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Abstract: The North Atlantic Oscillation (NAO) is a major climatic phenomenon in the Northern
Hemisphere, but the underlying air–sea interaction and physical mechanisms remain elusive. Despite
successful short-term forecasts using physics-based numerical models, longer-term forecasts of NAO
continue to pose a challenge. In this study, we employ advanced data-driven causal discovery
techniques to explore the causality between multiple ocean–atmosphere processes and NAO. We
identify the best NAO predictors based on this causality analysis and develop NAO-MCD, a multi-
variate air–sea coupled model that incorporates causal discovery to provide 1–6 month lead seasonal
forecasts of NAO. Our results demonstrate that the selected predictors are strongly associated with
NAO development, enabling accurate forecasts of NAO. NAO-MCD significantly outperforms con-
ventional numerical models and provides reliable seasonal forecasts of NAO, particularly for winter
events. Moreover, our model extends the range of accurate forecasts, surpassing state-of-the-art
performance at 2- to 6-month lead-time NAO forecasts, substantially outperforming conventional
numerical models.
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1. Introduction

The North Atlantic Oscillation (NAO) is a prominent atmospheric phenomenon char-
acterized by a dipole oscillation in sea-level pressure between the subpolar (Icelandic) and
subtropical (Azores) areas of the North Atlantic. It is the primary driver of seasonal to
interdecadal variability in atmospheric circulation [1,2]. Moreover, the NAO is an essential
player in the ocean system, significantly impacting sea-level temperature, precipitation,
ocean heat content, and sea ice cover in the Northern Hemisphere [3]. The NAO operates on
time scales ranging from daily to decadal and has far-reaching effects on the climate in the
North Atlantic and beyond. Research has demonstrated that strong NAO events can trigger
extreme climate phenomena such as low temperatures, severe frosts, and heavy rainfall
over land [4,5]. Therefore, the accurate forecasting of NAO is crucial for analyzing the
dynamics of air–sea coupling and climate change in the Northern Hemisphere. However,
the accuracy of NAO forecasting is still a great challenge, especially at long lead times.
Most studies on NAO simulations and forecasts are based on numerical models, but they
have limitations due to errors in initial conditions and model parameters. To overcome
these limitations, this paper proposes a data-driven, air–sea coupled deep learning model
for NAO forecasting with causal discovery.

The simulation and forecasting of the NAO have largely relied on ensemble numerical
models, such as the hybrid winter forecast system developed by Athanasiadis et al. [6] and
the ASF-20C seasonal ensemble model created by Weisheimer et al. [7]. Despite improve-
ments in dynamical models, accurate predictions of the NAO remain a great challenge,
particularly at long lead times. Technical forecasting of NAO by the operational forecasting
dynamical system GloSea5 is possible on short-term (<5 days), medium-term (1–2 weeks),
and sub-seasonal time scales, but the monthly forecasts represent the technology gap [8].
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The forecast skill of the Community Earth System Model, version 2 (CESM2), for NAO
sub-seasonal forecasts drops below 0.4 after 5–6 weeks [9]. The NAO forecasts under the
second phase of the Historical Forecasting Project (HFP2) do not show any skill at a 2-month
lead time [10]. This poor performance may be due to the intrinsic limitations of numerical
models. For instance, both errors implied in the initial conditions and those inherent in the
model (e.g., parameters, prediction accuracy, etc.) can result in significant biases in NAO
forecasts [11]. Furthermore, dynamic processes that have not been identified by existing
studies may cause significant differences between forecast results and observations.

In addition to numerical models, various statistical methods are also used to forecast
NAO. Most of the statistical methods, however, only consider one pattern of variable
development, which limits the forecast skills, especially at long lead times [12,13]. As a
non-linear fitting method, machine learning can effectively avoid the drawbacks mentioned
above by automatically extracting attributes from data. There have been several studies
using machine learning methods for NAO forecasts. Yuan et al. [14] applied a convolutional
long short-term memory (LSTM) network with ensemble empirical pattern decomposition
to improve the signal-to-noise ratio (SNR) for the daily forecast of NAO. Javier et al. [15]
trained various autoregressive and supervised models, including the integrated moving
average model (ARIMA) and LSTM, to predict the NAO for the next week. Mu et al. used
the RF-Var model to predict the monthly NAO variability based on the Niño indices, and
the AccNet model to forecast the short-term SLP based on the NAO, the SST, and other
physical variables [16]. However, these models have the following limitations: limited to a
single (or few) predictor, ignoring significant multivariate predictors related to the complex
air–sea coupling mechanisms underpinning NAO [14,15]; low confidence in the model,
with little involvement in predictor interactions and physical explanations [16]; given the
short forecast time of the models, it is not capable of making long-term forecasts [17].

Causal discovery can help us understand unknown dynamic mechanisms from a data
generation perspective in meteorological science. This goes beyond the focus on correlation
analysis at the data level to the causal level of event causation. Currently, there are prelimi-
nary but highly promising applications of causal discovery in geosciences. For example,
Ebert and Deng [18] used a graphical model to investigate the causality between four
major modes of low-frequency variability in the boreal winter atmosphere. Song et al. [19]
demonstrated Granger causality between El Niño and Southern Oscillation (ENSO) and
other climate variables. More recently, Huang et al. [20] implemented data-driven causality
approaches to assess the causality between multiple atmospheric processes and sea ice
variability from sub-seasonal to seasonal timescales. Furthermore, constructing weather
forecasting models based on causal discovery represents a novel avenue of research. He
et al. [21] suggested that even without large sample sizes and extensive human intervention,
laypeople can implement causal inference methods to investigate the causes of climate
anomalies and establish reliable empirical models for prediction. In another of their recent
studies [22], the obtained physically explainable causal structure of large-scale sea–air in-
teractions in ENSO is capable of realistically simulating and forecasting the ENSO diversity.
Currently, there is no research specifically dedicated to causal discovery related to the NAO.
A great deal of unknown causal relationships and physical mechanisms accompanying the
complex global climate system associated with NAO events need to be explored.

To address the challenges outlined above, we present a novel approach for seasonal
forecasting of the NAO that considers air–sea coupling and physical mechanisms. Specifi-
cally, we use data-driven causal discovery algorithms to quantify the causality between
ocean–atmosphere variables and NAO, then select the optimal predictors. In constructing
the model, we design a multivariate air–sea coupled deep learning model for NAO fore-
cast with causal discovery (NAO-MCD), which employs an encoder–decoder structure to
extract variable features and a coupler to simulate the interactions between the selected
variables. The main contributions of this paper are as follows:

• An exploration of the relationship between NAO and air–sea variables from a data-
driven causal discovery perspective at seasonal time scales.
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• The proposed air–sea coupled NAO-MCD deep learning mode achieves high reliability
for NAO seasonal forecasts.

• An assessment of the forecast skills of advanced numerical models and machine
learning models for the NAO at 1–6-month lead times is presented.

