
Citation: Zhu, Z.; Li, H.; Zhou, X.;

Fan, S.; Xu, W.; Gong, W. A Cluster

Analysis Approach for Nocturnal

Atmospheric Boundary Layer Height

Estimation from Multi-Wavelength

Lidar. Atmosphere 2023, 14, 847.

https://doi.org/10.3390/

atmos14050847

Academic Editor: Philippe Thunis

Received: 3 April 2023

Revised: 7 May 2023

Accepted: 8 May 2023

Published: 9 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

A Cluster Analysis Approach for Nocturnal Atmospheric
Boundary Layer Height Estimation from Multi-Wavelength Lidar
Zhongmin Zhu 1,†, Hui Li 2,†, Xiangyang Zhou 1,*, Shumin Fan 3, Wenfa Xu 1 and Wei Gong 2

1 College of Information Science and Engineering, Wuchang Shouyi University, Wuhan 430064, China
2 School of Electronic Information, Wuhan University, Wuhan 430072, China
3 School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
* Correspondence: zhouxiangyang@wsyu.edu.cn
† These authors contributed equally to this work.

Abstract: The atmospheric boundary layer provides useful information about the accumulation
and diffusion of pollutants. As a fast method, remote sensing techniques are used to retrieve the
atmospheric boundary layer height (ABLH). Atmospheric detection lidar has been widely applied
for retrieving the ABLH by providing information on the vertical distribution of aerosols. However,
these previous algorithms that rely on gradient change are susceptible to residual layers. Contrary
to the use of gradient change to retrieve ABLH, in this paper, we propose using a cluster analysis
approach through multifunction lidar remote sensing techniques due to its increasing availability.
The clustering algorithm for multi-wavelength lidar data can be divided into two parts: characteristic
signal selection and selection of the classifier. First, since the separability of each type of signal is
different, careful selection of the input characteristic signal is important. We propose using Fourier
transform for all the observed signals; the most suitable characteristic signal can be determined based
on the dispersion degree of the signal in the frequency domain. Then, the performances of four
common classifiers (K-means method, Gaussian mixture model, hierarchical cluster method (HCM),
and density-based spatial clustering of applications with noise) are evaluated by comparing with the
radiosonde measurements from June 2015 to June 2016. The results show that the performance of the
HCM classifier is the best under all states (R2 = 0.84 and RMSE = 0.18 km). The findings obtained
here offer insight into ABLH remote sensing technology.

Keywords: atmospheric boundary layer; multi-wavelength lidar; cluster analysis

1. Introduction

The atmospheric boundary layer (ABL) is commonly defined as the layer of the
troposphere that is directly impacted by the Earth’s surface and its features [1]. It is
characterized by a rapid response to surface forcings, typically on a timescale of an hour or
less [2]. The boundary layer thickness is quite variable in time and space, ranging from
hundreds of meters to a few kilometers [3]. The mixing atmospheric boundary layer height
(ABLH) is an important parameter to quantify the evolution of the ABL [4,5]. Moreover, the
ABLH is directly related to the accumulation and diffusion of pollutants [6,7]. Therefore,
accurate ABLH retrieval is crucial for understanding the vertical extent of turbulent mixing,
vertical diffusion, and convective transport within the ABL.

Various profiling methods have been employed to estimate ABLHs, including ra-
diosondes (RSs), lidar, wind profile radar, and ceilometers [8–14]. Among these, RSs are
widely used in ABL research since they can determine dynamic processes in the atmo-
sphere, in particular atmospheric stability, which drives the diurnal variation of the ABL.
RSs can measure meteorological parameters directly, and thus, can determine thermally or
mechanically driven ABLs [15,16]. However, the time resolution of a radiosonde is too low,
i.e., two or three times a day (some special periods), to investigate the temporal variation of
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the ABL [17]. In contrast, lidar systems can provide atmospheric vertical information with
high temporal and spatial resolution [18,19]. A lidar system is an active remote sensing
instrument that can measure the vertical distribution of atmospheric aerosols. Atmospheric
aerosol vertical profiles are wildly used to monitor the nocturnal stable layer height, in-
ternal aerosol layers, and the nighttime residual layer height. The ABLH can be inverted
based on the aerosol vertical profiles [20–22]. For long-term observation of ABL structure
using lidar, a reliable algorithm is required to manipulate the large datasets acquired.

