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Abstract: Atmospheric pollution is a critical issue in public health systems. The simulation of at-
mospheric pollution dispersion in urban blocks, using CFD, faces several challenges, including the
complexity and inefficiency of existing CFD software, time-consuming construction of CFD urban
block geometry, and limited visualization and analysis capabilities of simulation outputs. To address
these challenges, we have developed a prototype system that couples 3DGIS and CFD for simulating,
visualizing, and analyzing atmospheric pollution dispersion. Specifically, a parallel algorithm for
coordinate transformation was designed, and the relevant commands were encapsulated to automate
the construction of geometry and meshing required for CFD simulations of urban blocks. Addition-
ally, the Fluent-based command flow was parameterized and encapsulated, enabling the automatic
generation of model calculation command flow files to simulate atmospheric pollution dispersion.
Moreover, multi-angle spatial partitioning and spatiotemporal multidimensional visualization analy-
sis were introduced to achieve an intuitive expression and analysis of CFD simulation results. The
result shows that the constructed geometry is correct, and the mesh quality meets requirements with
all values above 0.45. CPU and GPU parallel algorithms are 13.3× and 25× faster than serial. Further-
more, our case study demonstrates the developed system’s effectiveness in simulating, visualizing,
and analyzing atmospheric pollution dispersion in urban blocks.

Keywords: CFD; 3DGIS; urban blocks; atmospheric pollution dispersion simulation; GIS-coupled

1. Introduction

Atmospheric pollution has long been a paramount concern that it can cause seri-
ous harm to human health and lead to substantial economic losses. The simulation of
atmospheric pollution dispersion is necessary for the loss reduction. Computational Fluid
Dynamics (CFD) models are powerful computational and modeling tools that have been
widely used in simulation environments in many different fields, with the most common
application being the simulation of atmospheric dispersion of hazardous emissions at an
urban scale. For example, some studies have conducted simulation experiments on gas leak-
age using CFD and have shown that an increase in ambient temperature leads to an increase
in the diffusion rate of the leaked gas in both vertical and horizontal directions [1,2]. The
study by Cormier et al. [3] demonstrates how CFD can predict the consequences of liq-
uefied natural gas (LNG) releases and indicates that CFD is an effective tool that can
enhance the safety of LNG facilities. Tauseef et al. [4] and Yoshie et al. [5] simulated gas
dispersion after natural gas leakage incidents using CFD models and studied the effects of
obstacles, such as vegetation, buildings, and roads, on gas dispersion in the environment.
Siddiqui et al. [6] used a CFD model to simulate gas leakage in indoor pipelines, and
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they delineated the hazardous zone indoors based on the simulation results. To study gas
diffusion in soil caused by leakage accidents in urban buried natural gas pipelines, some re-
searchers proposed suggestions for the proper utilization of soil near the pipelines by using
fluid mechanics theory, porous media theory, and CFD models [7,8]. Using a CFD model,
Feißel et al. [9] examined how vehicle emissions affect air quality and suggested a simplified
prediction method. Schalau et al. [10] developed and validated a modified k-ε-turbulence
model in OpenFOAM v5.0 for heavy gas dispersion in built-up areas under atmospheric
conditions, and the result demonstrates that the model is reliable in prediction. Comparing
CFD simulations of pollutant dispersion with Gaussian-type models, some researchers
have found that CFD is better suited for simulating pollutant dispersion in areas with
high building density [11,12]. Artificial intelligence and data-driven models are gaining
attention in various applications due to the availability of large data. Hybrid models, such
as LSTM-ALO, ANFIS-GBO, ELM-PSOGWO, SVR-SAMOA, and ANN-EMPA, have been
proposed and applied to agriculture and environmental prediction [13–17]. Nowadays,
deep learning models, such as the Short-Term Memory network (LSTM), the Convolutional
Neural Network (CNN), and the Recurrent Neural Network (RNN), have found wide
application in predicting atmospheric pollutants across different spatial and temporal
scales [18–26]. Some researchers have combined LSTM and CNN models, considering the
spatial and temporal correlations in data, to improve the performance of the prediction
model [27,28].

Fluent software, as the most widely used CFD package, has accumulated various
physical models and developed more efficient numerical techniques. However, due to the
inclusion of numerous models and parameters to meet the demands of different fields,
Fluent software is complex and has a high learning curve. To address this issue, researchers
have explored custom development based on Fluent software and achieved certain results
in various fields. For example, by studying the command flow log files of Gambit, a pre-
processing software for Fluent, some researchers have conducted secondary development
that improved modeling efficiency and made it easier for researchers to use Fluent software,
enabling them to focus on model solving and analysis of computational results [29–32]. To
reduce simulation workload for users, Xiao et al. [33] implemented batch processing for
specific computational problems using parameters extracted from Fluent’s journal files. Li
et al. solved the derived equations of motion electromagnetic field control through Fluent’s
User-Defined Scalars (UDS) [34].

However, CFD calculation outputs often lack geospatial coordinate information, mak-
ing it difficult to analyze spatiotemporal characteristics. Fortunately, Three-dimensional
Geographic Information Systems (3DGIS) offer advantages in spatial data management
and visual analysis, allowing for real-world objects to be abstracted into three-dimensional
data for immersive display and powerful spatial analysis. Combining GIS and CFD models
allows for exploitation of existing GIS data and the visualization and mapping capabilities
of GIS. In recent years, there has been growing interest in the coupling of CFD and GIS.
Murakami [35] concluded that GIS data structures are well suited for constructing complex
CFD geometric models. Chu et al. [36] extracted the coordinates and heights of building
polygons from GIS software and used them as input to the CFD pre-processing software
for constructing a CFD geometric model. Coirier et al. [37] proposed a method to construct
urban block models required for CFD simulations based on GIS data and conducted atmo-
spheric pollution dispersion simulations using the model. Wong et al. [38] investigated
the efficiency of using GIS data in CFD models and the sensitivity of the CFD results to
different GIS data formats and discovered that raster format was more efficient, and contour
data demanded considerable effort. Hooff [39] constructed a high-quality CFD geometric
model of an urban residential area by importing GIS data into the CFD pre-processing
software and simulated wind and thermal environments based on the geometric model.
Maohui Zheng et al. [40] combined GIS and CFD software to simulate the dispersion of
toxic gases in urban blocks and concluded that coupling GIS software with CFD software
provides better visualization of the pollutant dispersion in complex buildings. Yunkai
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Xu [41] proposed a method to build complex urban building complexes for CFD simulation
based on ArcGIS software and completed the loose coupling between Fluent software and
ArcGIS software through intermediate data files. Xiaoyu Jiao [42] proposed a research
scheme for coupling GIS and CFD for traffic pollutant dispersion simulation. Shouzhi
Chang et al. [43] integrated CFD and GIS to identify and construct urban ventilation corri-
dors (UVCs) in Changchun City, China. Wenzhong Wang et al. [44] investigated the import
of Digital Elevation Model (DEM) data from GIS into the CFD pre-processing software
ICEM CFD for three-dimensional model construction and meshing. They then simulated
the target wind farm area based on the mesh file and analyzed the obtained wind velocity
flow field vector map.