The structure of the paper is as follows: Section 2 describes the casual discovery
algorithms and the proposed NAO-MCD model. The design of experiments and evaluation
metrics are presented in Section 3. The analysis of the results of the experiments is shown
in Section 4. Section 5 concludes this paper.

2. Materials and Methods
2.1. PC-Based NAO Index

The NAO index (NAOI) is a quantitative measure of the NAO mode that captures the
strength and positive and negative phases of NAO events. Generally, the NAOI is defined
as a station-based time series derived from a normalized mean sea-level pressure (SLP)
between a southern station in the Azores and a northern station in western Iceland [23].
Another way to define the NAOI is the principal component (PC)-based time series derived
from an empirical orthogonal function (EOF) of SLP [24]. Given the movement of the NAO
centers of action through the annual cycle, the station-based index can only adequately
capture NAO variability for parts of the year. Additionally, individual station pressures are
significantly affected by localized and transient meteorological phenomena unrelated to
the NAO, thereby containing noise [25]. In contrast, the PC-based index provides a better
representation of the full spatial pattern of the NAO and contains less noise. Accordingly,
the PC-based index (see Figure 1) is chosen as the NAOI, according to Equation (1):

NAOIt = EOF1T × (SLPt − SLPMean), (1)

where t is the monthly time corresponding to the index, and SLPMean represents the
average of all SLPt for the same calendar month. EOF1 is precisely the leading EOF of SLP
anomalies over the North Atlantic sector (20◦ N–80◦ N, 90◦ W–40◦ E).

2.2. Problem Formalization

As NAOIt is calculated by SLPt, the forecast of NAO can be converted into the
prediction of the SLP time series. In contrast to traditional one-predictor forecast models,
our model considers several air–sea variables as predictors. In general, we formalize the
NAO forecast as a multivariate spatial–temporal prediction problem as follows:

SLPscm+1:(scm+H) = Fθ(Pτ = {p1
τ , . . . , pN

τ }), (τ = scm−M + 1, · · · , : scm), (2)

where all the subscripts of the represent the timestamps. scm ∈ {Jan, Feb, . . . , Dec} (start
calendar month) represents the last month in the input series. Pτ =

{
p1

τ , . . . , pN
τ

}
(τ =

scm−M, · · · , : scm) is input series for N selected predictors pn
τ (n = 1 : N) in historical

M months. SLPscm:(scm+H) is the prediction result for future H months (H can be also
treated as forecast lead time). Fθ represents the forecast system (θ denotes the trainable
parameters in the system). Notably, there are basically two forecasting strategies for multi-
step forecasting: direct multi-step (DMS) and iterative multi-step (IMS) [26]. The former
refers to directly forecasting future Hth-month SLP, while the latter refers to using the
forecast output as an input for future iterative forecasts. Due to the drastic time variation
of NAO, iterative multi-step forecasting accumulates a large forecast error. Therefore, we
choose DMS to provide more accurate forecasts, i.e., train a different model Fθ at each
forecast lead time of the forecast future H months., for more accurate forecasts and better
adaptation to the specific characteristics of each lead time.
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Figure 1. Monthly principal component (PC)-based NAO index (NAOI) and its corresponding first 
empirical orthogonal function (EOF) model: (a) the leading EOF mode of the monthly sea-level pres-
sure (SLP) anomaly in the North Atlantic (20° N−80° N, 90° W−40° E), which shows a north–south 
NAO dipole pattern; (b) normalized monthly NAOI from 1899 to 2022 ranges from −4 to +4. The 
NAOI greater than zero is shown by the red bar, and those less than zero are shown by the blue bar. 
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Figure 1. Monthly principal component (PC)-based NAO index (NAOI) and its corresponding first
empirical orthogonal function (EOF) model: (a) the leading EOF mode of the monthly sea-level
pressure (SLP) anomaly in the North Atlantic (20◦ N–80◦ N, 90◦ W–40◦ E), which shows a north–south
NAO dipole pattern; (b) normalized monthly NAOI from 1899 to 2022 ranges from−4 to +4. The NAOI
greater than zero is shown by the red bar, and those less than zero are shown by the blue bar.

The whole NAO forecast procedure is briefly described in Figure 2, which has two
steps: predictor selection and NAOI forecast. Specifically, we first use data-driven causal
discovery models to quantify the potential causality between the air–sea variables and the
NAO. The causality is represented as causal diagrams, from which explicit predictors P are
selected. The second came the forecast phase, the spatial–temporal series of predictors is
input to the NAO-MCD model to predict SLPt, which is then transformed into NAOIt.
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2.3. Data-Driven Causal Discovery Models

Data-driven causal discovery can provide a promising approach to identify causal
relationships among variables in observational data and facilitate the development of
more robust and effective forecasting models with causal features. Thus, we apply data-
driven causal discovery models to construct causal diagrams depicting causality between
NAO and potential predictors. Directed acyclic graphs (DAGs) are common to represent
causal structure: nodes represent variables, and directed edges point from cause to effect
representing the causal relationships [27]. However, it is unclear whether different causality
discovery methods would produce similar results or whether a particular technique is
best suited for this topic. Considering the uncertainty in the causal discovery methods,
three state-of-the-art causal discovery algorithms are applied to ensure that causality
is robust. In particular, Causal Discovery with Reinforcement Learning (CD-RL) [28]
and Ordering-Based Causal Discovery with Reinforcement Learning (CD-CORL) [29] are
employed for discovering static causality. Directed Acyclic Graph-Graph Neural Networks
(DAG-GNN) [30] are utilized for discovering temporal causality with time lags.

2.3.1. CD-RL

The CD-RL algorithm utilizes reinforcement learning (RL) to find the optimal causal
representation. Instead of a typical RL that generates the optimal strategy as the output
result, CD-RL uses RL as a search strategy and returns the DAG with the largest reward as
the output result.

In particular, the observed data are input into the encoder–decoder model to generate a
graph adjacency matrix which is used for calculating the corresponding rewards. As shown
in Equation (3), this reward consists of three parts: a scoring function B (G), specifically the
Bayesian information criterion (BIC) function, to penalize the inconsistency between the
graph G and the observed data; a hard constraint term I applies a fixed penalty if it is not a
DAG; and the soft constraint term h(G) applies a graph-dependent penalty.

reward = min
G
−[B (G) + λI(G /∈ DAGs) + µh(G)], (3)

where λ and µ are hyperparameters.

2.3.2. CD-CORL

The CD-CORL algorithm extends the CD-RL algorithm by searching the variable
order space rather than the DAG space. Specifically, CD-CORL describes the variable order
search problem as a Markov process. In the first step, an encoder–decoder structure is used
to implement the variable order, followed by RL-based reward mechanisms for each order.
After the variable sequences have been processed, the final causal diagram DAG is derived
using a variable selection algorithm.

Specifically, the elements of the Markov decision process can be defined as follows:

• Action: The selection of variables is considered an action, in which each step selects
a variable v, resulting in a sequence of variables that constitute the action space
A = {v1, . . . , vd}, where d is the number of variables.