The principal algorithms used to determine the ABLH from lidar systems include
the gradient method, ideal profile fitting method, wavelet covariance transform (WCT)
method, and maximum variance technique [23–26], among others. Specifically, as one of the
earliest algorithms applied to the lidar system, the gradient method determines the ABLH
by searching for the local maximum gradient from the vertical aerosol profile [23]; however,
it is vulnerable to background noise. The ideal profile fitting method is designed to retrieve
the well-mixed ABLs, but it is susceptible to the effect of complex aerosol layers [24]. The
WCT method performs well when processing complex cases because the operator can select
an appropriate base function and set an appropriate threshold [25]. The commonality of
these algorithms is based on the vertical distribution of aerosol concentration to identify the
ABLH. However, the accuracies of the ABLHs retrieved by this commonality are affected
by the residual layer height. In particular, under weak convection conditions during the
nighttime, the vertical structure of the atmosphere can be divided into the stable ABL, the
residual layer, and the free atmosphere; thus, accurate determination of the ABLH using
these lidar algorithms is difficult [27,28].

To overcome the effect of the residual layer height (RLH), many novel lidar algorithms
have been developed to determine the ABLH, which have provided more insight into
ABL remote sensing [29–31]. For instance, Pal et al. [30] and Bruine et al. [31] proposed a
multi-parameter combination method that combined lidar data and meteorological data
(e.g., temperature, humidity, and stability index) to estimate ABLH. This method had good
stability and practicability; however, it depended on the corresponding meteorological
parameters and could not rely on lidar data for independent retrieval. Due to the devel-
opment of lidar system hardware technology, a multifunction lidar system can provide
the backscatter coefficients (BCs) of multiple wavelengths as well as the color ratio (CR)
and depolarization ratio (DR) information of aerosol particles. Based on a variety of lidar
signals, Toledo et al. and Liu et al. proposed a cluster analysis approach that could be ap-
plied to lidar data to retrieve the ABLH [28,32]. Its main process comprised two steps: first,
the characteristic signals representing the size scale (i.e., CR), shape (i.e., DR), or scattering
ability (i.e., BCs) of the atmospheric particles are input; then, the vertical structure of the
atmosphere is divided into the ABL category and the free atmosphere category according
to the similar characteristics of atmospheric particles in the ABL. This algorithm avoids
the effects of residual layers by combining multiple lidar signals; however, it should be
noted that the selection of the characteristic signal and the selection of the classifier are
very important for the accuracy of the ABLH [6]. As the separability of each type of signal
is different, careful selection of the input characteristic signal is crucial. Moreover, the
performance of the classifier is targeted, and therefore, it is necessary to select the most
appropriate classifier for the feature signal classification.

This study evaluates the selection of the input characteristic signal and the perfor-
mance of several different classifiers using a cluster analysis approach to obtain the ABLH.
First, taking the dual-wavelength polarization lidar as an example, the BCs, CR, and DR
are used to study the selection of the input characteristic signal. Then, the performances of
the K-means method (KM), Gaussian mixture model (GMM), hierarchical cluster method
(HCM), and density-based spatial clustering of applications with noise (DBSCAN) clas-
sifiers are compared under different ABL conditions. This comprehensive analysis will
help researchers to make decisions when deducing the ABLH using multi-wavelength lidar
data. The remainder of this work proceeds as follows: Section 2 describes the datasets used.
The methodology is detailed in Section 3, followed by a comprehensive analysis of the
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algorithm’s performance and discussions in Sections 4 and 5, respectively. In Section 6, the
key findings are summarized.

2. Study Area and Data
2.1. Lidar Data

To comprehensively test the performance of the cluster analysis approach, lidar obser-
vation data and a corresponding reference value are required. The experimental data in this
study were collected using a two-wavelength polarization lidar system. The ground-based
lidar system is located at Wuhan City Hubei Province, China [6,28]. The laser emitting
system is a Nd:YAG (Quantel CFR) laser, which emits laser wavelengths of 355 nm and
532 nm. The aerosol BCs at 355 nm and 532 nm, and the DR information at 532 nm can
be detected by this lidar system. The BC355 and BC532 are calculated by using the Fernald
method. The lidar ratios at 532 nm and 355 nm, i.e., the ratio of the extinction to the
backscattering coefficient, are assumed to be a constant over the Wuhan site (50 sr). The
aerosol CR is defined as the ratio of the BCs at 532 nm to 355 nm, and the DR is defined as
the ratio of the BC at the 532 nm perpendicular polarized channel to the 532 nm parallel
polarized channel. Moreover, the temporal and vertical resolutions of the lidar observation
data are 1 s and 7.5 m, respectively. The overlap of the lidar system is 150 m. Further
instrumental details on the parameters can be found in previous studies [33,34]. In total,
132 days of experimental data were collected from June 2015 to June 2016, and the lidar
data were averaged into hourly profiles. In addition, the observation data for cloud and
dust were removed based on an extinction coefficient > 2 km−1 and the magnitude of the
depolarization ratio [35]. The lidar data were matched with the RS data. After the screening
and matching process, a total of 52 hourly nocturnal profiles remained.

