological relative risk as a metric to quantify the harmful effects of
PM2.5 concentration on health. They also offered a linear integrated exposure risk function
to calculate the PM2.5 concentration’s impact [46]. Wang et al. elucidated the complex,
nonlinear positive correlation between changes in PM2.5 concentration and corresponding
changes in health impacts [47]. Drawing upon the above findings, it is evident that no
definitive conclusion has been established regarding the mathematical relationship between
air pollution and public health damage in existing research. Since this is an unresolved
issue, there is currently no established standard to reference. To ensure alignment with the
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context of this article and the established model’s characteristics, a linear relationship be-
tween air pollution and the extent of health damage is assumed in this study. Consequently,
the mathematical relationship between air pollution concentration and health damage can
be presented by Equation (3). In sub-region i, the health damage Hdi can be calculated
by multiplying the population density Deni by the daily average concentration Daci of a
concerned air pollutant, which is defined as

Hdi = Deni × Daci, (3)

where Deni can be obtained by dividing the total population by the urban area. The higher
the value of Hd, the more urgent it is to control the pollutant in the specific sub-region.

Third, we use the elasticity of sub-regional air pollution control to express its pollution
control potential. In general, the coefficient of variation of the pollution concentration can
reflect its concentration range in a sample period. The greater the coefficient of variation is,
the greater the potential of air quality improves. Therefore, we use the long-term coefficient
of variation of the pollution concentration in a sub-region to measure the potential of pollu-
tion control. Pci represents the potential of pollution control in sub-region i (i = 1, 2, . . . , k).
This variation coefficient of pollution can be used to characterize the extent of pollutant
concentration fluctuation within a sub-region. The larger the pollutant concentration fluc-
tuation in a sub-region, the more pollution control potential there is. The Pci of sub-region
i (i = 1, 2, . . . , k) is defined as

Pci =
Sdi

Daci
, (4)

where Sdi represents the standard deviation of the daily average concentration in sub-
region i, and Daci denotes the mean of the daily average concentration in sub-region i. The
higher the value of Pci, the greater the priority of sub-region i in implementing JPCAP.

2.2.2. Construct and Weight Decision Matrix

We construct a decision matrix based on the indicators defined above and assign
weights to each indicator. The specific steps are as follows.

i: Construct the decision matrix X = (xij)k×3 = {ImT , HdT , PcT}, where k refers to
the number of sub-regions. The impact of pollution on the entire region from each
sub-region, can be calculated using Equations (1) and (2) to construct the vector
Im = {Im1, Im2, . . . , Imk}. The health damage for these sub-regions can be computed
using Equation (3) to construct the vector Hd = {Hd1, Hd2, . . . , Hdk}. The potential of
pollution control in these sub-regions, can be calculated using Equation (4) to construct
the vector Pc = {Pc1, Pc2, . . . , Pck}.

ii: Standardize the decision matrix X = (xij)k×3. Due to the different natures of the
indicators, they have different ranges or units of measurement. Thus, the decision
matrix must be standardized as follows

vij = xij × (1 +
xij − x−j

2× (x+j − x−j )
), (5)

uij =
vij

∑k
i=1

vij
k

, (6)

where x−j = min{x1j, x2j, . . . , xkj} and x+j = max{x1j, x2j, . . . , xkj}, (j = 1, 2, 3).
U = (uij)k×3 represents the standardized decision matrix.

iii: Determine the weights W = {w1, w2, w3} for three evaluation indicators. First, we
define the positive ideal solution Z+ = {u+

1 , u+
2 , u+

3 }, u+
j = max{u1j, u2j, . . . , ukj}

(j = 1, 2, 3). Second, minimize the sum of Euclidean weighted distance between
each sub-region and the positive ideal solution, and we can obtain the weights W =
{w1, w2, w3} for indicators 1 (impact of pollution, Im), 2 (health damage, Hd), and 3
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(potential of control, Pc). The proposed indicator weighting optimization method is
mathematically defined as

min ∑k
i=1 ∑3

j=1[wj(u+
j − uij)]

2, s.t. ∑3
j=1 wj = 1. (7)

iv: Obtain the weighted decision matrix Y = (yij)k×3, yij = uij × wj (i = 1, 2, . . . , k;
j = 1, 2, 3).