• State: The encoder directly takes a sample data xj of each variable Xj as a state sj, and
all the embedded states constitute the space S = {s1, . . . , sd}.

• State transfer: At the current decision step, the specified state transition is connected
to the action selected. If the selected variable is vj, then the state is transferred to state
sj ∈ S, which is the j-th output from encoder, i.e., ŝt+1 = sj, where ŝt denote the state
taken at the t-th decision step.

The self-attentive encoder embeds observations xj into states sj. The long short-term
memory (LSTM) [31]-based decoder selects an action at every time step t based on the
current state ŝt.
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2.3.3. DAG-GNN

DAG-GNN extends the linear structural equation model (SEM) as Equation (4) by
introducing reversible f (·) and g(·) operators to tap non-linear causality, respectively.

Y = QTY + Z, (4)

where Q ∈ Rdm×dm is the weighted adjacency matrix of the DAG with dm nodes, and
Y ∈ Rdm×dn is the data sample consisting of dn samples of a joint distribution of dm
variables. Z ∈ Rdm×dn represents the bias. DAG-GNN further disassemble Equation (4)
into an autoencoder-based model via a special graph convolution operator I −QT as shown
in (5). This model can be trained by variational inference so that the learned causal graphs
better match the actual scenes.{

Z = g−1((I −QT) f (Y))
Y = f−1((I −QT)

−1
g(Z))

, (5)

2.4. NAO-MCD: Multivariate Air–Sea Coupled Model for NAO Forecast Combined with
Causal Discovery

The non-stationarity of the NAO poses a formidable challenge to its forecasting. Here,
we address this issue by developing a model with an appropriate structure guided by physi-
cal principles. Specifically, we employ graph convolutional networks (GCN) [32] to capture
the interactions among meteorological factors, thereby increasing the model’s dynamic
simulation capability. We also utilize attention mechanisms to emphasize the more contribu-
tory features and supplement the non-stationarity. To this end, we propose the NAO-MCD
model for seasonal forecasting of NAO. This model combines a symmetric encoder–decoder
structure, attention mechanism, and GCN. As Equation (6), the NAO-MCD can be divided
into three parts: an encoder fe based on convolutional LSTM (ConvLSTM) [33] networks; a
GCN-based coupler fc; a decoder fd with skip connections [34].

encoder : Li
t = fe

(
Pi

t−l−n:t−l

)
coupler : Rt = fc

(
L1

t
∥∥L2

t ‖..‖Lτ
t , G

)
.

decoder : SLPt = fd(Rt)

(6)

where t is forecasted time, l is the forecast lead time, n is the length of the input sequence,
and Pi indicates the i-th of τ predictors. Li is the implicit representation of the Pi after
encoding. G is the causality between predictors and NAO discovered by the causal discov-
ery algorithms, and R is the result of multivariate coupling. The detailed architecture of
NAO-MCD is illustrated in Figure 3. The following sections provide an interpretation of
the intentions and detailed implementations of each part of the model.

2.4.1. Encoder

For each predictor Pi, we construct a ConvLSTM-based encoder with the same struc-
ture. ConvLSTM is a recurrent neural network, which is designed to learn spatial informa-
tion of data. ConvLSTM addresses the main drawback of fully connected LSTM by using
a convolution operator in the state-to-state and input-to-state transitions. The method
determines the future state of a cell in the grid based on the inputs and past states of the
local neighbors of that cell. The key equations are shown as follows:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci � Ct−1 + bi), (7)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f � Ct−1 + b f

)
, (8)

Ct = ft � Ct−1 + it � tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc), (9)
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ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco � Ct + bo), (10)

Ht = ot � tanh(Ct), (11)

where ∗ represents the convolution operation, and � denotes the Hadamard product.
Function σ and tanh are two kinds of activations. it, ft, and ot are input, forget, and output
gate. Xt is the current input data, Ht−1 is previous hidden output, and Ct is the cell state. W
is the weight matrix, b is the bias, and both are trainable network parameters. Specifically,
each encoder is composed of three layers of ConvLSTM (see Figure 3).
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Figure 3. The architecture of NAO-MCD: a multivariate air–sea coupled model for NAO forecast
combined with causal discovery. NAO-MCD consists of an encoder, coupler, and decoder. The input
is the historical sequence of predictors P and the output is SLP of the forecasted time.

The channel self-attention mechanism is a type of attention mechanism used in deep
learning models, which is used to capture the relationship between different channels of a
feature map. The mechanism works by computing the attention weights for each channel
of the feature map, which is then used to compute a weighted sum of the channels. This
allows the model to focus on the most relevant channels for a given task while ignoring
irrelevant ones. Depending on the type of channel being fused, we distinguish between two
types of channel attention, temporal and parametric, as in Equation (12). First, the temporal
channel attention αt is applied to obtain the time-weighted sum of the ConvLSTM layers’
encoding output. As a result, information from more valuable lead months will be given
greater attention. Second, the parametric channel attention is applied to weight the different
variables. The encoded representation of each predictor Li is multiplied by the attention
weight ai

p. This allows for a more differentiated contribution of different predictors.

α = so f tmax(W2 tanh(W1F + b1) + b2), (12)

where α ∈ Rcn, F ∈ Rcn× f s is the features, cn is the number of channels, and f s is the
feature size of each channel. W and b are the transformation matrix and bias, both of which
are trained hyperparameters.

2.4.2. Coupler

In some way, the learned causal diagram G illustrates the interaction and energy
transfer between NAO and the relevant variables, so we construct a two-layer GCN coupler
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to simulate the information interaction between variables based on G. GCN is a kind
of convolutional neural network that has the ability to directly work with graphs and
their structural information. GCN has a multi-layer architecture, with each layer encoding
and updating representations of nodes using neighboring features. The l-th layer graph
convolution operation is defined as Equation (13):

Xl+1 = σ

(
∼
D
− 1

2 ∼
A
∼
D
− 1

2
XlW l

)
, (13)

where A ∈ RN×N is the adjacency matrix, and Xl ∈ RN×M is the input, with N (the
same as the number of predictors P) nodes in the G, M-dimension encoded feature vector.
∼
A = A + In, where In is the identity matrix, and

∼
D is the diagonal node degree matrix

of
∼
A. σ(·) denotes the activation function, and W l is the trainable transformation matrix

parameter. Specially, we convert causal diagram G into the form of the undirected graph
adjacency matrix A, which is used to model the interconnection effect between physical
variables. In our case, the elements of A is defined as follows:

Ai,j =

{
1, i f Edge

(
Gi,j
)

0, otherwise
, (14)

where Edge
(
Gi,j
)

indicates whether an edge exists between the node i and j in G, regardless
of the edge’s direction.

In practice, the initial input X for the coupler is a stacked multivariate encoded feature
matrix, and each row is an expanded vector of a physical factor encoded feature Li. In
particular, the vector of SLP is positioned in the last row of the matrix, which corresponds
to the last row after coupling, so the vector of the last row of output is the coupled SLP
feature to be input into the decoder.