Although the coupling of GIS and CFD has been widely applied in various fields,
such as atmospheric pollution dispersion simulation, and some achievements have been
made, the coupling is mostly achieved through loose coupling, which involves complex
interoperation and data conversion between independent software. Therefore, this study
aims to present a tight coupling model of GIS and CFD for atmospheric pollution dispersion
simulation. To achieve this, we utilized the following approaches. Firstly, to overcome the
time-consuming pre-processing involved in CFD-based simulations of atmospheric pollu-
tion dispersion in urban blocks, we designed a high-performance CPU/GPU coordinate
parallel transformation algorithm and encapsulated geometry construction and meshing
commands using a parametric design method. This approach eliminated the data barrier
between GIS and ICEM CFD, enabling rapid and automatic geometry construction and
meshing. Secondly, to address the issue of CFD software requiring complex parameter
inputs to cater to the demands of different fields, we examined CFD models related to
atmospheric dispersion and proposed a Fluent GUI (Graphical User Interface) command
flow parameterization design method and a TUI (Text-based User Interface) command flow
encapsulation method. This made it possible to solve CFD atmospheric pollution disper-
sion models. Thirdly, to address the issue of CFD model outputs lacking geographic spatial
coordinate information, which makes it difficult to display and analyze the spatiotem-
poral characteristics of pollution dispersion, we propose the use of multi-angle spatial
partitioning and spatiotemporal multidimensional visualization analysis. This enables
intuitive expression and analysis of simulation results, facilitating the understanding of
pollution dispersion in urban blocks. Finally, leveraging the proposed methods and the
tight coupling concept of GIS and CFD, we developed a user-friendly prototype system for
simulating, visualizing, and analyzing atmospheric pollution dispersion in urban blocks,
which significantly reduces the research threshold of CFD in pollution source dispersion.
The system makes it easier for researchers or decision-makers to study and analyze air
pollution in urban blocks and is expected to be an efficient tool to reduce property and
human casualties caused by sudden pollution source leaks. For illustrative purposes, the
three-dimensional characteristics of pollutant dispersion will be analyzed for a mixed
residential and commercial area in Fuzhou.

2. Methodology
2.1. Introduction of ICEM CFD and Fluent Software

ICEM CFD and Fluent are two CFD software tools developed by ANSYS, Inc. Our
coupling strategy relied on these two software tools to generate high-quality meshes and
simulate fluid flow and pollutant dispersion in urban blocks. ICEM CFD is a pre-processing
tool and primarily designed for mesh generation and geometry preparation, and it offers a
range of mesh types, including structured and unstructured meshes. Fluent, on the other
hand, is a powerful CFD solver that can simulate complex fluid flow and heat transfer
problems, including atmospheric pollution dispersion. It features a variety of turbulence
models, such as the k-ε turbulence model, to accurately capture the behavior of turbulent
flows. Both ICEM CFD and Fluent are widely used in academic research and industrial
applications for simulating fluid flow and heat transfer problems.
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2.2. Automatic Geometry Construction and Meshing

Construction and meshing of urban block geometry is the foundation for atmospheric
pollution dispersion simulations. Traditional CFD pre-processing software utilizes manual
geometric modeling or a large number of coordinate inputs for geometry construction.
For urban blocks containing considerable building complexes, this process is complex,
time-consuming, and cannot meet the demands of near-real-time simulations. In this paper,
we propose a parametric design method to generate a command flow file for geometry
construction and meshing, and we ultimately achieve automatic construction and meshing
of urban block geometry. The technical roadmap is illustrated in Figure 1.
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Figure 1. Technical roadmap of automatic construction and meshing of urban block geometry model.
“*” represents a wildcard character, and “*.msh” denotes a mesh file format utilized to define the
computational grid in CFD simulations.

2.2.1. Extraction of Geometry Coordinates

The research objects of urban block geometry are the building complexes within the
entire simulation area. As the shapes of individual buildings can be complex, they are
simplified as regular polyhedrons composed of vertices, edges, and faces, with the number
of vertices varying depending on the shape of the building (In GIS, some features that
appear to be a straight line at first glance are actually composed of multiple vertices when
zoomed in). In this study, we assume that the buildings are solid with flat roofs. The
constituent elements of a building with a rectangular parallelepiped shape are shown in
Figure 2.
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The geometry coordinates of the building complex in the urban block are obtained
in the following three steps: (1) Based on the spatial topological containment relation-
ship, using the simulation area boundary vector data as query object and the building
vector data as queried object, all building objects within the simulation area are obtained,
denoted as Bi = {Bi|i = 0, 1, 2 . . . m};. (2) Each obtained building object is composed of
faces made up of vertices, with each vertex represented by its longitude and latitude
coordinates (λ, ϕ). All vertex coordinates that make up each building object are saved
in clockwise order, and the height attribute Z of each building object is read. The co-
ordinate of each vertex is denoted as Pj =

{
λj, ϕj, Z

∣∣j = 0, 1, 2 . . . n
}

;. (3) Repeat step
2 for all building objects in the simulation area to obtain all geometry coordinate data
BiPj =

{
λij, ϕij, Zi

∣∣i = 0, 1, 2 . . . m, j = 1, 2 . . . n
}

.