2.2.3. Determine the Priorities of JPCAP Based on VIKOR

As well-known, the TOPSIS and VIKOR are two common multi-criteria decision-
making methods, which are both based on an aggregating function representing “closeness
to the ideal”. The TOPSIS method determines a solution with the shortest distance to the
ideal solution and the greatest distance from the negative-ideal solution, but it does not
consider the relative importance of these distances. The VIKOR method for compromise
ranking determines a solution that balances the “group utility” of the majority with the
individual regret of the “opponent”, achieving a maximum group benefit and a minimum
individual regret [48]. In this paper, the VIKOR method is applied for the first time
to the comprehensive evaluation of JPCAP sub-region priorities in order to make more
rational decisions. The group utility of a sub-region refers to the total score across all
evaluation indicators. The individual regret of a sub-region refers to the lowest score out
of all evaluation indicators. This work employs the weighted VIKOR method to assign
appropriate priorities to the sub-regions of JPCAP.

i: Calculate the maximum group utility Si for sub-region i (i = 1, 2, . . . , k) under three
evaluation indicators, as defined below

Si = ∑3
j=1 yij. (8)

ii: Calculate the minimum individual regret value Ri for sub-region i (i = 1, 2, . . . , k), as
defined below

Ri = min
j=1,2,3

{yij}. (9)

iii: Calculate the comprehensive evaluation value Qi for sub-region i (i = 1, 2, . . . , k), as
defined below

Qi = ρ
Si − S−

S+ − S−
+ (1− ρ)

Ri − R−

R+ − R−
, (10)

where S+ = max{S1, S2, . . . , Sk}, S− = min{S1, S2, . . . , Sk}, R+ = max{R1, R2, . . . , Rk},
R− = min{R1, R2, . . . , Rk}, and ρ is a compromise factor. Without loss of generality,
we set ρ = 0.5, which means that the decision results from a compromise between
group utility and individual regret.

iv: Obtain the priorities for JPCAP sub-regions by ranking Q = {Q1, Q2, . . . , Qk} in
descending order. The top-ranked sub-regions are assigned higher priority in pollution
control.

3. An Illustrative Case
3.1. Materials

To validate the proposed model, we conduct a case study using the YRD region in
China. The YRD region is one of the most prosperous regions in China, with its large popula-
tion and industry. It is located in the lower reaches of the Yangtze River (29.20’ N, 123.25’ S),
and is bordered by the Yellow Sea and the East China Sea, as shown in Figure 2. The region
has a warm and humid subtropical climate, and the high humidity is not conducive for the
removal of pollutants from the air. The region serves as a critical policy-testing ground for
China’s implementation of the regional integration strategy. The region serves as a critical
policy-testing ground for China’s implementation of the regional integration strategy. In
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this context, it is becoming increasingly important for YRD cities to strengthen cooperation
in preventing and controlling air pollution.

Figure 2. Locations of the 27 cities in the YRD region (left) and Air Quality Index (AQI) map of China
on 18 November 2020 (right).

For any air pollutant, the proposed model in this paper can be used to optimize JPCAP
in a target region. Due to space constraints, we will just take PM2.5 as an example to
illustrate its utility.

The YRD region is one of the most heavily polluted areas in China. As a result, it has
become essential for the YRD region to implement JPCAP. The 27 cities in the YRD region
are chosen for case study, including Shanghai (SH), Nanjing (NJ), Wuxi (WX), Changzhou
(CZJ), Suzhou (SZ), Nantong (NT), Yangzhou (YZ), Zhenjiang (ZJ), Yancheng (YC), Taizhou-
Jiangsu (TZJ), Hangzhou (HAZ), Ningbo (NB), Wenzhou (WZ), Huzhou (HUZ), Jiaxing
(JX), Shaoxing (SX), Jinhua (JH), Zhoushan (ZS), Taizhou-Zhejiang (TZZ), Hefei (HF), Wuhu
(WH), Maanshan (MA), Tongling (TL), Anqing (AQ), Xuancheng (XC), Chuzhou (CHU),
and Chizhou (CHI). We collected monitoring data from January 2016 to December 2021
from the website “https://aqicn.org/map/china/cn/” (accessed on 10 January 2022),
and obtained the total of 59,130 data records for daily average PM2.5 concentration in the
27 cities. The total population and the urban area can be obtained from the Chinese city
statistical yearbook (6-year study period, from 2016 to 2021).

3.2. Results and Discussion

Our experimental results are categorized into two parts: the first pertains to the sub-
region scopes of JPCAP, while the second focuses on the priority of each sub-region. In the
following sections, we present the findings from both aspects and provide a
detailed analysis.

3.2.1. The Scopes of JPCAP Sub-Regions for the YRD Region

We utilize the correlation analysis, clustering analysis, and silhouette coefficient to
determine JPCAP’s sub-regional scopes for the YRD region. Most of the daily average
concentrations of PM2.5 in the 27 cities are strongly correlated, with the Pearson correlation
coefficients ranging from 0.58 to 0.96. SH, which is a mega-city in the study region, is
closely related to other cities except WZ, JH, AQ, CHU, CHI, and XC. The PM2.5 levels in
CHU is weakly correlated with those in the other cities, except for AQ, CHI, and XC.