2.4.3. Decoder

We design the decoder symmetrical to the encoder by transforming convolution layers
corresponding to the convolution layers in ConvLSTM. Skip connections are also used to
directly introduce the original encoded feature into the decoding process. With the cross-
layer feature connection module, some important feature information in the higher-level
convolution layers can be retained to a greater extent, and more details can be preserved in
the multi-scale space. In addition, the skip connection can effectively reduce the gradient
disappearance and network degradation, making the training more accessible.

3. Experiments and Evaluations
3.1. Potential Predictors

The key to improving NAO’s forecast skill is understanding the mechanisms govern-
ing its variability and identifying the most significant predictors. The earliest proposed
mechanisms view NAO as a coupled mode of climate variability between the North At-
lantic surface ocean and the overlying atmosphere [35]. As the most commonly calculated
source data for the NAOI index, SLP and 500 hPa geopotential height (Z500) were first
selected as potential predictors [36]. In addition, the NAOI correlates well with wind
speeds in the North Atlantic region, particularly in winter when large-scale circulation
has a greater influence on the weather. In addition, the NAO structure can be observed
from the first rotating EOF of the monthly average 500 hPa band wind in the Northern
Hemisphere [37]. The temporal variability of 10 m wind speed in the central North Atlantic
correlates very well with the NAO index, and the annual correlation between the NAO
index and the 10 m mean and 98th percentile winds is statistically significant [38]. The
strong latitudinal dependence of NAO on the near-surface wind was detected using the
GloSea5 seasonal prediction system by Clark et al. [39]. Our pre-experiment demonstrates
that the surface wind is more strongly related than the tropospheric 500 hPa wind for the
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NAOI selected. In addition, to better investigate the sea–air coupling process, we select
only the near-surface wind fields V10 (10 m meridional wind) and U10 (10 m zonal wind).
Additionally, during the latter part of the twentieth century, the NAO demonstrated greater
interannual variability and a positive trend than is expected based on internal atmospheric
variability alone. This suggests some external forcing for NAO, such as the ocean or sea
ice [40]. In the empirical model constructed by Wang et al. [41] for NAO forecasting, fall sea
ice concentration was the strongest predictor of winter NAO. Hall et al. [12] also identified
sea ice as a key statistical predictor of winter NAO over the period 1980–2016. Although
the relationship between sea ice on NAO may be unsteady [42], drawing on previous
experience, we selected the Arctic sea ice extent index as a factor to study the effect of sea
ice on NAO. In addition, on seasonal to decadal scales, there is evidence that the ocean
plays an active part in determining the NAO’s evolution. While intrinsic atmospheric
variability exhibits temporal incoherence, the ocean tends to respond to it with marked
persistence of heat content anomalies that provide feedback to the local atmosphere [43].
Accordingly, sea surface latent heat flux (SLHF) are potential predictors to serve as a possi-
ble bridge linking the ocean and the atmosphere. Multiple regression of the time series of
NAO and SST anomaly centers indicates that parts of the North Atlantic are particularly
important for forcing NAO [44]. Therefore, the local SST in the North Atlantic may be an
important potential oceanic predictor. Retroaction of anomalous extratropical sea surface
temperature (SST) upon the NAO is however under debate and likely depends on the time
scale [45]. The impact of ENSO on NAO has been controversially discussed for several
decades, which remains uncertain [46]. There is no clear correlation between their monthly
and winter indices over the last fifty years, and the relationship may be asymmetric and
non-stationary [47]. La Niña events seem to favor positive NAO phases, while El Niño
events might not induce systematic remote responses [48]. Thus, we attempt to explore the
complex impact of ENSO on NAO using causal discovery algorithms.

According to the above analysis, we selected the potential predictors as described in
Table 1, namely the atmospheric variables SLP, Z500, V10, and U10; the oceanic variables
SST and SLHF; and the oceanic index variables Niño 3.4 and SeaIceExtent in the non-North
Atlantic region.

Table 1. Potential predictor variables for NAO seasonal predictions.

Variable Description Unit
SLP Sea-level pressure hPa
Z500 500 hPa geopotential height m
V10 10 m meridional wind m·s−1

U10 10 m zonal wind m·s−1

SST Sea surface temperature K
SLHF Sea surface latent heat flux J·m−2

Niño 3.4 Niño 3.4 ENSO index -
SeaIceExtent Arctic sea ice extent index -

Note: The yellow shade covers the atmospheric variables, the blue shade covers the oceanic variables, and the
green shade covers the non-Atlantic oceanic index variables.

3.2. Datasets and Pre-Processing

As the observational dataset, the monthly and winter PC-based NAOI from 1899 to
2021 is produced by the Climate Analysis Section of the National Audit of Cardiac Rehabil-
itation (NCAR). As the source data for the NAOI calculation on the NCAR website, the
monthly SLP observations data from 1899 to 2021 are provided by NCAR at 5◦ resolution.
We maintain a consistent calculation method and data source with the PC-based NAOI
from the NACR website to ensure that the forecasted NAOs are all observed events. In the
datasets for causal discovery, the monthly ocean–atmosphere variables data are obtained
from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 [49]
global reanalysis product for 1950–2021 with a resolution of 0.25◦, and the Niño 3.4 index
and sea ice extent index are from NCAR and National Snow and Ice Data Center Data
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(NSIDC), respectively [50]. In the NAO forecast process, the monthly data for the remaining
ocean–atmosphere variables (Z500, V10, U10, SST, SLHF) from 1950 to 2021 are obtained
from ERA5 with a resolution of 0.5◦, except for the observational data SLP. To account for
the limited observational data record, we use transfer learning by pre-training the model
on climate simulation data from 1899 to 1949 by the E3SM-1-0 model in Coupled Model
Intercomparison Project Phase 6 (CMIP6) [51]. Table 2 details the variable data sets and
data types used.

Table 2. The detailed dataset descriptions.

Variable Time Range Data Source Data Type

SLP 1899–2021 NCAR Observation

Z500 1899–1949
1950–2021

CMIP6
Era5

Model simulation
Reanalysis

V10 1899–1949
1950–2021

CMIP6
Era5

Model simulation
Reanalysis

U10 1899–1949
1950–2021

CMIP6
Era5

Model simulation
Reanalysis

SST 1899–1949
1950–2021

CMIP6
Era5

Model simulation
Reanalysis

SLHF 1899–1949
1950–2021

CMIP6
Era5

Model simulation
Reanalysis

Niño 3.4 1950–2021 NSIDC Observation

SeaIceExtent 1950–2021 NCAR Observation

Min–max scaling pre-processing can normalize the dataset and restrict each value to
the [0,1] interval, limiting the impact of outliers and facilitating backpropagation. Min–max
scaling involves transforming each feature by Equation (15):

xnew =
x− xmin

xmax − xmin
. (15)

In the pre-processing, all the data are first normalized, where the grid data are re-
stricted to the North Atlantic region (20◦ N–80◦ N, 90◦ W–40◦ E). In the causal discovery,
the grid data are averaged to one-dimensional time series. Detrending is essential for
the non-linearity and non-stationarity of the data [52], which has been widely used in
previous climate studies. Thus, we apply detrending and depersonalizing for each time
series. Furthermore, all input grid data for NAO-MCD are up-sampled to 5◦ resolution, so
the size of all North Atlantic region grid data is retained at 13 × 27.