2.2.2. Parallel Approach-Based Coordinate Conversion of Building Complex

The process of computing the corresponding plane coordinates (X, Y) from the given
geographic coordinates (λ, ϕ) in a spherical coordinate system using the Gaussian pro-
jection is called the forward Gaussian projection. The formula for the forward Gaussian
projection is as follows:

θ =

arctan
(

b2

a2 ×
tan ϕ

cos(λ−3zoneID+1.5)

)
arctan

(
b2

a2 ×
tan ϕ

cos(λ−6zoneID+3)

) (1)

X =
∫ θ

0
a/
√

cos θ2 +
(

a2/b2 × sin θ2
)

dθ (2)

Y = r cos θ tan(λ− 6× zoneID + 3) + 500000 (3)

where a and b are the semi-major and semi-minor axes of the Earth ellipsoid, respectively, ϕ is
the latitude (radian value), λ is the longitude (radian value), zoneID is the zone number of the
current location, and X, Y represent the corresponding plane coordinates to be computed.

As the forward Gaussian projection involves a definite integral solution process, and
the simulation area of urban block typically contains a large number of building vertices,
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using conventional CPU-based serial algorithms based on Gaussian projection for the
conversion of all acquired BiPj data into plane coordinates under the Cartesian coordinate
system can be time-consuming. To improve the efficiency of coordinate conversion, two ap-
proaches of coordinate conversion, namely, CPU parallel and GPU parallel, are investigated
in this section.

The CPU serial algorithm converts the coordinate data of building vertices one by
one. Only after the conversion of one vertex is completed, can the conversion of the
next vertex proceed. As a result, each vertex conversion occupies only a small amount
of CPU resources, leaving a significant portion of CPU resources idle. To address this
issue, we propose a CPU-based parallel coordinate conversion algorithm that processes
the conversion of coordinates for multiple buildings in parallel, with each building being
treated as a single unit. This approach enables the simultaneous conversion of coordinates
for multiple buildings at the same time. Using buildings as parallel units also effectively
avoids the problem of reduced parallel efficiency caused by frequent thread switching due
to excessively small parallel units.

As can be seen in Figure 3a, the building object is used as a parallel unit, and a cached
thread pool technique is applied to call all available threads from the thread pool to perform
forward Gaussian projection on the read geographic coordinates of multiple buildings
simultaneously. A lock mechanism is then used to ensure the thread-safe storage of the
converted coordinates until the conversion of all the read building geographic coordinates
is completed.
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Although CPUs serve as the control core of an operating system, they are not well-
suited for large-scale computationally intensive parallel operations. In contrast, GPUs are
specifically designed for concurrent computation of large-scale data with highly uniform
and non-dependent types. Therefore, based on CUDA, a NVIDIA’s general-purpose parallel
computing architecture, a GPU parallel coordinate conversion algorithm is proposed.

The CUDA framework employs a grid-based and block-based organization of GPU
threads, with each grid and block organized in a two- or three-dimensional matrix. Nev-
ertheless, as the number of vertices in each building varies, organizing GPU threads into
a two-dimensional matrix may result in unused threads during coordinate conversion of
buildings with a low number of vertices, as demonstrated in Figure 4.
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To address this issue, as can be seen in Figure 3b, the two-dimensional set BiPj needs
to be converted into a one-dimensional set for storage. This involves reformatting the data
of each row, which contain all vertex data for a single building, to a format where each
row only contains data for a single vertex. Then, GPU threads are organized using a one-
dimensional grid and one-dimensional block. In addition, the CUDA also provides four
built-in variables, gridDim, blockDim, blockIdx, and threadIdx, to determine the unique
identifier for each thread. Specifically, each thread with a unique ID executes the conversion
of vertex coordinate at the corresponding ID in the one-dimensional set. The detailed
algorithm is demonstrated in Algorithm 1.

2.2.3. Parametric Design Method for Geometry Construction and Meshing

The ICEM CFD software does not provide any secondary development APIs, but it
does offer a command flow file for batch processing. In order to automate geometry con-
struction and meshing, we have encapsulated the relevant commands using a parametric
design method to generate command flow files for the relevant operations.

As the urban block buildings studied in this paper are treated as regular cubes, the
construction of the simplified building in ICEM CFD software requires three steps: (1)
creating the top vertices and bottom vertices, (2) creating the top, bottom, and side edges by
connecting adjacent vertices, and (3) creating the top, bottom, and side faces of the building
by connecting adjacent edges. To illustrate the script command for creating a point, the
script command flow is as follows:

ic_point{}GEOMpnt.000, 0, 0 (4)

where the command “ic_point {}” creates a point in the GEOM group with the name pnt.00
at the location (x, y, z) of (0, 0, 0). All variables, except for the “ic_point {}” command,
can be changed. Therefore, all variables in the command flow can be parameterized
and encapsulated in a “CreatePoint” method. Similarly, we can encapsulate methods for
“edge”, “face”, “group”, and other command flows. The detailed flowchart of the automatic
construction method of the geometry is shown in Figure 5.
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Algorithm 1. Algorithm steps of the parallel GPU coordinate conversion of building complex vertices in CUDA-based framework.
GPU parallel calculation of building vertex geographic coordinates to plane coordinates

Input: Coordinates of all building vertices λϕZ_in← {BiPj}, Number of all building vertices n
Output: Space Cartesian coordinates of all building vertices after conversion XYZ_out← {XYZi}

