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Abstract: To provide insights into the challenging problem of turbulent convection, Jack Herring
used a greatly truncated version of the complete Boussinesq equations containing only one horizontal
wavenumber. In light of later observations of a robust large-scale circulation sweeping through
convecting enclosures at high Rayleigh numbers, it is perhaps not an implausible point of view
from which to reexamine high-Rayleigh-number data. Here we compare past experimental data on
convective heat transport at high Rayleigh numbers with predictions from Herring’s model and, in
fact, find excellent agreement. The model has only one unknown parameter compared to the two free
parameters present in the lowest-order least-squares power-law fit. We discuss why the underlying
simplistic physical picture, meant to work at Rayleigh numbers slightly past the critical value of a
few thousand, is consistent with the data when the single free parameter in it is revised, over some
eleven decades of the Rayleigh number—stretching from about a million to about 1017.

Keywords: turbulent convection; heat transport; high-Rayleigh-number asymptote; ultimate state
of convection

1. Introduction

Turbulent thermal convection is a grand problem because of its importance in astro-
physical and planetary contexts and ubiquity in engineering applications from the cooling
of nuclear reactors to the cooling of computer chips. The scientific paradigm of thermal
convection is the so-called Rayleigh–Bénard convection (RBC), in which a layer of viscous
fluid between two smooth horizontal plates is heated at the bottom wall and cooled at
the top. In practice, the fluid is constrained by side walls that are non-conducting, so the
heat input to the bottom plate is communicated to the top plate entirely through the fluid
layer. A theoretical analysis of the resulting fluid flow usually incorporates the so-called
Boussinesq approximation [1]. Allowing non-Boussinesq effects opens up the problem to
many incompletely understood features [1–4].

We had earlier set out to measure the heat transfer due to turbulent convection in
a 1 m tall sample space with a diameter-to-height aspect ratio Γ = 1/2, using cryogenic
helium gas as the working fluid [5]. The purpose of using low-temperature helium gas
was to enable extremely high Rayleigh numbers (up to 1017) to be attained while keeping
conditions nearly Boussinesq (see [2] for a detailed assessment), and to take advantage
of the thermal isolation of the apparatus afforded by the cryogenic environment. The
details of the experiment and its execution are provided in [2,5] and summarized in the
following section. Our goal in this short paper is to compare the analysis of Herring [6,7]
with experimental results on heat transport measured in high-Rayleigh-number turbulent
convection. While Herring’s formula was derived for the immediate supercritical state of
convection where nonlinearities are weak, we find that it agrees with experimental data
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over 11 decades of Rayleigh number—all in the turbulent state. For an introduction to
turbulent convection and its scaling, we refer the reader to reference [8].

A few background comments are in order on the traditional framework of RBC. The
thermal driving of the flow is the temperature difference between the top and bottom plates,
which is measured in terms of the Rayleigh number, defined as

Ra =
gα∆TH3

νκ
, (1)

where g is the acceleration due to gravity, α is the isobaric thermal expansion coefficient,
∆T is the temperature difference across a vertical fluid layer of height H, and ν and κ are
the kinematic viscosity and thermal diffusivity of the fluid, respectively. The response of
the flow is the heat transport across the fluid height, measured in terms of the so-called
Nusselt number, Nu, which is the actual amount of heat transport effected by convection
to that possible (for the same ∆T) by thermal conduction alone. One could also include
the dependence of Nu on the Prandtl number, Pr = ν/κ, so a fundamental problem of
thermal convection is to determine the functional dependence of Nu on Ra and Pr. Another
response of the flow is the Reynolds number of the convective motion, but we shall not
consider it here.

As in most other turbulence problems (and for all many-body problems in 3D), RBC
also cannot be solved fully from a theoretical point of view, so there are only scaling theories.
There are two schools of thought. That due to Malkus [9] and Spiegel [10] says that

Nu = 0.073Ra1/3, (2)

with no dependence on Pr. The underlying physics is the so-called marginal stability of the
top and bottom boundary layers [11]. On the other hand, Kraichnan [12] argued that the
boundary layers will become irrelevant at very high Ra and obtained the explicit formula

Nu = CPr−1/4{Ra/log(Ra)3}1/2 (3)

on the basis of an analysis of the top and bottom boundary layers (which were particularly
incompletely understood then). Even though Kraichnan made valiant efforts to obtain
the constant C, the details are tenuous and so nothing is lost, at least for our purposes, in
regarding it as an unknown constant. See also [13,14] for similar predictions of the Rayleigh
number dependence, but they do not go into any boundary layer details.