2.2. RS Data

To evaluate the performance of different classifiers, the retrieved ABLHs and RS-
determined ABLHs were compared for each classifier. The RS data used in this study were
derived from launches at Wuhan, at 20:00 local time (LT) [36]. The RS data were obtained
from the Bureau of Meteorology (Wuhan site) located at 30.37◦ N 114.08◦ E, which is 20 km
northwest of the lidar site. The Richardson number method was used to calculate the
ABLH. The lowest level at which the interpolated Ri crosses the critical value of 0.25 is
judged as the ABLH [17]. Note that if the Richardson number method failed to detect an
ABLH, the ABLH was labeled as “not identified”. In addition, it is worth noting that clouds
and dust are also forms of aerosols, and cloud or dust boundaries will be misclassified as
ABLH. After removing these cases, a total of 52 sets of matching data were obtained.

3. Methodology

The cluster analysis approach based on lidar data was first proposed by Toledo et al. [32].
Subsequently, Liu et al. [6] applied the approach to multi-wavelength lidar data to retrieve
ABLH. The precondition of the clustering algorithm is that the lidar signal can characterize
the difference in the characteristics of particles inside and outside the ABL. The clustering
algorithm classifies the particles in the vertical direction to obtain the atmospheric aerosol
category within the ABL and the free atmosphere category above the ABL; then, it defines
the junction of the category as the ABLH. The principle of the cluster analysis approach is
mainly based on the fact that aerosols in the ABL are distinctly different than those above
the ABL. The ABLH is retrieved based on the difference between the aerosol load in the
ABL and above the ABL. A case study is presented in Figure 1. The vertical structure
of the atmosphere comprises an ABL and a free atmosphere. The free atmosphere has a
small amount of aerosol particles, but the ABL contains a large amount of aerosol particles
(Figure 1a). Liu et al. [34] pointed out that the BCs (532 nm and 355 nm), DR, and color
ratio typically vary between the ABL and above-ABL air. For each observation, the profiles
of the atmosphere BC and the CR can be obtained; then, it is possible to form a set of
two-dimensional (2D) characteristic signals (Figure 1b). As the CR and BC of atmospheric
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aerosols and clean particles are different, the atmospheric particles at different heights are
concentrated in different regions of the 2D characteristic signal distribution. Therefore, the
sample points in the ABL and the sample points in the free atmosphere can be distinguished
by clustering (Figure 1c). Then, their junction can be identified as the ABLH. The ABLH
result retrieved by lidar is also compared with RS measurements. Figure 1d shows the
ABLH result at 20:00 LT.
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Figure 1. Case study of cluster analysis approach on 14 October 2015: (a) Time-height cross-section
of extinction coefficients; (b) scatter plot of the color ratio vs. the backscatter coefficients (BCs) at
532 nm; (c) classification result; (d) the ABLH result at 20:00 (LT).

When using the clustering algorithm, there are two points to note: the selection of the
input characteristic signal and the selection of the classifier. The flow chart of the cluster
analysis approach is shown in Figure 2. First, regarding characteristic signal selection,
the dual-wavelength polarized lidar system, for example, can provide BCs of 355 nm and
532 nm, as well as the aerosol CR and DR. The BC represents the backscatter intensity of
particles, the CR represents the size of the particles, and the DR indicates the shape of the
particles. Therefore, these four types of signals can form six sets of input signals: type-1 (CR
and BC532), type-2 (CR and BC355), type-3 (CR and DR), type-4 (DR and BC532), type-5 (DR
and BC355), and type-6 (BC355 and BC532). As seen in Figure 3, the 2D distributions of each
set of signals are different. This indicates that the separability of each signal type is also
different. Therefore, careful selection of the input characteristic signal is very important.
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BC532); (e) type-5 (DR and BC355); (f) type-6 (BC355 and BC532) signals.