1 function __global__ Kernel(XYZ_out, λϕZ_in, n)//GPU-side functions
2 id← (blockIdx.x * blockDim.x) + threadIdx.x//Get thread id
3 if id < n do//Perform coordinate conversion for threads that meet the condition
4 //Perform forward Gaussian projection
5 λϕZ← λϕZ_in[id]
6 X, Y, Z = GaussianForward(λϕZ)
7 XYZ_out[id]← X, Y, Z//Store the converted coordinates
8 end if
9 end function
10 function __host__ buildsProjection(XYZ_out, λϕZ_in, n)//CPU-side functions
11 //Apply for space on the device end
12 cudaMalloc(dev_λϕZ_in, . . . ), cudaMalloc(dev_ XYZ_out, . . . )
13 //Copy data from host side to device side
14 cudaMemcpy(dev_λϕZ_in, λϕZ_in, . . . )
15 cudaMemcpy(dev_XYZ_out, XYZ_out, . . . )
16 block← blockMax/2, grid = (n − 0.5)/block + 1//Design CUDA thread organization
17 Kernel<<<grid,block>>>(dev_XYZ_out, dev_λϕZ_in, n)//Call core functions
18 //Copy the calculation results from the device side back to the host side
19 cudaMemcpy(XYZ_out, dev_XYZ_out, . . . )
20 //Release space requested on the device side
21 cudaFree(dev_λϕZ_in), cudaFree(dev_XYZ_out)
22 end function
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ICEM CFD offers two meshing methods for geometry: structured and unstructured
meshing. Structured meshing requires a predefined grid topology with a fixed number of
nodes and elements, and it has strict geometric rules, such as the edges of adjacent cells
needing to be aligned. This means that a significant amount of manual adjustments and
corrections are required during structured meshing, increasing the difficulty and complexity
of automated operations and making it unsuitable for large-scale simulations. On the other
hand, unstructured meshing does not require predefined grids and does not need to
follow strict geometric rules, making it easier to generate meshes for a variety of different
geometries. It has a fixed sequence of steps and is easier to parameterize. Therefore, despite
the fact that the building vector data in this study is composed of regular polyhedrons,
unstructured meshing is more suitable due to the complexity and scale of the urban block
as a whole and the need for automation. The unstructured meshing process typically
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involves the following steps: (1) creating a geometry, (2) setting meshing parameters,
(3) saving a TETIN file representing the geometry (*.tin), (4) running the tetrahedral mesh
generator, (5) smoothing the mesh elements, (6) saving the final unstructured mesh (*.uns),
and (7) generating the mesh (*.msh). The necessary commands are shown in Table 1.

Table 1. Unstructured mesh related operations corresponding to the commands.

Operations Commands

setting the global meshing parameters ic_set_meshing_params global
setting geometric parameters for a specific geometry family ic_geo_set_family_params

generating a tetrahedral mesh ic_run_tetra
smoothing the mesh elements ic_smooth_elements

saving the generated unstructured mesh ic_save_unstruct
executing a user-defined script or external program ic_exec

For instance, to generate a TETIN file that represents the geometry, the command
ic_save_tetinfileonly_visible is used. Here, “file” is a placeholder for the name of the
TETIN file that will be generated (*.tin). The parameter “only_visible” indicates whether
only the visible parts of the geometry will be included in the TETIN file. The “only_visible”
option indicates that, during meshing or output, only the visible parts of the geometry
will be saved according to the current view, while the parts that are invisible or obstructed
by other objects in the geometry will not be saved or included in the output file. The
default value for this parameter is 0, which saves all parts of the geometry. Similar to the
above-mentioned strategy, the command can be encapsulated in the “SaveModel” method,
and other commands can also be encapsulated in their corresponding methods.

2.3. Fluent-Based Solution for Atmospheric Dispersion Models

The CFD software ANSYS Fluent has complex parameter input designed to meet
the needs of various fields, and it does not provide secondary development APIs. In this
section, we examine CFD models related to atmospheric dispersion and propose a Fluent
GUI (Graphical User Interface) command flow parameterization design method and a TUI
(Text-based User Interface) command flow encapsulation method to indirectly provide
secondary development APIs for Fluent. Finally, we implement automated generation of
model solver command flow files for the calculation of atmospheric pollution dispersion
models in Fluent. The technical roadmap is illustrated in Figure 6.
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2.3.1. GUI Command Flow Parameterization Design Method

By manually operating the Fluent software, a Journal File (*.jou) can be generated
to record a sequence of actions performed in the GUI. For example, a command flow
generated by specifying a boundary condition for a particular zone is:

(cx− gui− docx− set− list− selections“BoundaryConditionsTable1List2(Zone)”‘(1)) (5)

This command selects the second item (index 1) in the list named “Boundary Con-
ditionsTable1List2 (Zone)” in the Fluent GUI. While this index number is variable and
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not available to external programs, the name of the corresponding bounding area (e.g.,
inlet1) can be determined. Thus, the index can be replaced with the name, which is the
key to parametric design of the GUI and allows for the parameterized encapsulation of
Fluent-related operational command flows.

2.3.2. TUI Command Flow Encapsulation Method

The Fluent GUI command flow is not well organized and requires a call window
display, making its execution relatively inefficient. In contrast, Fluent TUI commands can
be directly entered and executed in Fluent’s Console or saved as a log file (*.jou) in a text
editor for later execution by Fluent. A TUI command is composed of a directory and a
command, where the directory is selected first, followed by executing the corresponding
command under that directory. Fluent TUI provides 14 categories of first-level directories,
each corresponding to a functional description listed in Table 2.

Table 2. Fluent TUI first-level directory commands.

Directory Name Functional Descriptions

adapt/ contains commands related to mesh adaptation
adjoint/ contains commands related to adjoint solver

define/ contains commands to define materials, boundary conditions, and other
simulation parameters

display/ contains commands to control the display of the Fluent GUI
file/ contains commands to import or export files

mesh/ contains commands related to mesh generation and manipulation
parallel/ contains commands related to parallel

plot/ contains commands to create plots and animations
report/ contains commands to generate reports, such as force or mass reports
server/ contains commands to control the Fluent server
solve/ contains commands related to the solution of the fluid problem

surface/ contains commands related to surface modeling
turbo/ contains commands related to turbomachinery simulation
views/ contains commands to create, save, and restore views of the Fluent GUI

For example, the TUI command used to define a boundary condition is:

/define/boundary− conditions/velocity− inletinlet1n n y y n 10 n 101325 (6)

where “/define/boundary-conditions/” refers to the directory in which the command
is located, “velocity-inlet” specifies the type of boundary condition, and “inlet1” is the
name of the boundary. The input options for the command vary depending on the model
being used. For instance, if the viscous model is set to Laminar and all other models are
turned off, the necessary options would be the boundary name, velocity method (which
has three options: “Magnitude and Direction”, “Components”, and “Magnitude, Normal to
boundary”), reference frame (which has two options: “Absolute” and “Relative to Adjacent
Cell Zone”), velocity magnitude, and initial gauge pressure. In the command, “n” and
“y” represent “no” and “yes,” respectively. For example, “n n y” indicates the third one
of velocity methods, and “y” indicates the first one of reference frames. The velocity
magnitude is set to 10 m/s, and “n” preceding the velocity magnitude indicates no use of a
velocity profile. Similarly, “n” preceding the initial gauge pressure indicates no use of a
profile for the initial gauge pressure, which is set to 101,325 Pa. Note that, when selecting
the first reference frame option, the command is simply “y”, not “y n”, and when selecting
the second reference frame option, the command is “n y.” The other commands follow the
same pattern.