The YRD 27 cities are then subjected to the hierarchical cluster analysis based on the
Pearson correlation coefficients, and the optimal cluster partition is determined by the
silhouette coefficient. The dendrogram of 11 clustering partition alternatives is presented
in Figure 3. The silhouette coefficients for these cluster partitions are shown in Figure 4.
The red dashed line represents the rate of change in the silhouette coefficient between
consecutive cluster partitions. The silhouette coefficient for the first cluster partition is 0,

https://aqicn.org/map/china/cn/
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and that for the eleventh cluster partition is 0.3189. The eighth cluster partition has the
maximum silhouette coefficient of 0.6744, indicating that this cluster partition (marked
by dotted line in Figure 5) is optimal. On this basis, the YRD region is divided into five
sub-regions, including R1 = {SH, NJ, WX, CZJ, SZ, NT, YZ, ZJ, YC, TZJ, HF, WH, MA,
TL}, R2 = {HAZ, NB, HUZ, JX, SX, ZS}, R3 = {WZ, JH, TZZ}, R4 = {AQ, CHI, XC} and
R5 = {CHU}.

Figure 3. Hierarchical cluster analysis in the YRD region based on the Pearson correlation coefficients
at the inter-city PM2.5 levels.

Figure 4. Silhouette coefficient values (blue line) and trend curve (red line) for the 11 cluster partitions
revealed by the dendrogram in Figure 3.

Although natural activities can produce PM2.5, the main sources of PM2.5 are anthro-
pogenic emissions [49,50]. Human activities can emit PM2.5 directly. Besides, they emit
certain gaseous pollutants that can be converted into PM2.5 [51,52]. The main gaseous pollu-
tants that are converted to PM2.5 are sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia
(NH3), and volatile organic compounds (VOCs) [53]. Other anthropogenic sources include
road dust, construction dust, industrial dust, and kitchen fumes. The factors affecting a
city’s PM2.5 level may be endogenous or exogenous. Endogenous factors include the city’s
industrial structure, economic development, and population, etc. Exogenous factors mainly
lie in the diffusion of PM2.5 across city boundaries [43]. The emission of PM2.5 particles from
a city can act as an exogenous factor affecting the air quality of a neighboring downwind
city. This explains why regional pollution levels are so highly correlated between adjacent
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cities. When defining the scopes of JPCAP sub-regions, both exogenous and endogenous
factors should be considered.

Figure 5. The optimal cluster partition (marked by dotted line).

In addition to forming mathematical clusters (as shown in Figure 5), the cities in each
cluster also form physically contiguous territories, as seen in Figure 6. We use ArcGIS
software (http://www.arcgis.com, accessed on 1 February 2022) to produce an initial draft
of the map, which was subsequently refined to create the final version depicted in Figure 6.
It would be difficult for cities separated by a large geographical distance to collaborate in
JPCAP implementation. To some extent, this indicates that our JPCAP region division is
practical. SH, NJ, WX, CZJ, SZ, NT, YZ, ZJ, YC, TZJ, HF, WH, MA, and TL are grouped
into R1. There are no significant geographical barriers between these cities. Furthermore,
the cities in R1 have a highly mobile population that travels between these cities. HAZ,
NB, HUZ, JX, SX, and ZS in R2, are also physically close and have a similar industrial
structure, such as e-commerce industry, textile industry, and light manufacturing, etc.
There are evident geographical barriers between sub-regions R1 and R4, as well as between
sub-regions R2 and R3, such as mountains (Jingting Mountain, Tiantai Mountain) and
huge water body (Taihu Lake). CHU alone forms a distinct sub-region R5 located in the
northwest corner of the study region, separated from the rest by high mountains (Langya
and Ta-pieh Mountains). High mountains prevent the diffusion of air pollutants and Large
area water bodies reduce the diffusion impact, which should be the main reasons for the
low Pearson coefficient of air pollution between sub-regions.

Based on these analysis, the JPCAP’s sub-regional scopes derived from the proposed
model are consistent with the regional context, indicating that our work of determining
the scopes of JPCAP sub-regions has practical implications. In contrast with geographical
boundaries such as mountains and bodies of water, which physically interfere with pollu-
tant transport, municipal administrative boundaries cannot be used as the basis for scoping
sub-regions. In fact, one of the key aspects of JPCAP is that it breaks down administrative
boundaries and persuades cities in the identical group to cooperate to implement JPCAP,
which is highly correlated with the regional integration strategy in China.

http://www.arcgis.com
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Figure 6. The scopes of air pollution control for the YRD region. Note that the white area located in
the center is Taihu Lake.