3.3. Loss Function

We use a combined loss function for training. According to the different loss combina-
tions, different models are obtained for the ensemble forecast. As shown in Equation (16),
the least square deviation L2 loss maintains the smoothness of the prediction results, and
the least absolute deviation L1 loss focuses on extreme values. L2 loss has a fast convergence
rate, but it leads to a large impact of outliers in training. L1 loss is not overly sensitive to
outliers and can better characterize the distribution of normal data, which is more robust.
However, it is not conducive to the convergence of the function and the learning of the
model, and the model learning speed is slow, so the combination of these two losses can
result in faster convergence and good robustness of the model.{

L2_Loss = 1
KΩ ∑K ∑Ω

(
ŷi,j − yi,j

)2

L1_Loss = 1
KΩ ∑K ∑Ω

∣∣ŷi,j − yi,j
∣∣ , (i, j) ∈ Ω. (16)
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where ŷ is the ground truth and y is the forecast result. K represents the number of samples,
Ω represents the number of grid points, and (i, j) represents the specific longitude and
latitude. Furthermore, Structural Similarity Index (SSIM) is used to focus on predicting
exhaustive NAO spatial distributions and reduce the global structural differences between
prediction and observation fields. SSIM is a perceptual metric to measure the similarity
between two patterns. The main indicators are luminance, contrast, and structure, namely
the mean value and standard deviation of a field, and the covariance of the two fields. SSIM
is calculated as Equation (17), which ranges from [−1, 1], with larger values representing
more similarity. Equation (18) converts the SSIM to the SSIM loss.

SSIM(ŷ, y) =

(
2µŷµy + C1

)
+
(
2σŷy + C2

)(
µ2

ŷ + µ2
y + C1

)(
σ2

ŷ + σ2
y + C2

) , (17)

SSIM_Loss =
(1− SSIM)

2
, (18)

where µŷ (µy) represents the average of ŷ (y), µŷ (µy) is the standard deviations of ŷ (y),
σŷy is the cross-covariance, and C1 and C2 are constants to avoid the error caused by the
denominator being zero. Equation (19) shows how our training loss function is made up of
L2 loss, L1 loss, and SSIM loss:

Loss = β1L2_Loss + β2L1_Loss + β3SSIM_Loss, (19)

where β is the weighting factor whose exact value will be discussed in the following section.

3.4. Experiment Setting

Ensemble methods have been widely used in NAO forecasts to eliminate noise and
thus provide skilled forecasts [53]. The NAO-MCD produces an ensemble forecast of NAO,
in which the individual models consist of different input sequence lengths l and losses
with different weighting parameters β. It is experimentally demonstrated that the effect
of the input sequence length l gradually increases from 1 to 5, is flat from 5 to 6, and
decreases when it is greater than 7, so we selected the l as 5 or 6. Similarly, it is found that
the forecast ability of the model is stable at an ensemble size of six. Therefore, we construct
the following six ensemble members, as shown in Table 3.

Table 3. Parameter setting for NAO-MCD ensemble members.

Member
Number

β
l

β1 β2 β3

1 2 6 7 5
2 3 6 7 5
3 2 7 7 5
4 2 6 7 6
5 3 6 7 6
6 2 7 7 6

The hyperparameters of the model were determined by fine-tuning through ablation
experiments, i.e., fixing other parameters and finding optimal values on the current param-
eters. The sizes of ConvLSTM kernels are all 3 × 3, which is sufficient for the small-scale
input of 13 × 27. The channel sizes of the three ConvLSTM layers are {4, 8, 16} during
forward propagation. These incremental numbers of channels can increase the ability of
the model to extract complex features in high dimensions by layer. For training, the best
batch size is 32, the maximum Epoch is 500, and the learning rate is 0.001. Considering the
non-stationary nature of the data, the optimizer is the adaptive moment estimation method
(Adam) [54]. The whole monthly data set spans from 1899 to 2021. To ensure that the model
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is reliably trained, we use the monthly data from 1899 to 2009 as the training data for the
model. However, the data in the training set is relatively small for our complex machine
learning model, which may lead the model to overlearn in the limited data and fall into
overfitting. Overfitting is manifested by an almost infinite decrease in loss during training
and an increase in loss on the test set instead, so we divided the data from 2010 to 2014 as
the validation set to prevent the model from overfitting with the early stopping method [55].
Early stopping is a regularization technique that stops training once the performance on a
validation dataset stops improving. The early stop ensures the generalization ability and
makes the model have high forecasting skills on the test set as well. Finally, the model
forecasts are validated on a test set from 2015 to 2021. To prevent data leakage at the
division junction, the training set has a forecast target that extends up until December 2009.
As such, the input to the training set ends in December minus the maximum forecast lead
time of 2009. This ensures that the input of the training data is not included in either the
training or validation sets.

3.5. Evaluation Metrics

We use root mean square error (RMSE) and SSIM to measure the accuracy of SLP
grid data predicted directly by NAO-MCD. The NAO forecast skill is evaluated as the
correlation coefficient between the predicted NAOI Ip and observed NAOI Io for each
lead time. Correlation coefficient is a very common measure of predictive skill between
predictions and observations, especially for indices. The correlation coefficient r is defined
as follows:

r =
∑n

i=1
(

Ii
o − Io

)(
Ii
p − Ip

)
√

∑n
i=1
(

Ii
o − Io

)2
∑n

i=1

(
Ii
p − Ip

)2
, (20)

where n is the number of samples, and I is the average of I.

4. Experimental Results and Analysis

To begin with, we show the results of the causal discovery algorithms for the causality
of NAO and the associated potential predictors. Then, the optimal set of predictors P is
selected from the causal diagrams. Next, we evaluate the NAO-MCD from two aspects.
First, we compared the forecast skills of NAO-MCD and the state-of-the-art seasonal
numerical seasonal forecast models from Copernicus Climate Change Service (C3S) [56]
on the test set. Second, we design some comparative experiments to investigate the
effectiveness of the NAO-MCD’s model structure. These experiments include an evaluation
of the efficacy of causal discovery, an evaluation of the contribution of different predictors,
and a comparison with other advanced deep learning models.