As we can see, there are two major challenges in using TUI commands: (1) the
parameters are not fixed and may vary depending on the specific models being used, and
(2) the parameters are often represented in the form of “n” and “y”, which can be difficult
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to interpret. In this study, an object-oriented approach is used to encapsulate the TUI
command flow of each function into easy-to-use functional objects.

As an example of the encapsulation process for the TUI command of setting boundary
conditions mentioned above, the process is illustrated in Figure 7. Simulating urban air
pollution dispersion involves four models: energy equation, turbulence model, radiation
model, and species model. Based on our research on Fluent TUI commands, ten interfaces
need to be designed. The boundary conditions involve five types: velocity-inlet, pressure-
inlet, mass-flow-inlet, pressure-outlet, and mass-flow-outlet, which correspond to five
methods under each of the ten interfaces. After designing the interfaces, an implementation
class is provided to implement all the interfaces. However, due to the complexity of
Fluent software operations, each method in the implementation class involves numerous
parameters, so the parameters of each method are encapsulated into a parameter class.
Finally, a boundary condition setting class (BoundaryConditionSet) is designed, which is
accessible for developers.
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2.4. Visualization and Analysis of Simulation Outputs

After the simulation is finished, Fluent stores the relevant calculation values of the
entire study area in a binary text file, including node numbers, XYZ coordinates, pressure
values, XYZ velocity components, velocity magnitude, velocity angle, and mass fractions
of different materials at the corresponding coordinate positions. As a result of these
simulation outputs being in text format, they are typically used for visualization and
analysis outside of GIS, and they have not been effectively integrated within GIS for impact
assessment. However, by coupling GIS and CFD, it is possible to perform spatiotemporal
multi-dimensional visualization and spatial analysis on simulation outputs.

2.4.1. Conversion of Simulation Outputs to 3DGIS Data

The simulation outputs are typically saved as text data and cannot be directly imported
into 3DGIS. To integrate the simulation outputs into 3DGIS, Inverse Gaussian projection is
needed to convert the outputs into 3DGIS-compatible data.

Due to the large number of nodes contained in each time step of the simulation outputs,
a considerable amount of conversion time is required. Therefore, the CPU parallel and
GPU parallel algorithms mentioned in Section 2.2.2 are required to reduce the conversion
time. The resulting converted CSV data is then transformed into a three-dimensional point
Shapefile format using the geoprocessing tool interface (IGeoProcessor) in the ArcObjects
library. The specific workflow is shown in Figure 8.
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2.4.2. Multi-Angle Spatial Partitioning of Three-dimensional Spatial Simulation Outputs

After converting each node of the simulation output to a three-dimensional vector
point, a large number of discrete three-dimensional points are spread across the entire study
area, as shown in Figure 9. Visually, only the three-dimensional vector points distributed
on the surface of the study area can be observed (blue-green points in Figure 9), while
the internal three-dimensional points are difficult to observe, as they are obscured by the
external points. To address this issue, our developed system implements the horizontal
and arbitrary direction partitioning of three-dimensional spatial simulation outputs, which
is especially useful for managing large-scale three-dimensional spatial datasets generated
from atmospheric dispersion simulations. This approach enables more efficient processing
of complex three-dimensional spatial data and facilitates more accurate and effective spatial
analysis. The flowchart is shown in Figure 10.
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The attribute query function in GIS can be used to obtain point objects located on the
horizontal cutting plane. However, since three-dimensional points have volume, simply
querying objects that satisfy the height attribute at the level of the horizontal cutting plane
is not enough. Instead, we need to query objects that fall within a certain height range
around the horizontal cutting plane, with the default range being the diameter size of the
three-dimensional point. The default diameter size of three-dimensional points in GIS is
typically 2 or 4 pixels, which is automatically adjusted based on the geographic extent and
scale of the data. Red three-dimensional vector points represent the horizontal section data
of simulation data in Figure 9 at a height of 1.5 m, as shown in Figure 11a.
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Figure 11. (a) Horizontal section data at a height of about 1.5 m. The red vector points represent
the simulated data that meet the height attribute of 1.5 m in the query; (b) Cross-sectional data cut
in any direction. Yellow cutting plane represents a plane created by the user for arbitrary direction
partitioning of simulation data, and the brownish-red vector points represent the simulation data
queried through the yellow cutting plane in space.

However, using attribute query to perform arbitrary directional partitioning can be very
complex or even impossible. Fortunately, GIS offers spatial topology query, which allows us
to obtain point objects in cutting planes oriented at any angle with respect to the dataset. The
specific steps are as follows: (1) create a baseline for the cutting plane; (2) set a symmetric
buffer on both sides of the cutting plane baseline to form the cutting plane base, with the
buffer distance defaulting to the diameter size of the discrete points; (3) stretch the cutting
plane base to form the partitioning volume; (4) conduct a spatial containment query of the
simulated vector points with the partitioning volume; (5) save the query results as a section
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layer. As shown in Figure 11b, the brownish-red three-dimensional vector points represent
the cross-sectional data of the simulation data of Figure 9 at the yellow cutting plane.

2.4.3. Spatiotemporal Multidimensional Visualization and Analysis

By tightly coupling CFD with 3DGIS, it becomes possible to directly access and
visualize the converted simulation results data in 3DGIS, enabling spatial analysis of
the simulated data. However, since atmospheric pollution dispersion is a process-based
phenomenon, the temporal expression of the simulation results is equally important as their
spatial position. Therefore, this paper investigates two mixed forms of layer visualization
and Image animation visualization to add a temporal dimension to the three-dimensional
spatial simulation result data and achieve a spatiotemporal multidimensional visualization
of the simulation result.