3.2.2. The Priorities of JPCAP Sub-Regions for the YRD Region

Before applying the proposed weighted VIKOR method to determine the priorities of
JPCAP sub-regions, it is necessary to identify and calculate three evaluation indicators. To
calculate the impact of sub-regions on the entire region, we utilized one-dimensional linear
regression. The results are presented in Table 1. Additionally, Table 2 displays the health
damage (Hd) for the five sub-regions. Table 3 shows that there is no significant difference
in pollution control potential among the sub-regions, with R4 exhibiting slightly higher
pollution control potential compared to the other sub-regions.

Table 1. Results of the indicator Im.

Sub-Region Sl Area Im

R1 0.803 96,273 0.3172
R2 1.005 67,240 0.2773
R3 1.025 32,605 0.1371
R4 0.979 34,201 0.1374
R5 0.159 13,398 0.0087

Table 2. Results of the indicator Hd.

Sub-Region Population Den Dac Hd

R1 97,462,700 1012.36 45.4499 46,011
R2 30,947,800 459.03 35.2251 16,171
R3 19,146,200 587.22 32.5873 19,135
R4 5,806,700 169.78 50.1151 8508
R5 4,079,000 304.45 58.8516 17,917

Table 3. Results of the indicator Pc.

Sub-Region Sd Dac Pc

R1 26.5049 45.4499 0.5833
R2 20.8202 35.2251 0.5911
R3 17.0860 32.5873 0.5243
R4 29.8719 50.1151 0.5961
R5 31.3316 58.8516 0.5324
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In the YRD region, the impact of the pollution from each sub-region on the entire
target region depends mainly on two factors: the pollution correlation and the sub-region
area. PM2.5 from the five sub-regions has a significant impact on the YRD region. Among
the five sub-regions, R1 has the strongest impact on the entire region, followed by R2, and
R5 has the smallest impact. The health damage (Hd) is highest for R1 (46,011) and lowest
for R4 (8508). Both R2, R3 and R5 have health damage levels over 15,000, which are also at
a relatively high level. R1 has a large population (97.5 million people), accounting for 63%
of the YRD region’s total population. The health damage of air pollution to human living
in R1 is significantly higher than that of other sub-regions. Protecting public health is the
top priority, so R1 should have a higher priority for controlling and preventing PM2.5 than
other sub-regions. Compared to the health damage Hd and the pollution impact Im, there
is less difference among the potential Pc of PM2.5 control for the five sub-regions. The Pc
value of R4 is highest, followed by R2 and R1. The sub-regions with higher Pc values have
the potential to achieve more significant effects in controlling PM2.5.

The proposed weighted VIKOR method was then utilized to calculate the priorities
of the five JPCAP sub-regions in the YRD region. Table 4 presents the resulting outcomes.
Figure 7 clearly shows that R1 > R3 > R2 > R4 > R5. Sub-region R1, which includes SH,
NJ, WX, CZJ, SZ, NT, YZ, ZJ, YC, TZJ, HF, WH, MA, and TL, should control and prevent
PM2.5 most urgently. The priority is the lowest for R5.

Table 4. Results of JPCAP prioritization.

Sub-Region S R Q Priority

R1 1.5039 0.9176 1.0000 1
R2 1.0537 0.4904 0.3648 2
R3 0.9800 0.4809 0.3146 3
R4 0.8446 0.4684 0.2271 4
R5 0.6178 0.3573 0.0000 5

Figure 7. The priorities of JPCAP sub-regions for the YRD region. Note that the white area located in
the center is Taihu Lake.

Sub-region R2 ranks second for implementing JPCAP, followed by R3. Sub-region R2
contains six cities and is larger than other three regions, so it will have a greater impact
on the pollution levels in the YRD region. This gives R2 higher priority than R3 for
implementing JPCAP. From a practical point of view, it’s worth noting that the cities in R2
are adjacent to Shanghai. Driven by cooperation with Shanghai, these cities have updated
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their industries from traditional manufacturing to emerging industries, such as the new
materials industry, new energy industry, and e-commerce industry, which produce lower
pollutant emissions than traditional manufacturing. In contrast, the pillar industry of JH
is automobile manufacturing, which is strongly associated with the metal manufacturing
industry. During metal production, many fine particles are generated both from the metal
extraction processes and combustion of fuel to drive these processes. During the automobile
manufacturing process, the friction between metals and the cutting and shaping of car parts
produce metal powders that float in the air and easily form PM2.5. The industries of WZ are
dominated by power generation, clothing, footwear, and automobile industries, etc. Coal-
fired power plants emit a large amount of air pollutants, which has a significant negative
impact on the air quality of nearby areas. The footwear industries generate large amounts
of leather granules during the process of cutting and stitching of footwear. Similarly, the
major industries in TZZ include power generation, automobile manufacturing, and plastic
molding, etc, which generate large amounts of dust. These factors explain why R2 has a
higher priority than R3 in implementing JPCAP. Our findings reveal that the urgency of
pollution control varies throughout YRD’s sub-regions, owing to differences in population
structure, industrial structure, and pollution situation, etc.