Because Kraichnan’s formula demands very high Ra, the 1
2 -power dependence on

Ra (with logarithmic corrections), including an explicit Prandtl number dependence, is
thought to represent the “ultimate state” or the “asymptotic state” of RBC. As Spiegel [13]
remarked, the difference between formulae (2) and (3) needs to be resolved because it
would then suggest the correct physics that operates at high Ra. We will take up this
thread shortly.

From a different perspective, the weakly nonlinear theory of Herring, as summarized
by Busse [15], with a long pedigree involving Lou Howard, Willem Malkus, Paul Roberts,
and Fritz Busse, gives

Nu = D{Ra3/2ln(Ra)3/2}1/5, (4)

where the constant D = 0.24 was theoretically calculated by maximizing the heat transport
accomplished by a single wavenumber. We now examine the relevance of each formula,
(2)–(4), using experimental data described below. We emphasize that the data of [5] have
been repeated in part [16], but a completely independent effort would be desirable.

2. Brief Comments on the Experimental Data

As stated above, our goals in the experiments of Ref. [5] were to maximize the Rayleigh
number attainable and to place all high Rayleigh numbers within the turbulent regime,
for obtaining robust scaling relations. As already stated, cryogenic helium gas was used
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as the working fluid. The apparatus has been described in the above reference and is
briefly repeated here: The sample space was cylindrical in shape and 1 m tall, formed by a
thin tubular stainless steel wall 0.267 cm thick, with top and bottom heated plates 3.8 cm
in thickness and made of copper annealed under oxygen-free conditions. The thermal
conductivity of the copper was on the order of 2 kW m−1 K−1 at a temperature of roughly
5K. Serpentine thin film heaters were attached to both plates. The top plate was connected
to a helium reservoir through an adjustable thermal link and held at constant temperature
by means of a resistance bridge and servo. A constant heating was applied to the bottom
plate, and constant temperature conditions at the plate were attained after an adequate
waiting time. The sample space was insulated using radiation shields held at helium and
nitrogen temperatures within a common cryo-pumped vacuum space. Corrections were
made for a small adiabatic temperature gradient across the fluid due to the relatively large
height. An important parameter is the Biot number, comparing the thermal resistance of
the plates to that of the fluid, which remains negligibly small up to Rayleigh numbers
of 1016 where it is still under 1%. Consequently, the nature of plume generation is not
artificially limited by the thermal recovery time of the plates; it is a particular advantage of
low-temperature systems. Cryogenic helium gas has other advantages: (1) it has the lowest
kinematic viscosity of all known substances and (2) by operating the experiment close to
the critical point, the divergence of the specific heat CP means that Ra ∼ αρ2CP, where α
is thermodynamically related to CP, reaches extremely large values. Quoting from [17],
where these factors were discussed in a bit more detail, we have: “For non-interacting
gases, α = 1/T, and so, low temperatures themselves have a particular advantage for
buoyancy-driven flows. . . . In summary, it is the combination α/νκ that determines the
Rayleigh number. . . ”. There are two further advantages in using cryogenic helium: it is
possible to stay closer to the Boussinesq approximation than in other fluids while attaining
very high values of Ra, and one can achieve excellent thermal isolation as indicated above.

3. Power Laws and Herring’s Formula

The experimental data of [5] suggest a power law with a scaling exponent slightly less
than 1/3. We showed in [5] that the least squares fit to the data over the entire turbulent
range (106 < Ra < 1017) is

Nu = 0.124Ra0.309. (5)

This is indeed the simplest fit possible with two parameters: the amplitude and the
slope of a linear fit of log(Nu) vs. log(Ra). The fit (see the red dashed line in Figure 1)
is excellent for the entire data. Note that there is no ambiguity in the data that the small
difference of the exponent from 1/3 is real, perhaps to be regarded as some kind of
intermittency correction (see, for example, Ref. [17]), but there could also be other valid
reasons for this slight departure (which could be accounted for by introducing a subleading
term). Indeed, numerical simulations at high Ra in a slender convection cell [18] suggest
an exponent somewhat closer to 1/3, but it certainly appears far from the half-power in Ra.