The steps for layer visualization are as follows: (1) partition the three-dimensional
simulation outputs of all moments based on a spatial partitioning method to obtain the
section data of interest; (2) render the section data at each moment using symbol methods,
such as the gradient color method; (3) load and display the section data of interest at each
moment in a time sequence. However, the layer-based loading approach does not provide
a dynamic view of the spatial distribution of pollutants over time. Thus, image animation
visualization is proposed based on layer visualization to solve this problem. The detailed
steps are as follows: (1) set the visibility of the rendered section layers at each moment to
ensure that only the layers at the same moment are visible and save the layer data at this
moment in the current view as images named with the time of the current moment; (2) play
the saved images in a time sequence.

2.5. Implementation of the CFD Coupled with 3DGIS

In this study, a prototype system is developed for simulating, visualizing, and ana-
lyzing atmospheric pollution dispersion based on the tight coupling model of GIS and
CFD. The user interface is shown in Figure 12. The system is built using the .NET open-
source development platform and leverages the ArcObjects component object set to create
three-dimensional virtual geographic scenes.
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Figure 13 presents the entire architecture of the prototype system, which is designed
with a three-layer structure of C/S architecture (C/S architecture stands for Client/Server
architecture. It refers to a computing model where the client-side and server-side of a
system are separated into distinct layers, with each layer responsible for different functions.
The client-side is typically responsible for user interface and presentation, while the server-
side is responsible for data storage and processing). The data storage layer mainly uses
local file system databases and commonly used geospatial databases in GIS, including
building vector data with height attributes, ANSYS ICEM CFD command flow files (*.rpl)
for automating geometry construction and meshing, ANSYS Fluent command flow files
(*.jou) for atmospheric pollution dispersion simulation calculations, simulation result data
from calculation, related data for spatial analysis of simulation results, and other data
obtained from spatial analysis. The business logic layer mainly realizes the construction of
three-dimensional virtual geographic scenes, the automatic construction of urban block
geometry and mesh, the simulation calculation of atmospheric pollution dispersion in
urban blocks, and the spatiotemporal multidimensional visualization and analysis of the
simulation result data. The representation layer is a desktop client application built on the
.NET platform.
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The system is comprised of four major modules, namely: the creation of three-
dimensional virtual geographic scenes, the automatic geometry construction and meshing
for urban blocks (indicated by the red box in Figure 12), simulation of pollution dispersion
(represented by the blue box in Figure 12), and spatiotemporal multi-dimensional visual-
ization and analysis of simulation results. A more detailed breakdown of system functions
is shown in the business logic layer of Figure 13.

Based on the approach investigated in Section 2.3, we designed two parameter-setting
modes for atmospheric pollution dispersion simulation, namely, the brief mode and the
expert mode. The former has pre-configured settings for specialized parameters, making
it suitable for users who do not have specific requirements for the assumptions of fluid
mechanics. For example, in the brief mode, CFD models only enable the energy equation,
the standard k-epsilon model, and species transport model. After setting up the pollutant
source and boundary of the study area (Figure 14), users can perform atmospheric pollution
dispersion simulation by simply using the brief mode to specify parameters, such as
pollutant source material, velocity-inlet boundary with its velocity magnitude, mass flux of
pollutant source material, and the duration of the simulation. This simplifies the model
parameter setting process and significantly reduces the learning curve for users. The
latter provides more flexibility in parameter settings, allowing the user to select and
configure parameters according to specific situations, which is ideal for users with adequate
knowledge of fluid mechanics.
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By tightly coupling GIS and CFD, users or decision makers can perform a variety of
visualization and analysis operations on simulated results, including: (1) gradual color
rendering, (2) conversion of simulated vector data to raster data using raster interpola-
tion algorithms such as the inverse distance weight method (IDW) and Kriging method,
(3) attribute query and spatial relationship query, (4) overlay analysis of the simulated data
and residential block polygon data, (5) visualization of wind field vector maps at a specific
moment, (6) multi-angle spatial partitioning, and (7) spatiotemporal multidimensional
visualization and analysis. For instance, users can use the spatial partitioning method
proposed in Section 2.3.2 to partition the simulation data for all moments, and then they can
create animations for specified sections using the Animation Demo Window (Figure 15).
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3. Experiments and Results
3.1. Study Area and Data

A rectangular area bordered by “Sangao Road”, “Gangtou Road”, “Daping Road”, and
“Lianjiang Road” was selected as the target region for atmospheric pollution dispersion
simulation in Fuzhou, China. The area consists of typical components found in an urban
block, including seven residential areas, two schools, one shopping mall, and one integrated
service department (which is a large building that houses various services). The satellite
image of the area and road network of the area can be seen in Figure 16a. The experimental
data comprises vector data of buildings in Fuzhou city and each residential area in the
simulation area. The building vector data attribute contains the number of floors of each
building, and the residential areas vector data attribute includes the name of each residential
area and its population, as shown in Figure 16b.
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3.2. Comparison of The Efficiency of Coordinate Conversion Algorithm for Building Complex

This study focuses on a simulation area containing 116 buildings and 4237 bottom
vertices, where the conversion of building vertices from geographic to plane coordinates
was implemented using CPU serial, CPU parallel, and GPU parallel Gaussian projection
algorithms. The CPU and GPU hardware-related parameters are shown in Table 3.

Table 3. Hardware-related parameter information of CPU and GPU.

Parameter CPU GPU

Model Intel(R) Xeon(R) Gold 5228 NVIDIA GeForce RTX 2080 Ti

Other properties

Number of cores: 24;
Number of logical processors: 48;

L1 cache: 1.5 MB;
L2 cache: 24.0 MB;
L3 cache: 33.0 MB

Maximum number of blocks in each dimension of
the grid: 2,147,483,647, 65,535, 65,535;

Maximum number of threads in each dimension of
a block: 1024, 1024, 64

As shown in Figure 17, the CPU serial algorithm required 4162.576 s (69.4 min) to
perform the forward projection, whereas the CPU parallel algorithm took only 314.871 s
(5.2 min), indicating an efficiency improvement of almost 13.3 times. On the other hand, the
GPU parallel algorithm took 170.277 s (2.3 min) to perform the forward projection, resulting
in an efficiency improvement of almost 25 times compared to the CPU serial algorithm and
twice as much compared to the CPU parallel algorithm. Overall, these results demonstrate
a significant enhancement in efficiency.
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Figure 17. Time consumed by different algorithms.