Weighting the three indicators is one of the focuses of this work, so it is essential to
validate our indicator weighting method. We compare the proposed weighted VIKOR
analysis with the classical VIKOR analysis (where the weights of the three indicators are the
same, namely 1/3). The prioritization results differ between the weighted and unweighted
experiments. The result of the latter is R1 > R3 > R2 > R4 > R5, that is, R2 and R3 change
their priorities compared with the weighted VIKOR analysis. This change results from
an underestimation of the weight of health damage in the unweighted analysis and an
overestimation of the weight of the potential of air pollution control. Given that health
damage should be the primary consideration in the JPCAP prioritization ranking, the
priorities of R1 > R3 > R2 > R4 > R5 in the weighted analysis seem more defensible.

The aforementioned analysis indicates the scientific and practical viability of our
proposed hybrid model for dividing a large target region into several sub-regions and
evaluating their priorities. This work holds significant practical implications for promoting
efficient and effective regional joint control, improving regional air quality, and establishing
a scientific policy-making basis for regional air pollution joint control mechanisms.

4. Conclusions

JPCAP is an imperative strategy to tackle the increasingly severe regional air pollution
problem. Determining the appropriate scopes and priorities of JPCAP sub-regions is critical
to policy-making for joint air pollution control. This work proposes a two-stage hybrid
model to identify and prioritize JPCAP sub-regions based on long-term monitoring data
of air quality in the target region. In the first stage, to determine the scopes of JPCAP sub-
regions, we develop an extended hierarchical clustering analysis to group all cities of the
target region, and employ the silhouette coefficient to identify the optimal cluster partition.
In the second stage, to prioritize these JPCAP sub-regions, we construct a prioritization
decision-making framework by defining three key evaluation indicators, and propose
a weighted VIKOR method to support the decision process. These three indicators are
defined by considering the dimensions of health damage caused by sub-regional pollution,
the impact of sub-regional pollution on the entire region, and the potential of sub-regional
pollution control. The proposed weighted VIKOR method takes into account not only
the maximum group benefit and the minimum individual regret, but also the weights of
different indicators, resulting in more reasonable priority outcomes. Finally, we conduct a
case study using the YRD region, and the results demonstrate the validity of the proposed
hybrid model.

The significance of this study mainly lies in its capacity to provide a concrete and
feasible solution for implementing JPCAP in a target region, i.e. determining the scopes
and priorities of JPCAP sub-regions. When resources, capabilities, and capitals are limited,
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governments should focus on the most urgent pollution control sub-region. Compared
to the current practice of treating large regions uniformly, the proposed hybrid model
allows for differentiated governance and is more effective in coordinating resources, saving
funds, and improving air quality. Furthermore, the proposed hybrid model can be widely
extended to the joint control of various air pollution factors, such as PM10, SO2, NO2, CO,
and other air pollutants, in China and other regions of the world. The proposed model
may be reasonable and practical to air pollution control and sustainable development, and
further enrich the toolbox of air pollution control by governments around the world.
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12. Güçlü, Y.S.; Dabanlı, İ.; Şişman, E.; Şen, Z. Air quality (AQ) identification by innovative trend diagram and AQ index combinations

in Istanbul megacity. Atmos. Pollut. Res. 2019, 10, 88–96. [CrossRef]
13. Moufarrej, L.; Courcot, D.; Ledoux, F. Assessment of the PM2.5 oxidative potential in a coastal industrial city in Northern France:

Relationships with chemical composition, local emissions and long range sources. Sci. Total Environ. 2020, 748, 141448. [CrossRef]

https://aqicn.org/map/china/cn/
http://cnki.gpic.gd.cn/CSYDMirror/Yearbook
http://doi.org/10.1016/j.jenvman.2021.112827
http://www.ncbi.nlm.nih.gov/pubmed/34062428
http://dx.doi.org/10.1016/j.scitotenv.2020.141549
http://www.ncbi.nlm.nih.gov/pubmed/32814301
http://dx.doi.org/10.1016/S0140-6736(17)30505-6
http://www.ncbi.nlm.nih.gov/pubmed/28408086
http://dx.doi.org/10.1016/j.envint.2017.11.025
http://dx.doi.org/10.1093/cvr/cvaa025
http://dx.doi.org/10.1016/j.scitotenv.2022.156850
http://dx.doi.org/10.1016/j.jenvman.2017.03.074
http://dx.doi.org/10.1016/j.scitotenv.2017.08.254
http://dx.doi.org/10.1016/j.envsci.2018.11.020
http://dx.doi.org/10.1016/j.envpol.2017.07.093
http://dx.doi.org/10.1016/j.atmosenv.2015.06.044
http://dx.doi.org/10.1016/j.apr.2018.06.011
http://dx.doi.org/10.1016/j.scitotenv.2020.141448