In Figure 1 we also show as the blue dashed line Herring’s prediction for turbulent
convection between rigid boundaries, given by Equation (4), with the prefactor D = 0.06.
The prefactor, the only free parameter in the expression, was obtained by fitting the function
to the data. We note that the exponent 0.3 in Equation (4) is also applied to the ln(Ra) term
so that the effective exponent is slightly larger and, in fact, Herring’s formula fits the data as
well as the power-law fit, Equation (5), as can be seen better in Figure 2. We emphasize that,
instead of two constants of the power law, only the amplitude is an adjustable parameter in
Herring’s formula.

In fact, Figure 2 shows the raw data normalized by both fits and it is clear that each of
them is equally good and satisfactory overall. We also note that a considerable substructure
to the data exists, which could suggest various changes in the flow, as hinted in the caption
to Figure 2, while preserving the same global trend. We shall give in Section 5 a brief
interpretation of the empirically determined prefactor in Equation (4).
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Figure 1. Circles: data obtained with the 1 m tall, aspect ratio 1/2 experiment. Only a subset of the
data is plotted to make the lines visible, which would be completely masked by the data. Red solid
line: Least-squares fit to the raw data (Equation (5)). Dotted line: Nu ∼ Ra1/3 for comparison. Blue
dashed line: Herring’s model, Equation (4) with D = 0.06, this being the one free parameter in the
theory (see related text, especially Section 5). The blue and red lines are essentially indistinguishable
from each other because of their closeness.

Figure 2. Nu normalized according to Equations (4) and (5). Squares, Nu normalized by Herring’s
formula (Equation (4)). Circles, Nu normalized by the least-squares fit to the raw data (Equation (5))
with a vertical shift of +0.5 for clarity. For low Ra < 1010, say, the slope is smaller than 0.309,
reminiscent of the 2/7-th slope discussed in [19]. Our estimate is that the boundary layers in the
apparatus of [5] undergo transition at around Ra = 1013. The last decade may have been influenced
by a non-constant Prandtl number (see next section) and/or moderate non-Boussinesq effects. These
features are discussed at some length in [2].

4. Remarks on the Ultimate State

A brief historical account of the “ultimate” state is provided in the Appendix A. Here
we are content to compare the performance of the Kraichnan formula with those of the
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other two; see Figure 3. To bring them all onto one plot, we set C = 0.04 in the Kraichnan
formula and compressed the vertical scale by a factor of about 5. On this scale the bottom
two fits mask the substructure apparent in Figure 2 and are almost perfectly straight and
horizontal lines, showing that both Equations (4) and (5) work very well from a global
perspective. The Kraichnan formula is obviously far from being successful in reducing
the data to a horizontal line, so it is clear that it has no global relevance, unlike the other
two. However, the curve appears to flatten for high Ra, tantalizingly suggesting a possible
approach to the ultimate state. We shall consider this proposition below.

Figure 4 shows an enlarged plot of the Nusselt number against Ra for the last decade
and a half or so. The best fit to those data is a power-law exponent of 0.317, which is only
minutely larger (by about 2.5%) than the global exponent of 0.309 (and quite close to the
finding in [18]). No reasonable person would think that the slope is approaching a value
of half. From a slightly different perspective, Figure 5 shows the high-Ra end of the data
of Figure 3; it is clear that the tendency to flatten, which might have been inferred from
Figure 3, is an illusion caused by the compressed scale. It is not clear what functional form
the normalized data in Figure 5 should take, but, if we fit a power law to the last two
decades of Ra, it yields a power law with an exponent of −0.033.

An unstated argument sometimes adduced by the adherents of the ultimate state is to
point out that the Prandtl number was not constant in the measurements of [5] over the last
two or so decades of Ra. This behavior was discussed at length in [2] and is reproduced in
Figure 6. However, the variation of the Nusselt number on the Prandtl number is very weak
for moderate Prandtl numbers in the range encountered here (see, e.g., [20]). Thus, one
cannot argue that the rise in Prandtl number is the reason why the data do not approach
the half-power. Our conclusion could be different if the interpretation of the data has the
benefit of a precise theory for how the heat transport depends on the Prandtl number.