Another point is the selection of the classifier. Common classifiers mainly include the
KM, GMM, HCM, and DBSCAN [37–41]. The principle of the KM classifier is to classify
the sample sequence by the distance between sample points; the adjacent sample points
are divided into one category. The effect of the KM classifier is that the sample points in
the category are close, while those between the categories are far away [34,38]. The GMM
classifier refers to a method based on a probabilistic model. According to the probability
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distribution of each sample point, the sample points with the same probability distribution
are grouped into one category [38]. The HCM classifier is a connected algorithm that
assumes each sample point is a category at the beginning, and then, the same category
is sought based on linkage, after which the required categories are finally formed [41].
The DBSCAN classifier is a density-based clustering method that is designed to solve the
clustering of irregular shapes. It defines a cluster as the largest set of points connected
by density, and it is able to divide a region with a sufficiently high density into clusters.
This method also works well for noisy data. However, it is very sensitive to the setting
of the search radius and density parameters [38]. The KM and GMM classifiers solve
the clustering problem of a simple distribution; however, when the data distribution is
complicated, the classification results of the KM and GMM classifiers are much lower than
those of HCM and DBSCAN classifiers. As the performance of the classifier is targeted, it is
necessary to select the most appropriate classifier for the feature signal classification. In
general, when using the clustering method to invert the ABLH classifier, it is necessary
to select the appropriate characteristic signal. At the same time, the performance of the
classifier should be evaluated. We discuss how to select the characteristic signal and
compare the performance of the classifiers in Section 4.

4. Results
4.1. Determining the Characteristic Signal

In this section, we investigate the distribution of the six signal types to determine
which type is best suited as the characteristic signal. From the physical principle, the
difference in the characteristics of aerosol particles in the ABL and molecules outside the
ABL will affect the dispersion of the characteristic signals. In other words, the more discrete
the feature signal is, the easier it is for the clustering algorithm to classify it. The selection
criterion for the characteristic signal is that the input 2D signal facilitates subsequent sample
classification. More specifically, for each type of signal, the more discrete the 2D signal,
the better the sample classification [6,28]. Therefore, we introduce fast Fourier transform
(FFT) to calculate the degree of discreteness of feature signals. After FFT, the number of the
step points of the signal in the frequency domain represents the degree of dispersion of
the signal. The more step points, the more discrete the feature signal is, making it easier
for the clustering algorithm to classify it. FFT can be performed on each type of signal,
and the dispersion degree of each type can be estimated by calculating the number of step
points in the frequency domain for each signal type. Finally, the 2D signal with the largest
dispersion is selected as the characteristic signal.

Figure 4 shows the frequency distributions of the six signal types after Fourier trans-
form at five different times, and the statistical average number of singularities for each type.
The six types of signals (types 1–6) are represented by the gray, blue, green, black, orange,
and red colors, respectively. After the Fourier transform, the distribution of each signal
type in the frequency domain can be obtained. The sample points represent the step points
of 2D signals, and the number of sample points indicates the degree of the signal dispersion.
According to this distribution, when the number of step points in the frequency domain is
more, the corresponding signal types are more discrete in the time domain, which is more
favorable for classification. From the case studies (Figure 4a–e), the number of step points
in the type-1 (gray points), type-4 (black points), and type-6 (red points) signals are more
than those in the other types. This indicates that the type-1, type-4, and type-6 signals are
more suitable as the characteristic signal. To determine which signal type is best suited as
the characteristic signal, we perform a Fourier transform on all the signals, and count the
average number of step points for each signal type. The average number of step points for
the six types of signals are 2.2, 1.6, 1, 2.2, 1.6, and 3.2, respectively (Figure 4f). The type-6
signal has the most step points, indicating that it is the most discrete signal. This result
shows that the type-6 signal is most suitable as the characteristic signal.
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4.2. Case Study

In this section, after determining the input characteristic signal, three different states of
atmospheric stability are selected to illustrate the performance of different classifiers under
different atmospheric conditions. Then, the classification results of the different classifiers
are calculated and compared with the RS-determined ABLH to evaluate the performance
of the classifier.