Atmosphere 2023, 14, 891 15 of 16

14. McDuffie, E.E.; Smith, S.J.; O’Rourke, P.; Tibrewal, K.; Venkataraman, C.; Marais, E.A.; Zheng, B.; Crippa, M.; Brauer, M.; Martin,
R.V. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): An
application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 2020, 12, 3413–3442. [CrossRef]

15. Greenstone, M.; He, G.; Li, S.; Zou, E. China’s war on pollution: Evidence from the first 5 years. Rev. Environ. Econ. Policy 2021,
15, 281–299. [CrossRef]

16. Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G.
High resolution temporal profiles in the emissions database for global atmospheric research. Sci. Data 2020, 7, 121–137. [CrossRef]

17. Burkart, K.; Canário, P.; Breitner, S.; Schneider, A.; Scherber, K.; Andrade, H.; Alcoforado, M.J.; Endlicher, W. Interactive short-term
effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon. Environ. Pollut. 2013, 183, 54–63.
[CrossRef]

18. Xue, J.; Zhao, S.; Zhao, L.; Zhu, D.; Mao, S. Cooperative governance of inter-provincial air pollution based on a black–scholes
options pricing model. J. Clean. Prod. 2020, 277, 124031. [CrossRef]

19. Albahri, A.S.; Al-Obaidi, J.R.; Zaidan, A.A.; Albahri, O.S.; Hamid, R.A.; Zaidan, B.B.; Alamoodi, A.H.; Hashim, M. Multi-biological
laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR
methods. Int. J. Inf. Tech. Decis. 2020, 19, 1247–1269. [CrossRef]

20. Tomson, M.; Kumar, P.; Barwise, Y.; Perez, P.; Forehead, H.; French, K.; Morawska, L.; Watts, J.F. Green infrastructure for air
quality improvement in street canyons. Environ. Int. 2021, 146, 106288. [CrossRef]

21. Zou, B.; Li, S.; Lin, Y.; Wang, B.; Cao, S.; Zhao, X.; Peng, F.; Qin, N.; Guo, Q.; Feng, H.; et al. Efforts in reducing air pollution
exposure risk in China: State versus individuals. Environ. Int. 2020, 137, 105504. [CrossRef] [PubMed]

22. Song, Y.; Li, Z.; Yang, T.; Xia, Q. Does the expansion of the joint prevention and control area improve the air quality? Evidence
from China’s Jing-Jin-Ji region and surrounding areas. Sci. Total Environ. 2020, 706, 136034. [CrossRef] [PubMed]

23. Zhou, Z.; Tan, Z.; Yu, X.; Zhang, R.; Wei, Y.M.; Zhang, M.; Sun, H.; Meng, J.; Mi, Z. The health benefits and economic effects of
cooperative PM2.5 control: A cost-effectiveness game model. J. Clean. Prod. 2019, 228, 1572–1585. [CrossRef]

24. Li, H.; Ma, Y.; Duan, F.; He, K.; Zhu, L.; Huang, T.; Kimoto, T.; Ma, X.; Ma, T.; Xu, L.; et al. Typical winter haze pollution in Zibo,
an industrial city in China: Characteristics, secondary formation, and regional contribution. Environ. Pollut. 2017, 229, 339–349.
[CrossRef] [PubMed]

25. Wang, H.; Zhao, L. A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in China based
on long-term and massive data mining of pollutant concentration. Atmos. Environ. 2018, 174, 25–42. [CrossRef]

26. Liu, K.; Lin, B. Research on influencing factors of environmental pollution in China: A spatial econometric analysis. J. Clean. Prod.
2019, 206, 356–364. [CrossRef]

27. Brimblecombe, P.; Zong, H. Citizen perception of APEC blue and air pollution management. Atmos. Environ. 2019, 214, 116853.
[CrossRef]

28. Dong, J.; Liu, P.; Song, H.; Yang, D.; Yang, J.; Song, G.; Miao, C.; Zhang, J.; Zhang, L. Effects of anthropogenic precursor
emissions and meteorological conditions on PM2.5 concentrations over the “2 + 26” cities of Northern China. Environ. Pollut.
2022, 315, 120392. [CrossRef]

29. Sawut, R.; Li, Y.; Kasimu, A.; Ablat, X. Examining the spatially varying effects of climatic and environmental pollution factors on
the NDVI based on their spatially heterogeneous relationships in Bohai Rim, China. J. Hydrol. 2023, 617, 128815. [CrossRef]

30. Ariken, M.; Zhang, F.; Chan, N.W.; Kung, H. Coupling coordination analysis and spatio-temporal heterogeneity between
urbanization and eco-environment along the Silk Road Economic Belt in China. Ecol. Indic. 2021, 121, 107014. [CrossRef]