3.3. Validation of Geometry Construction and Meshing

Based on the geometry construction and meshing approach proposed in this study,
the generated command flow file can be executed to automatically construct the geometry
of buildings within the simulation area and perform meshing on the generated geometry.
The constructed buildings are shown in Figure 18, where the left figure is the building
vector data from the experimental data, and the right figure is the automatically generated
building geometry suitable for CFD. The comparison shows the capability of the geometry
construction function implemented in our system.
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Figure 18. Validation of automatic building construction in the simulation area. The different colors
in the figure are only used to distinguish different geometries.

The results of meshing and the bar chart of mesh quality metrics are shown in
Figures 19 and 20, respectively. In this study, the mesh quality was evaluated using the
Determinant metric, which is a measure of the distortion of each mesh element. The
horizontal axis represents the quality of the mesh, which is calculated based on the
determinant value of the Jacobian matrix, and the vertical axis represents the number
of mesh elements with the corresponding mesh quality. Higher determinant values
indicate better mesh quality. The bars with upward arrows indicate a higher number
of elements. By clicking on a specific bar in the ICEM CFD software, the exact number
of elements can be obtained. The bar chart shows that all mesh qualities are above
0.45, which meets the mesh quality requirement (0.3) of CFD simulation. Therefore, the
proposed automatic meshing approach in this paper is reliable and effective.
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3.4. Case Study of Chlorine Dispersion Simulation

The correctness and usability of the automated geometry construction and meshing
method proposed in this paper have been verified in the previous section. Therefore, in this
section, we utilize the automatically constructed geometry of buildings in the simulation
area to simulate the dispersion of chlorine. Assuming that, in the simulated area of Fuzhou
City, at the intersection of “Sangao Road” and “Lianjiang South Road” near the Metro
Cash & Carry (Fuzhou Cangshan Store), an accident occurred with a truck carrying a
large amount of chlorine, causing the leakage and dispersion. The wind speed at the
time of the accident was about 8 m/s, with a southeast wind direction, and the impact
of chemical reactions is not considered. The simulation area and boundary surfaces are
shown in Figure 21. The dimensions of the study area are as follows: the length of the
inlet-S boundary is 555 m, the length of the inlet-E boundary is 596 m, the length of the
outlet-W boundary is 684 m, and the length of the outlet-N boundary is 546 m. The height
of the study area is set to the height of the tallest building within the area, which is 20 m in
this case.
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3.4.1. Simulation Parameter Setting and Model Solving

To validate the effectiveness of the prototype system implementing the aforementioned
methods, we focused on the system’s performance, rather than the complexity of the CFD
simulation. Therefore, we opted for simple parameter settings using the brief mode of the
system. Specifically, the model is set up with the energy equation, standard k-ε turbulence
model, and species transport model. Gravity is considered in the -Z direction with a
magnitude of −9.81 m/s2. The solver type is pressure-based with the solver velocity
attribute set to absolute velocity, and the time option is set to transient. Chlorine was
added to the materials as a fluid, and the mixture consists of two gases, air and chlorine.
The inlet-S and inlet-E surfaces were set to the velocity-inlet boundary condition, while
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the pollution truck was set to mass-flow-inlet boundary condition. To simplify the flow
field, we chose to specify constant values for important parameters, such as mass flux
and velocity magnitude, instead of using profiles as boundary conditions. Specifically, the
velocity magnitude of the inlet-S was set to 8 m/s with air as the only species, while the
velocity magnitude of the inlet-E was set to 0.6 m/s with air as the only species. The mass
flux of the pollution truck was set to 6 kg/(m2-s) with chlorine gas as the only species. The
turbulent intensity was set to 5% and the turbulent viscosity ratio was set to 10 for both the
velocity-inlet and mass-flow-inlet. The outlet-W and outlet-N surface are set as outflow.
The top and bottom surfaces of the study area and the building are set up as no-slip walls.
The detailed parameters for the boundary conditions are shown in Table 4. The SIMPLEC
pressure–velocity coupling scheme is selected as the solution method. The simulation
results are saved as binary text files for the entire simulation area at each time step. The
simulation runs for 120 s with a fixed time step of 1 s, and a maximum of 20 iterations are
performed at each step.

Table 4. Boundary condition parameters for study area.

Zona Name Type Boundary Conditions

Pollution truck mass-flow-inlet

Mass Flow Method: Mass Flux;
Reference Frame: Absolute;

Mass Flux: 6 kg/(m2-s);
Initial Gauge Pressure: 0;

Direction method: Normal to Boundary;
Temperature: 300 k

inlet-S, inlet-E velocity-inlet

Velocity Method: Magnitude, Normal to boundary;
Reference Frame: Absolute;

Initial gauge Pressure: 0;
Temperature: 300 k

outlet-W, outlet-N outflow Flow Rate Weighting: 1

top and bottom surface, building wall

Wall Motion: Stationary;
Shear Condition: No Slip;

Roughness Models: Standard;
Temperature: 300 k

Based on the approach proposed in Section 2.2, our system can automatically generate
the command flow file for parameter setting described above and other related computing
operations. The ANSYS Fluent software can be invoked in the background by our devel-
oped system to execute the command flow file and complete the simulation calculation.
The residual plot after the simulation calculation is displayed in Figure 22, which shows
relatively small iterative calculation errors for the continuity equation, energy equation,
turbulence equation, velocity equation, and species transport model. Hence, the correctness
of the simulation calculation in this case can be verified.