Figure 5 shows the clustering results for the different classifiers on 14 October 2015.
The ABLH is marked by the orange line, which is approximately 1 km above the ground.
Under this state, the ABLH is a clear boundary between the ABL and the free atmosphere
(Figure 5a), because the aerosol loading in the ABL is much larger than that above ABL.
Consequently, the BCs at 532 nm or 355 nm wavelength below 1 km are greater than those
above 1 km. The temperature profile observed by the RS at 20:00 LT is shown in Figure 5b.
It confirms that the ABLH is approximately 1 km above the ground. The clustering results
for the KM, GMM, HCM, and DBSCAN classifiers can be seen in Figure 5c–f. It can be
found that the ABLH results from different methods are similar to each other. These results
indicate that the performances of the four classifiers are similar under this state. Li et al. [42]
also pointed out that the retrieved ABLH results of various methods were similar when the
aerosols were uniformly distributed below the boundary layer.
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The clustering results for the different classifiers on 23 October 2015 are shown in
Figure 6. The black and orange lines represent ABLH and RLH, respectively. The atmo-
spheric vertical structure is divided into the stable boundary layer, residual layer, and free
atmosphere under this condition. In Figure 6a, a large number of aerosols are concentrated
below 0.4 km, forming a stable boundary layer structure. Moreover, some thin aerosol
layers are suspended at 0.4–1 km. This implies that the thin aerosol layer suspended in the
ABL would affect the retrieval of the stable ABLH. The RS observation indicates that the
ABLH is approximately 0.4 km at 20:00 LT (Figure 6b). Due to the relatively stable surface
heat transfer at nighttime, the ABL has not evolved, and the ABLH should remain at 0.4 km
during the nighttime. According to the distribution of the characteristic signal, the aerosols
in the residual layer cause a large step change in the characteristic signal. This change
may affect the accuracy of the classification results. As seen in Figure 6c,d, the KM and
GMM classifiers are affected by the residual layer, and they misjudge the top of the residual
layer as the stable ABLH. In contrast, the HCM and DBSCAN classifiers can overcome the
effect of the residual layer, and can identify the stable ABLH. These results indicate that
the performance of the HCM and DBSCAN classifiers are better than those of the KM and
GMM classifiers under the residual layer state.
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Figure 7 shows the clustering results for the different classifiers on 2 November
2015. The black and orange lines represent ABLH and RLH, respectively. Evolution of
the ABL can be observed under this state. The variations of surface temperature and
surface net radiation are shown in Figure S1. The sunset time is 17:30 LT at this case. The
surface temperature gradually decreases from 18:00 to 20:00 LT. During this period, the
boundary layer remains at a height of approximately 1 km above the ground. The RS
observation at 20:00 LT also indicates that the ABLH is approximately 1 km (Figure 7b).
This result is consistent with the lidar observation. After 20:00 LT, the cooling of the
surface temperature is completed, forming a nocturnal stable boundary layer. Due to the
weakening of atmospheric convection, some aerosols cannot mix into the stable boundary
layer. These aerosols are suspended above the ABL to form a residual layer [27,35]. The
RLH remain to be at 1 km above the ground, which the ABLH is approximately 0.3 km
above the ground. Similarly, the clustering results indicate that the performances of the
four classifiers are similar before sunset (Figure 7c–f). In contrast, the performances of the
HCM and DBSCAN classifiers are better than those of the KM and GMM classifiers after
20:00 LT. The KM and GMM classifiers wrongly judge RLH as BLH from 20:00 to 03:00 LT.
Moreover, the ABLH result of the HCM classifier has a better change trend than that of the
DBSCAN classifier.
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4.3. Classifier Performance Evaluation

To test the performance of the four classifiers, the ABLHs retrieved by the differ-
ent classifiers and the RS measurements are compared. Note that the total number of
samples is 52 after the screening and matching process. Figure 8 shows the compari-
son of the results obtained using the different classifiers and that obtained from the RS
measurements. Crosses, asterisks, triangles, and circle dots represent sample points at
March-April-May (MAM), June-July-August (JJA), September-October-November (SON),
and December-January-February (DJF), respectively. An asterisk indicates that the R passed
the statistical significance difference test (p < 0.05). The correlation coefficients between the
RS-determined ABLHs and the results of the four classifiers (KM, GMM, HCM, and DB-
SCAN) are 0.12, 0.14, 0.84, and 0.75, respectively. For K-means and GMM classifiers, some
of ABLH results are higher than the ABLH results by RS. It is affected by the residual layers.
The RLH is misjudged as ABLH by the K-means and GMM classifiers, leading to high
results. This is because the classifiers based on distance or probability distribution divide
the residual layer and the stable layer into one category when the particle characteristics
in the different layers are similar. This leads to overestimation of the ABLH results. For
the HCM and DBSCAN classifiers, the correlation coefficients are high, and the correlation
coefficient of the HCM classifier is larger than that of the DBSCAN classifier. In addition, it
worth noting that the number of samples in the DBSCAN classifier is less. The reason is
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that the DBSCAN classifier is too sensitive to the settings of the search radius and density
parameters [43–48]. It is impossible to obtain the results for all observation data when
using fixed initial parameters. The ABLH cannot be identified when the DBSCAN classifier
cannot classify the characteristic signal. The results show that the ABLH retrieved using
the HCM classifier is more consistent with that from RS measurements.
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sample points at spring (MAM), summer (JJA), autumn (SON), and winter (DJF), respectively. Each
point was calculated from the hourly average profile. A star indicates the data with significant trends
(p value < 0.05).