4.1. Results of Causal Discovery and Predictor Selection

We utilize the causal discovery algorithms CD-RL and CD-CORL to construct DAG-
formed causal diagrams that depict the static causality of NAO and potential predictors.
In experiments investigating causal discovery in sea ice and atmospheric phenomena, the
DAG-GNN has demonstrated its ability to generate sophisticated and meaningful temporal
causal representations. Given that we forecast NAO at lead times of 1–6 months, it was
imperative to examine temporal causality across sub-seasonal to seasonal timescales with
time lags. To achieve this, DAG-GNN generated causal diagrams with fewer edges to
facilitate a more detailed examination of stronger time-lagged causality. Specifically, 1–3-
and 1–6-month lagged versions of each variable are added to the dataset. Then, DAG-GNN
proceeds through the extended dataset to develop 3-month and 6-month lagged temporal
circular causal diagrams. The results of causal discovery are shown in Figure 4, where the
causality of SLP, Z500, and U10 on NAO is demonstrated in all four causal diagrams. All
three algorithms capture the causality between selected atmospheric predictors and NAO,
which indicates that NAO is primarily a process of the atmosphere. In addition, in both the
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3-month lag and static causal diagrams, SST does not appear to be causally related to NAO,
but it appears in the 6-month lag temporal causal diagram. It may indicate that the North
Atlantic SST anomaly has a long-term influence on the NAO and provide evidence of the
oceanic forcing of NAO. This may be ascribed that surface SST anomalies have a persistent
effect on atmosphere-ocean heat fluxes, with substantial thermal coupling between the
North Atlantic SST and the atmosphere [57]. However, none of the oceanic index predictors
are considered causal to NAO by the algorithms. This may be because the index only
represents the phenomenon’s strength, which does not contain spatial information. When
Arctic Sea ice extent and El Niño are non-Atlantic, their remote effects on NAO are not
easily detected by data-driven approaches.
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(a,b) are the static acyclic causal diagrams DAGs constructed by the CD-RL and CD-CORL algorithms.
(c,d) are the temporal circular causal diagrams constructed by DAG-GNN with 3-month and 6-month
lag, respectively. The arrows in the diagrams indicate the causality from cause to effect, and the red
boxes indicate the predictors that are regarded as the direct or indirect causes of NAO.

Finally, optimal predictor set P = {SST, Z500, U10, V10, SLP} is derived from the
concatenated set of all predictors determined to be causal for NAO by the casual discovery
algorithms. Correspondingly, the input adjacency matrix A for the GCN coupler in the
NAO-MCD is calculated by the union of all causal diagrams and is defined as follows:
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A =


1 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 1 1 1 1

. (21)

Furthermore, we perform a correlation analysis between potential predictors and NAO
for comparison. The Welch-Satterthwaite equation as Equation (22) is used to calculate
the effective degrees of freedom d f for the detrended data for the student-t test of the
correlation coefficient. According to the Pearson correlation coefficients and p-values of
the t-test in Table 4, set P = {SLP, Z500, V10, U10, SLHF}, which has relatively strong
correlations significant at the 90% confidence level with NAO, is chosen as the comparative
predictors set. The corresponding matrix A input to GCN is an all-one matrix.

d f =

s2
1

n1
+

s2
2

n2(
s2
1

n1

)2

n1−1 +

(
s2
2

n2

)2

n2−1

, (22)

where d f is the effective degree of freedom, s1 and s2 are the sample variances of the two
groups, and n1 and n2 are the sample sizes.

Table 4. Pearson correlation coefficient between NAO and potential predictors. The bold values
in the table are the top five Pearson correlation coefficients and the p-values that are statistically
significant at the 90% confidence level.

SLP Z500 V10 U10 SST SLHF Niño 3.4 SeaIce
Extent

correlation
coefficient 0.11 0.11 0.35 0.22 0.067 0.12 0.035 0.081

p-value 0.0068 0.0086 1.3 × 10−15 2.2 × 10−6 0.013 0.0089 0.251 0.188

4.2. Analysis of Effective Seasonal NAO Forecast of NAO-MCD
4.2.1. Effect of Ensemble Size

We mainly compare the correlation (r) forecast skill of NAO-MCD and C3S for NAO
seasonal forecasts. C3S provides a multi-system seasonal forecast service, which is pro-
duced by seven seasonal forecast systems. For the test period from 2015 to 2021, only two
air–sea coupled systems provide available forecasts, Environment and Climate Change
Canada (ECCC) with low resolution and the ECMWF with high resolution. A detailed
description of each of them is shown in Table 5.

Table 5. Description of the available forecast systems in C3S.

Forecast System
Name

Forecast System
Version

Forecast Initial
Condition

Model Resolution
(Model Top)

Available
Ensemble Size

ECMWF SEAS5 1st of month TCo319 (~0.36◦ lat-long)/91 levels
in vertical, to 0.01 hPa 25

ECCC CanCM4i 1st of month T63 (~2.8◦ lat-long)/35 levels in
vertical, to 1 hPa 10

To begin with, we verify the relationship between the ensemble forecast skill and
ensemble size, with ECMWF and ECCC each having 25 and 10 ensemble members. For
consistency with deep learning, the monthly average forecast produced by a numerical
model initialized on the 1st of that month is regarded as a 1-month lead forecast in this
study, which may be regarded as a 0-month lead in meteorology, etc. As seen in Figure 5,
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ECMWF and ECCC’s monthly NAO forecast skills at a 1-month lead time increase with the
number of ensemble members and remain relatively stable after six and three numbers,
respectively. We also obtain a regular forecast using NAO-MCD when the ensemble size
reaches 3. To facilitate a fair comparison, we use the ensemble mean forecast with six
ensemble members of both C3S models and NAO-MCD.
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4.2.2. Monthly NAO Forecast