Figure 3. Nu normalized according to Equations (4) and (5) as in Figure 2 but with compressed
vertical scale to allow for normalization by Kraichnan’s formula to appear on the same plot. Squares,
Nu normalized by Herring’s formula (Equation (4)). Circles, Nu normalized by the least-squares fit to
the raw data, Equation (5), with a vertical shift of +1.0 for clarity. Triangles, Nu normalized according
to Kraichnan’s formula for high Ra and moderate Prandtl number (Equation (3) with C = 0.04) with
a vertical shift of +2.0 for clarity (see text). Here and in Figure 5, the dependence on the Prandtl
number is left implicit in the notation f(Ra) as applied to Equation (3).
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Figure 4. Nu vs. Ra for the highest decade and a half of Ra. Symbols: Nu evaluated using Kraichnan’s
formula (Equation (3) with C = 0.04). Line: Least-squares fit to the data giving a slope of 0.317.

Figure 5. Nu/f(Ra) vs. Ra. The data are normalized using f(Ra) from Kraichnan’s formula
(Equation (3) with C = 0.04). Dashed line: least-squares fit to the normalized data for Ra > 1015.
The slope over the last two decades is −0.033, indicating that the experimental data do not follow
Kraichnan’s formula. The prefactor 3.31 is dependent on the use of C = 0.04 in Equation (3).
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Figure 6. Prandtl number vs. Rayleigh number for the experiment of Ref. [5], showing a considerable
variation at high Ra. This variation is an artifact of approaching the critical point of cryogenic helium
gas to attain higher and higher Rayleigh numbers. This effect will be even more pronounced if one
pushes for high Ra in a smaller apparatus.

5. Discussion

The discussion here is mainly about two questions. The first question is why Herring’s
formula, derived by optimizing the heat transport by single horizontal wavenumber in
the slightly nonlinear supercritical regime, should work well for Rayleigh numbers up
to 1017. Note that the critical Rayleigh number is 1708 for RBC, and probably higher for
this aspect ratio, say a few thousand. Yet the formula seems to apply for an extraordinary
range of Rayleigh numbers within which the flow is decidedly turbulent and the range of
wavenumbers excited is continuous.

One can perhaps say that this particular success of the Herring formula is a coincidence
but that would be an unimaginative stance (given the large number of decades of Ra over
which the agreement occurs). A possible reason for this behavior can perhaps be found
in Herring’s 1966 paper [7], where he states (for free boundaries) that “The physical
picture of free boundary convective process predicted by the model is that of a large-scale
motion dominating the central region between the conducting plates. This large-scale
motion sweeps with it the temperature fluctuation field whose main variations occur in
a thin boundary layer of vertical extent 1/Nu. The horizontal scale of both the dominant
motion and the temperature fluctuation field is comparable to the distance between the
conducting plates." In actuality, this describes rather well the flow observed between rigid
boundaries at high Ra. Indeed, maintaining the same type of structures at the largest-
scale circulation that is present at lower values of supercriticality is not, in fact, unusual
(see, for example, ref. [21] for the case of turbulent wakes). Perhaps not unrelated is the
later observation by Krishnamurti and Howard [22] of a large-scale flow developing and
persisting at high Ra, a phenomenon that has been observed widely in turbulent convection.
All of this suggests that the same functional form of the relation appropriate to the weakly
nonlinear stage remains valid for the turbulent state, except that the prefactor will be
different in the two states. This observation is in the spirit of renormalization. While
these ideas are not precise, they have been implemented quantitatively in the isotropic and
homogeneous flow generated by Gaussian large-scale forcing [23]. If this same program
can be extended to convection, it would be possible formally to determine the effective
transport coefficient. Until that difficult step is completed, the present observation must be
regarded as merely suggestive.
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The second question concerns the ultimate state. We are aware that half-power occurs
in the presence of roughness [24], when convection occurs in an open-ended tube [25],
when the fluid is heated by a body force such as radiation [26], etc. For a more complete
enumeration of the possible states of convection, see [27]. As long as the continuum
equations hold and the boundary layers on smooth surfaces are intact, it appears to us
that their importance to convection will not vanish, and that theories that have no place
for viscosity and thermal diffusivity will miss an essential ingredient of the flow. We call
attention also to the recent paper by Lindborg [28], which, with some modifications of
Kraichnan’s theory, arrived at the one-third-power. We repeat that, to our knowledge,
there is no compelling evidence to date, experimental or numerical, in favor of Kraichnan’s
formula. We have made that point explicit with respect to the present data.