5. Discussion

In general, lidar-retrieved ABLH is actually to find the gradient change at the top of
the ABL [13,28]. The principle of the cluster analysis approach is to select characteristic
signals that can characterize the gradient changes at the top of the ABL, and then, retrieve
the ABLH through a classifier. Here, first, we propose a method for selecting the input
characteristic signal. The multi-wavelength lidar can provide six sets of input signals. By
performing fast Fourier transform on each signal type, the number of step points in the
frequency domain of each type is calculated to determine which signal is most suitable
as the input characteristic signal. We perform Fourier transform on all the signals and
count the average number of step points for each signal type. The results indicate that
the type-6 signal composed of BC355 and BC532 is most suitable as the input characteristic
signal. This is because the aerosols are mainly concentrated within the ABL. Backscatter
signals can effectively characterize the differences in aerosol scattering intensities inside
and outside the ABL. In contrast, the CR represents particle size and the DR represents
particle shape, which have no obvious distribution pattern in the vertical direction, and are
not recommended as characteristic signal. Next, we compare the performances of the four
classifiers; the results indicate that the HCM classifier is the most appropriate classifier for
the characteristic signal classification, because the HCM classifier performs a breakpoint
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detection according to the linkage between sample points. This ensures that once a step
point is detected in the characteristic signal, a category result is given. Under this condition,
as long as there is a difference between the residual layer and the stable layer, the stable
layer can be accurately separated. Therefore, the HCM classifier is recommended for
investigating ABL variation at nighttime as it can effectively solve the effects of the residual
layer. In addition, the HCM classifier is not suitable for cloud and dust days. The dust and
cloud layers have strong scattering characteristics, and HCM classifiers may misjudge the
tops of the cloud (dust) layer as ABLH. Some studies apply the height limitation or graph
theory to avoid the effect of the cloud (dust) layer [6,31]. However, when the top of the
ABL is mixed with the cloud (dust) layer, the ABLH retrieval based on lidar data needs
further research.

6. Conclusions

In this study, we investigate, in detail, the application of a cluster analysis approach to
ABL research. The cluster analysis approach is applied to 52 days of lidar measurements in
Wuhan for the period from June 2015 to June 2016. The process of ABLH retrieval using
a clustering algorithm can be divided into two parts: selection of the input characteristic
signal and selection of the classifier. First, regarding selection of the characteristic signal,
the dual-wavelength polarization lidar, for example, performs Fourier transform on all
the observed signals. According to the dispersion degree of the signal in the frequency
domain, the best characteristic signal can be determined, which comprises BCs at 355 nm
and 532 nm. Similarly, other researchers can use this method to filter characteristic signals
when a multifunction lidar system is used to obtain the ABLH. Then, for the selection of
the classifier, the performances of the four typical classifiers are compared under different
atmospheric states. The results indicate that the HCM classifier is more suitable under the
well-mixed and residual layer conditions. Therefore, the HCM classifier is recommended
for classifying characteristic signals when clustering algorithms are used for nocturnal
ABL research.

In this study, we attempt to utilize a cluster analysis approach to estimate nocturnal
ABLH from multi-wavelength lidar data. The advantage of this method is that it can rely
on the lidar data to stably invert the ABLH, while reducing the effects of the residual layer.
A limitation of this method is that it does not work well when those differences in aerosol
characteristics between the ABL and above-ABL air are not present. Meanwhile, it is useless
under special situations such as low cloud and dust cases. Because the clouds and dust
are also forms of aerosols, cloud or dust boundaries will be misclassified as ABLH. In
addition, due to the number limitations of observational data, we were unable to evaluate
the performance of the algorithm during the day and different seasons. It will be further
studied in the future. This study offers insight into ABL remote sensing technology.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos14050847/s1. Figure S1: The variations of surface temperature
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