A description of the NAO forecast correlation skill versus lead time of C3S models
and NAO-MCD over the 84 test months is shown in Figure 6, demonstrating the excellent
ability of NAO-MCD’s long-term forecasting. However, for a 1-month lead monthly NAO
forecast, NAO-MCD is inferior to high-resolution models like ECMWF but comparable to
low-resolution models like ECCC. This inferiority may be due to NAO-MCD only receiving
monthly averages as input, obscuring weather phenomena and initial conditions that
determine predictability on short timescales. However, NAO-MCD outperforms the C3S
forecast models for lead times exceeding two months. The forecast skills of the C3S models
plummet to below 0.2 at a lead time of 2 months and even stay near 0 at a lead time of
3 months and beyond. As a result, C3S is incapable of simulating the NAO development
process and forecasting the NAO more than a month in advance. In contrast, NAO-MCD’s
forecast skill at 2–6-month lead times is over 0.4, significant at the 95% confidence level,
thereby proving ideal for long-term seasonal forecasts. Surprisingly, the forecast capability
of NAO-MCD remains strong over time, even rebounding at a 6-month lead time. This
rebound is not a coincidence; in our previous study using machine learning methods to
predict NAO variability, there was a rebound in prediction accuracy at both the 6-month
and 12-month lead times [16]. A possible explanation is that the most salient changes
in Atlantic SLP values occur at 6-month and 1-year intervals [58]. These changes can be
identified and captured by the machine learning model, resulting in skill vibration. To
summarize, the NAO event is mainly an atmospheric process with strong abruptness. The
model tends to obtain relatively average results, and the short lead time cannot capture
the development of the NAO event as well as numerical models. However, this is also
an advantage as there will be no excessive abnormal development, making the prediction
results of 2–6 months better than those of traditional numerical models.
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In addition, we evaluate the performed correlation skills between each point of SLP
spatial results of C3S and NAO-MCD models’ forecasts at different lead times and ob-
servations to better analyze the forecast performance and learned physical mechanisms.
Figure 7 shows the correlation skill between ECMWF, ECCC, and NAO-MCD 1–6-month
lead time forecasts and observed SLP field spatial grid points. Red dots are the error points
where the correlation skill is nonsignificant at the 90% confidence level. For 1-month lead
time forecasts, C3S models can predict the spatial structure of each point well, with only
some errors in the mid-latitude area in NAO-MCD’s forecasts. As the forecast lead time of
NAO-MCD increases, except for the intensification of forecast errors in the 2-month lead
forecast, there is no significant development in the mid-latitude forecast errors. However,
after the 3-month lead time, errors begin to develop near Greenland Island and disap-
pear by the 6-month lead time. Moreover, the spatial distribution of errors in ECCC and
ECMWF’s 2-month lead time forecasts increases significantly, reaching a peak at the 3–4-
month lead time and decreasing at the 6-month lead time. Compared with C3S models, it
can be seen that NAO-MCD’s forecast error after 2 months of lead time is slight, especially
since 3–6 months is much smaller than C3S. The error is similar to the spatial results of
C3S’s two-month lead time forecast error, indicating that NAO-MCD may have learned
physical mechanisms similar to advanced numerical models. However, this error does not
accumulate rapidly like numerical models but remains stable, indicating the superiority of
the model for long-term forecasting. In addition, regardless of the distribution and size of
errors in the three models, a trend of increasing within the 1–4-month forecast lead time
and significantly decreasing at 6 months is shown. Similar trends can be seen in the forecast
results for monthly NAOI Figure 6. This indicates that NAO (or SLP) may have a cyclicality
of about six months. In particular, it can be seen that there is a significant decrease in errors
in the belt area at mid-latitudes and near the Norwegian Sea. In addition, the joint part of
model forecast errors, especially the mid-latitude North Atlantic (30◦ N–50◦ N, 70◦ W–0◦

and 50◦ N–60◦ N, 0◦–40◦ E) and Greenland, which are significant in NAO-MCD forecast
errors, are likely to be the target observation-sensitive areas for NAO events.

However, the forecast skill measures linear relationships between variables and may
be misleading if there are outliers. Next, the forecast performance of the NAO-MCD
is assessed in a more detailed visualization of the index values at a 1-month lead time.
Figure 8 displays the observed monthly NAOI from 2015 to 2021 and the forecasted results
based on the models with a 1-month lead. It appears that the ECMWF has the most stable
forecast capability with minor false forecasts, while ECCC and NAO-MCD have more
similar forecast results.



Atmosphere 2023, 14, 792 17 of 26
Atmosphere 2023, 14, x FOR PEER REVIEW 18 of 29 
 

 

 
Figure 7. Maps of the correlation skills between SLP field grid points predicted by the models 1–6 
months in advance and observations: (a–f) are forecasts by NAO-MCD; (g–l) are forecasts by 
ECMWF and (m–r) are forecasts by ECCC. The points in red are forecast tips that are not statistically 
significant at the 90% confidence level. 

However, the forecast skill measures linear relationships between variables and may 
be misleading if there are outliers. Next, the forecast performance of the NAO-MCD is 
assessed in a more detailed visualization of the index values at a 1-month lead time. Figure 
8 displays the observed monthly NAOI from 2015 to 2021 and the forecasted results based 
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1–6 months in advance and observations: (a–f) are forecasts by NAO-MCD; (g–l) are forecasts by
ECMWF and (m–r) are forecasts by ECCC. The points in red are forecast tips that are not statistically
significant at the 90% confidence level.

Periods, when the absolute value of NAOI exceeds 1, are considered strong NAO
events, which are more influential. Thus, we particularly evaluate the models’ forecast
skills for extreme NAO events. Table 6 gives the definitions of strong positive NAO++ and
strong negative NAO−− and the number of them in the test set. The number of correct
forecasts of NAO++ and NAO−− events by the models at a 1-month lead time is shown
in the table. It is demonstrated that NAO-MCD has a similar forecast ability to numerical
models, with a better judgment of positive events than negative events for extreme NAO.
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Table 6. The definition of strong NAO events and models’ forecast effects at a 1-month lead time of
strong NAO events.

Phase Index Values Number in the
Test Set

Number of Correct Forecasts

ECMWF ECCC NAO-MCD

NAO−− Strong negative NAOI < −1.0 9 4 3 4
NAO++ Strong positive NAOI > 1.0 15 10 9 9

A focus is also placed on the effects of NAO forecasts in different calendar months.
Figure 9 shows the model’s forecast skills for each calendar month in the test set. The
long-term forecast skills of NAO-MCD for winter (DJFM) NAO are mostly above 0.4, which
are far better than that of ECCC and ECMWF. Specifically, NAO-MCD achieves favorable
forecasts for December, whereas ECCC and ECMWF produce very high levels of randomness.
Next, we analyze the effect of forecasting the specific NAOI for the winter average.
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4.2.3. Winter NAO Forecast

NAO is usually most prominent during winter, causing significant impacts on climate.
The winter (DJF) NAOI measures NAO events averaged over the winter time. Figure 10
shows the capability of models to forecast the winter NAO. It can be seen that NAO-MCD
has a more stable and superior long-term forecast skill than ECMWF and ECCC.
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The forecast results for the winter NAOI over the 7 test years with a 1-month lead
time are shown in Figure 11. All the models demonstrate reasonable forecast capability
for extreme NAO events with relatively larger NAOI, such as in 2015, 2020, and 2021.
NAO-MCD has a more robust forecast capability than ECCC, for ECCC inverts the negative
and positive phases of NAO events in 2017.
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In order to specifically verify the capability of NAO-MCD in forecasting NAO events
and analyze the source of prediction errors in spatial structure, we visualize the predicted
SLP fields of two NAO++ and NAO−− events. As shown in Figures 12 and 13, they,
respectively, represent the strong positive NAO++ in 2020 and the strong negative NAO−−
in 2021. It is clear that NAO-MCD is capable of forecasting the bipolar see-saw structure
(Icelandic high and Azores low) of the pressure as NAO mode in the long term. However,
as the forecast period grows longer, it becomes more difficult for NAO-MCD to simulate the
bipolar dual structure, resulting in larger errors. We found that the forecast error of NAO++
mainly comes from the overestimation of low pressure in the Norwegian Sea area, and as
the forecast lead time progresses, the error mainly increases towards the western continental
area. The forecast error of NAO−− mainly comes from the overestimation of low-latitude
high pressure and underestimation of high-latitude low pressure, especially the serious
underestimation of Icelandic high pressure after a one-month lead time. However, the
forecast error of NAO−− events for a 3–6-month lead time does not obviously develop,
which also shows the ability of NAO-MCD to resist disturbance development.
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4.3. Effectiveness of the NAO-MCD’s Model Structure

A series of comparison experiments are conducted to verify the usability of the NAO-
MCD’s model structure. Rather than evaluating the forecast skill of NAO directly, we focus
on the role that the model plays in forecasting the SLP fields. The spatial consistency of the
simulated SLP fields and ground truths is measured by SSIM, and the forecast capability
for SLP grid values is measured by RMSE. To conduct fair comparisons, the input sequence
length l for all the comparison experimental models is 6. The parameters of the loss function
β1, β2, and β3 are 2, 6, and 7, respectively.