6. Conclusions

Jack Herring used a greatly truncated version of the complete Boussinesq equations
containing only one horizontal wavenumber and obtained a formula for calculating the
Nusselt number in the weakly nonlinear supercritical state slightly past the critical Rayleigh
number. The same formula works in the fully turbulent state extending over eleven orders
of magnitude, if the numerical prefactor is suitably replaced. In this sense, the formula
is less empirical in content than a single power law, which requires two constants to be
determined from experiment. We have discussed why such a simplistic physical picture
could work. We have also considered Kraichnan’s asymptotic formula briefly and presented
our reasoning why it does not hold for our experiment. We readily acknowledge that the
half-power law exists under different conditions of convection outside the standard RBC.
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Appendix A. A Brief History of the Half-Power Law until about the Year 2000

Here, we record the history of the half-power law as best as we know from direct
conversations with Ed Spiegel (S henceforth), Charlie Doering [29] and David Goluskin
(private communication). When KRS tried to draw K into a discussion on some details in
the late 1990’s, he was uncharacteristically adamant in his refusal to discuss any part of the
paper, even in passing. We have truncated this brief history around the year 2000, but the
relevant references of later origin are mentioned in the main body of the paper.

The originator of the half-power is thought to be Kraichnan [12]—to be referred to as
K. However, Ed Spiegel, who was K’s postdoc at the time, also developed similar ideas,
though from the somewhat different perspective of astrophysical flows. A reading of [30]
gives one the impression that S was well into his research on the topic by 1960, though
there is no mention of the half-power law in [30]. S has said that Malkus persuaded him to
omit the mention of the half-power in that report. It is amply clear, however, that S had on
hand the insight into the physical ideas that led to the specific result he published [31] a
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year or so after K; we know from S directly that the delay was caused by issues connected
to the health of one of his family members.

It is clear that K and S were influenced by each other’s work. K refers to S’s work
and acknowledges discussions with him but records that the inspiration for his work was
Malkus, who had published his one-third-scaling some years earlier [9] (K also cites C.H.B.
Priestley and E. Böhm-Vitense). It may be recalled that the physical essence of Malkus’
result is that the heat flux is both produced by the thermal boundary layer dynamics and
limited by it (thus, H should be irrelevant). As Howard [32] clarified soon after, Malkus’
arguments can be cast more elegantly in terms of the marginal instability of the thermal
boundary layer. K thought that at very high Rayleigh numbers (which he estimated
to be on the order of 1024, essentially unattainable in practice), shear effects at the wall
will overwhelm the thermal effects to yield the half-power with corrections of the form
((log Ra)−3/2). This log correction is important to K’s theory, in deriving which he used a
great deal of debatable detail. K was well aware of this shortcoming and honest to state so
more than once in his paper.

S’s physics was somewhat different. Contrasting with K’s work, he is quoted in [30] as
saying: “. . . the best representation is contained in the recent work of K, but at the moment
this is a more difficult representation than we are prepared to cope with”. S had no explicit
use for the walls and the boundary layers (true to his preoccupation with astrophysical
flows) and regarded that thermal plumes in the bulk of the flow transported heat; and,
whatever their origin, their dynamics in the bulk was the rate-controlling mechanism for
transport, thus eliminating ν and κ from consideration.

The primary results of K and S are also different in detail. K’s paper is contained in
Equation (3) whereas S’s result was that

Nu = C(Ra.Pr)1/2, (A1)

where the coefficient C remained unknown. Aside from the absence of numerical coefficient
and log corrections in the above equation, the major difference is the Prandtl number
dependence of Nu.

It should be clear from this discussion that K and S influenced each other but followed
their separate paths and agenda. Moreover, as discussed above, their results are substan-
tially different as well (despite the commonality of the half-power). Our opinion is that they
each deserve the credit that came their way. To our knowledge, S always gave credit to K;
only when pressed would he acknowledge his unhappiness that K’s result was published
before his.

The word “ultimate” to describe the half-power was first coined in the title of their
paper by Chavanne et al. [14], who constructed an argument for log correction in the form
(log Ra)−3. It suggests that the details in K’s theory leading to his particular form of log
correction is not sacrosanct.

Another major development is the upper-bound theory [33], whose result is

Nu ≤ 0.167Ra1/2. (A2)

It is clear that Equation (A1) is at variance with the upper bound if Pr increases
indefinitely. Thus, one should regard Equation (A1) as having been meant only for Pr ≤ 1.
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