3.4.2. Analysis of Simulation Results

In this case, the state of chlorine dispersion was simulated for each second of the
120-s time period. Figure 23 shows the chlorine gas dispersion states at every 10-s interval,
starting from the first second up to 100th second, at a height of 1.5 m on the horizontal
section. The figure reveals that, as time progresses, the overall range of chlorine dispersion
becomes increasingly larger. The high-concentration chlorine range (represented by the
red area) rapidly expands in the first 50 s, but it reaches an equilibrium state after that
under the prevailing conditions in the simulated area. This is due to the balance between
the release and consumption of chlorine within this range, which is caused by the wind
dispersing the chlorine and reducing its concentration. In contrast, the low and medium
concentration chlorine ranges continue to expand, and their trend towards an equilibrium
state is not evident. Therefore, timely actions should be taken during the early stages of
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chlorine leakage to prevent continuous leakage. Shortening the dispersion time can achieve
a reduced range of low and medium concentrations of chlorine dispersion. Additionally,
since the range of high-concentration chlorine will reach an equilibrium state quickly, its
area should be quickly locked down, and rescue efforts should be focused on those within
this range.
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The spatiotemporal multidimensional visualization presented in Figure 23 was ob-
tained through the following steps: (1) horizontal partitioning was performed on the
simulation data at a height of 1.5 m using the horizontal partitioning method; (2) the
chlorinous mass fraction field of the section data was converted into raster data using the
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raster interpolation method; (3) image animation visualization was used for visualization.
In addition to applying the aforementioned methods to the simulation data, users can also
perform other spatial analysis methods on the simulation results in the system, such as
reclassifying the pollutant mass fraction based on pollution standards to classify the study
area into regions of different pollution levels.

4. Discussion and Conclusions

Our team has been devoted to researching the application of GIS in atmospheric
pollution accidents. For example, Huang et al. [45] integrated the atmospheric dispersion
model CALPUFF with GIS, effectively integrating the numerical simulation results of the
CALPUFF model into a three-dimensional terrain scene. They also realized the dynamic
diffusion of model simulation results in the time dimension, as well as hierarchical classifi-
cation in the spatial dimension. The disaster simulation information is data calculated by
the model at a certain moment and a certain area, such as the concentration of pollutants
and the probability of casualties. Tang et al. [46] organized the disaster information in
GeoJSON format and designed a visualization method for sudden atmospheric pollution
simulation disasters based on GeoJSON, achieving the visualization of atmospheric pol-
lution disasters on mobile devices. However, we opted for a CFD model that is more
suitable for simulating atmospheric pollution dispersion within urban blocks [11,12], rather
than coupling GIS with a Gaussian model, and we successfully integrated CFD model
outputs into GIS for spatiotemporal multidimensional visualization analysis, which ef-
fectively solved the issue of the lack of geospatial information in CFD model outputs.
Furthermore, we introduced, for the first time, the tight coupling of GIS with CFD software
ICEM CFD and Fluent, not only integrating the CFD model outputs into GIS, but also
allowing users to rapidly construct the building complex geometry and meshing required
for simulating pollution dispersion within urban blocks, which resolved the complexity
and time-consuming nature of constructing the necessary geometry for CFD simulation of
urban blocks. We also encapsulated the Fluent-based command flow, indirectly providing
Fluent with secondary development APIs, and we achieved the automatic generation of
model calculation command flow files to solve atmospheric pollution dispersion model,
addressing the issue of Fluent’s high entry barrier due to its complex parameters tailored
to various fields. The specific research results are as follows:

(1) We propose an approach for automating the construction of geometry and meshing
required for CFD simulations of urban blocks. Specifically, we design both CPU
and CUDA-based GPU parallel algorithms to convert building vertex coordinates in
spherical coordinate systems to Cartesian coordinates in the plane quickly. We also
propose using a parametric design method to encapsulate geometry construction and
meshing commands to achieve automatic and rapid construction of geometry and
unstructured meshing. Through experiments on the study area, we validate that the
constructed geometry is correct, and the mesh quality meets the requirements with all
values above 0.45. Additionally, the CPU and GPU parallel algorithms are 13.3× and
25× faster than serial, respectively.

(2) We investigated CFD models related to atmospheric dispersion and proposed a
parameterization design method for Fluent GUI command flow and an encapsulation
method for TUI command flow, providing secondary development APIs for Fluent
customization. By designing simple parameter interaction interfaces, users enabled
solving CFD atmospheric dispersion models in urban blocks.

(3) We propose a spatio-temporal multidimensional visualization and analysis method
based on three-dimensional GIS for simulation results. Specifically, we developed
a method for converting CFD simulation results into three-dimensional GIS data
and achieve the coupling of CFD simulation results with three-dimensional GIS. By
using three-dimensional GIS attribute and spatial topological relationship queries, we
enable multi-angle spatial partitioning of simulation results. We also propose two
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methods for achieving spatiotemporal multidimensional visualization and animation
of simulation results: layer visualization and image animation visualization.

(4) We integrated the above-mentioned methods to develop a system coupled GIS and
CFD for atmospheric pollution dispersion simulation in urban blocks. This system
provides a user-friendly and easy-to-use tool for relevant departments and researchers
to simulate the dispersion of atmospheric pollutants in urban areas, as well as to easily
explore deep-level information.

Due to the limitation of research conditions, the research in this paper has the
following shortcomings:

(1) The geometry is constructed only considering the buildings within the urban blocks,
but not the topography, public facilities and green vegetation of the urban blocks.

(2) The coupling of 3DGIS and CFD in this study is achieved through a tight integration of
ArcGlobe and ANSYS software based on the .NET Framework technology framework.
This involves converting GIS data into the required format for geometric construction
in ICEM CFD and integrating Fluent simulation results back into GIS. All of thiese
data are stored locally on the user’s computer. Consequently, our approach requires
local access and conversion of shared data, which reduces efficiency and necessitates
the installation of third-party software, thereby making the environment configuration
complex.. In the future, open-source GIS libraries and CFD libraries can be chosen to
fully integrate 3DGIS and CFD based on the method proposed in this paper.

(3) For large simulation areas, the huge amount of vector point data generated by the
simulation results can significantly decrease the efficiency of three-dimensional visual-
ization, resulting in a poor user experience. In the future, it may be possible to explore
the use of popular front-end two-dimensional/three-dimensional map engines, such
as Cesium and Three.js, to enable three-dimensional visualization and related analysis
of simulation results on the web, which could improve efficiency and user experience.
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