31. Zhang, N.; Ma, F.; Qin, C.; Li, Y. Spatiotemporal trends in PM2.5 levels from 2013 to 2017 and regional demarcations for joint
prevention and control of atmospheric pollution in China. Chemosphere 2018, 210, 1176–1184. [CrossRef]

32. Xie, Y.; Zhao, L.; Xue, J.; Gao, O.; Li, H.; Jiang, R.; Qiu, X.; Zhang, S. Methods for defining the scopes and priorities for joint
prevention and control of air pollution regions based on data-mining technologies. J. Clean. Prod. 2018, 185, 912–921. [CrossRef]

33. Dong, Z.; Wang, S.; Xing, J.; Chang, X.; Ding, D.; Zheng, H. Regional transport in Beijing-Tianjin-Hebei region and its changes
during 2014–2017: The impacts of meteorology and emission reduction. Sci. Total Environ. 2020, 737, 139792. [CrossRef]

34. He, J.; Zhang, L.; Yao, Z.; Che, H.; Gong, S.; Wang, M.; Zhao, M.; Jing, B. Source apportionment of particulate matter based on
numerical simulation during a severe pollution period in Tangshan, North China. Environ. Pollut. 2020, 266, 115133. [CrossRef]

35. Sun, L.; Du, J.; Li, Y.F. A new method for dividing the scopes and priorities of air pollution control based on environmental justice.
Environ. Sci. Pollut. Res. 2021, 28, 12858–12869. [CrossRef]

36. Wu, D.; Xu, Y.; Zhang, S. Will joint regional air pollution control be more cost-effective? An empirical study of China’s
Beijing–Tianjin–Hebei region. J. Environ. Manag. 2015, 149, 27–36. [CrossRef]

37. Cai, S.; Wang, Y.; Zhao, B.; Wang, S.; Chang, X.; Hao, J. The impact of the “air pollution prevention and control action plan” on
PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [CrossRef]

38. Zhang, M.; Liu, X.; Sun, X.; Wang, W. The influence of multiple environmental regulations on haze pollution: Evidence from
China. Atmos. Pollut. Res. 2020, 11, 170–179. [CrossRef]

39. Ormanova, G.; Karaca, F.; Kononova, N. Analysis of the impacts of atmospheric circulation patterns on the regional air quality
over the geographical center of the Eurasian continent. Atmos. Res. 2020, 237, 104858. [CrossRef]

40. Acheampong, A.O. Modelling for insight: Does financial development improve environmental quality? Energ. Econ. 2019,
83, 156–179. [CrossRef]

http://dx.doi.org/10.5194/essd-12-3413-2020
http://dx.doi.org/10.1086/715550
http://dx.doi.org/10.1038/s41597-020-0462-2
http://dx.doi.org/10.1016/j.envpol.2013.06.002
http://dx.doi.org/10.1016/j.jclepro.2020.124031
http://dx.doi.org/10.1142/S0219622020500285
http://dx.doi.org/10.1016/j.envint.2020.106288
http://dx.doi.org/10.1016/j.envint.2020.105504
http://www.ncbi.nlm.nih.gov/pubmed/32032774
http://dx.doi.org/10.1016/j.scitotenv.2019.136034
http://www.ncbi.nlm.nih.gov/pubmed/31846883
http://dx.doi.org/10.1016/j.jclepro.2019.04.381
http://dx.doi.org/10.1016/j.envpol.2017.05.081
http://www.ncbi.nlm.nih.gov/pubmed/28609735
http://dx.doi.org/10.1016/j.atmosenv.2017.11.027
http://dx.doi.org/10.1016/j.jclepro.2018.09.194
http://dx.doi.org/10.1016/j.atmosenv.2019.116853
http://dx.doi.org/10.1016/j.envpol.2022.120392
http://dx.doi.org/10.1016/j.jhydrol.2022.128815
http://dx.doi.org/10.1016/j.ecolind.2020.107014
http://dx.doi.org/10.1016/j.chemosphere.2018.07.142
http://dx.doi.org/10.1016/j.jclepro.2018.03.101
http://dx.doi.org/10.1016/j.scitotenv.2020.139792
http://dx.doi.org/10.1016/j.envpol.2020.115133
http://dx.doi.org/10.1007/s11356-020-11160-w
http://dx.doi.org/10.1016/j.jenvman.2014.09.032
http://dx.doi.org/10.1016/j.scitotenv.2016.11.188
http://dx.doi.org/10.1016/j.apr.2020.03.008
http://dx.doi.org/10.1016/j.atmosres.2020.104858
http://dx.doi.org/10.1016/j.eneco.2019.06.025


Atmosphere 2023, 14, 891 16 of 16

41. Yang, Y.; Zhao, L.; Wang, C.; Xue, J. Towards more effective air pollution governance strategies in China: A systematic review of
the literature. J. Clean. Prod. 2021, 297, 126724. [CrossRef]

42. Govender, P.; Sivakumar, V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review
(1980–2019). Atmos. Pollut. Res. 2020, 11, 40–56. [CrossRef]

43. Xue, J.; Xu, Y.; Zhao, L.; Wang, C.; Rasool, Z.; Ni, M.; Wang, Q.; Li, D. Air pollution option pricing model based on AQI. Atmos.
Pollut. Res. 2019, 10, 665–674. [CrossRef]

44. Yang, P.; Liu, X.; Xu, G. A dynamic weighted TOPSIS method for identifying influential nodes in complex networks. Mod. Phys.
Lett. B 2018, 32, 1850216. [CrossRef]

45. Tang, S.; Yan, Q.; Shi, W.; Wang, X.; Sun, X.; Yu, P.; Wu, J.; Xiao, Y. Measuring the impact of air pollution on respiratory infection
risk in China. Environ. Pollut. 2018, 232, 477–486. [CrossRef] [PubMed]

46. Maji, K.; Ye, W.; Arora, M.; Nagendra, S. PM2.5-related health and economic loss assessment for 338 Chinese cities. Environ. Int.
2018, 121, 392–403. [CrossRef]

47. Wang, J.; Zhang, L.; Niu, X.; Liu, Z. Effects of PM2.5 on health and economic loss: Evidence from Beijing-Tianjin-Hebei region of
China. J. Clean. Prod. 2020, 257, 120605. [CrossRef]

48. Yang, P.; Xu, G.; Chen, H. Multi-attribute ranking method for identifying key nodes in complex networks based on GRA. Int. J.
Mod. Phys. B 2018, 32, 1850363. [CrossRef]

49. Choi, J.; Park, R.J.; Lee, H.M.; Lee, S.; Jo, D.S.; Jeong, J.I.; Henze, D.K.; Woo, J.H.; Ban, S.J.; Lee, M.D.; et al. Impacts of local vs.
trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atmos.
Environ. 2019, 203, 196–205. [CrossRef]

50. Upadhyay, A.; Dey, S.; Chowdhury, S.; Goyal, P. Expected health benefits from mitigation of emissions from major anthropogenic
PM2.5 sources in India: Statistics at state level. Environ. Pollut. 2018, 242, 1817–1826. [CrossRef]

51. Ashayeri, M.; Abbasabadi, N.; Heidarinejad, M.; Stephens, B. Predicting intraurban PM2.5 concentrations using enhanced machine
learning approaches and incorporating human activity patterns. Environ. Res. 2021, 196, 110423. [CrossRef]

52. Morillas, H.; Marcaida, I.; Maguregui, M.; Upasen, S.; Gallego-Cartagena, E.; Madariaga, J.M. Identification of metals and
metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment affected by diffuse contamination. J.
Clean. Prod. 2019, 226, 369–378. [CrossRef]

53. Kim, E.; Kim, B.U.; Kim, H.C.; Kim, S. Direct and cross impacts of upwind emission control on downwind PM2.5 under various
NH3 conditions in Northeast Asia. Environ. Pollut. 2021, 268, 115794. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jclepro.2021.126724
http://dx.doi.org/10.1016/j.apr.2019.09.009
http://dx.doi.org/10.1016/j.apr.2018.10.011
http://dx.doi.org/10.1142/S0217984918502160
http://dx.doi.org/10.1016/j.envpol.2017.09.071
http://www.ncbi.nlm.nih.gov/pubmed/28966029
http://dx.doi.org/10.1016/j.envint.2018.09.024
http://dx.doi.org/10.1016/j.jclepro.2020.120605
http://dx.doi.org/10.1142/S0217979218503630
http://dx.doi.org/10.1016/j.atmosenv.2019.02.008
http://dx.doi.org/10.1016/j.envpol.2018.07.085
http://dx.doi.org/10.1016/j.envres.2020.110423
http://dx.doi.org/10.1016/j.jclepro.2019.04.063
http://dx.doi.org/10.1016/j.envpol.2020.115794

	Introduction
	Methods
	Stage 1: Determining the Sub-Regional Scopes of JPCAP Based on an Extended Hierarchical Cluster Analysis Technique
	Stage 2: Determining the Priorities of JPCAP Sub-Regions Based on a Comprehensive Decision-Making Framework
	Define Evaluation Indicators
	Construct and Weight Decision Matrix
	Determine the Priorities of JPCAP Based on VIKOR


	An Illustrative Case
	Materials
	Results and Discussion
	The Scopes of JPCAP Sub-Regions for the YRD Region
	The Priorities of JPCAP Sub-Regions for the YRD Region


	Conclusions
	References