4.3.1. Contributions of Different Predictors to the Forecast Skill

Firstly, to verify the unbiasedness and robustness of the model, we add perturbations to
the different parameters of the input to observe the degradation of the model performance.
The added perturbation is a Gaussian noise with a standard deviation of 0.05 times the
standard deviation of the original data.

Table 7 shows the performance of the model with a 1-month lead time forecast after
adding different perturbations. It can be seen that the model has strong stability and
the forecasting skill performance only produces a decrease of 0.002 and 0.001 when the
perturbations are added to SLP and V10. The perturbations of other factors have very little
effect on the model. In addition, the prediction performance of the model decreases by 0.007,
RMSE increases by 0.052 hpa, and SSIM decreases by 0.01% after adding perturbations to all
factors. These results indicate that the model has good stability in addition to the relatively
large contribution of SLP and V10 to the forecast. Further, the analysis of the different
contributions of other variables to the forecast results helps to partially understand the
impact extent of air–sea variables on NAO. Thus, we design an ablation experiment to
remove one predictor from NAO-MCD and assess how this affected forecast skill.

Table 7. Model performance with one predictor added to the perturbation at 1-month lead time.

Perturbed Predictor Forecast Skill RSME (hPa) SSIM (%)

- 0.589 4.063 79.674
SLP 0.587 4.087 78.642
Z500 0.589 4.072 79.567
V10 0.588 4.075 79.034
U10 0.589 4.067 79.568
SST 0.589 4.070 79.535
All 0.582 4.115 78.622

Table 8 shows that the forecast ability for SLP is reduced when each predictor is
removed from the model inputs. For PC-Based NAOI forecasting, SLP is undoubtedly the
most critical predictor. More specifically, the decrease is most pronounced when the zonal
wind (U10) is removed. This demonstrates that the zonal wind is considered to be highly
correlated with the NAO mechanism. It has been found that the NAO positive phase is
associated with enhanced zonal winds at middle and high latitudes [59]. As a complement
to the SLP, which is also a pressure variable, the Z500 has the least impact on forecast ability.
Additionally, SST’s influence increases with forecast lead time. This may further indicate
that SST has a persistent influence on NAO.
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Table 8. Model performance with one predictor removed.

Removed Predictor
RSME (hPa)/SSIM (%)

1-Month Lead 3-Month Lead 6-Month Lead

- 4.06/79.67 4.18/78.12 4.26/77.15
Z500 4.18/78.04 4.25/76.80 4.39/76.02
V10 4.31/77.09 4.35/75.83 4.42/75.11
U10 4.39/76.80 4.39/75.49 4.62/75.21
SST 4.22/78.60 4.37/76.05 4.47/74.47

4.3.2. Effectiveness of Causal Discovery and the Coupler

To verify the validity of the causal discovery, we perform a comparison experiment
using the correlation-found predictors P = {SLP, Z500, V10, U10, SLHF}. The difference
between the correlation predictors and the causal predictors is that the former contains
SST while the latter contains SLHF. The performance of NAO-MCD with the correlation
predictor as inputs is shown in Table 9, which indicates that causality versus correlation is
more instructive for forecasting.

Table 9. Performance comparison with other models and NAO-MCD with different structures.

Model
RSME (hPa)/SSIM (%)

1-Month Lead 3-Month Lead 6-Month Lead

CNN 5.36/66.23 6.47/63.12 7.26/59.15
ConvLSTM 4.64/70.25 4.95/64.77 5.39/63.89

NAO-MCD with
correlation predictors 4.24/77.73 4.52/76.13 4.87/75.02

NAO-MCD without
coupler 4.35/76.79 4.52/75.72 4.74/74.35

NAO-MCD 4.18/78.04 4.25/76.80 4.39/76.02

The GCN coupler considers each physical variable separately and emphasizes causality-
based non-linear interactions between them. To verify the effectiveness of the coupler, we
constructed a contrasting NAO-MCD model structure without the coupler, which concate-
nates each encoder’s results as input to the decoder. The results (Table 9) show that our GCN
coupler is a reasonable structure for modeling multivariate interactions, which provides
insight into NAO-related dynamical interactions and underlying physical processes.

4.3.3. Comparison with Other Advanced Deep Learning Models

We compared NAO-MCD with other advanced deep learning models, including (1)
a convolutional neural network (CNN) and (2) a ConvLSTM network. As the lead time
increases, the performance of the models gradually decreases, as in Table 9. The results
show the gap between the effectiveness of the spatio-temporal forecast model ConvlSTM
and the basic deep learning model CNN. This implies that the complex network structure
is more effective in mining the complex dependencies deeply hidden in the evolution of
NAO. Overall, NAO-MCD outperforms other models at all lead times, which illustrates
the superiority of our model.

5. Discussion and Conclusions

The physical mechanisms and air–sea processes associated underlying the NAO re-
main uncertain, posing a challenge for traditional models to provide accurate long-term
forecasts. This paper provides a data-driven causal discovery perspective to uncover
the causality between multiple air–sea variables and NAO changes. The explored causal
diagrams reveal that NAO is mainly driven by internal atmospheric dynamics, with the
oceanic SST having a lagged effect of approximately 6 months on NAO. Furthermore, we
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develop an air–sea coupled deep learning model, NAO-MCD, which provides highly accu-
rate seasonal forecasts of NAO. Our experimental results demonstrate that the predictors
selected in our causal diagrams are closely related to NAO development and have high
physical interpretability. Among these predictors, the zonal wind significantly contributes
to our NAO forecasts, while SST exhibits a long-term effect that increases over time.

A further significance of this work lies in posing a challenge to traditional numerical
model models. Our models demonstrate the potential of data-driven and machine learning-
based approaches to climate model development by providing fast and accurate results.
Analysis of the forecast results of the CS3 models and NAO-MCD at 1- to 6-month lead
times of monthly and winter NAO shows that the forecast capability of NAO-MCD far
exceeds that of numerical models without any long-term forecast skill. The forecasting
capability of NAO-MCD at a 1-month lead time is comparable to that of the low-resolution
numerical model. The NAO-MCD monthly and winter NAO forecast skill remains around
0.4 at 2–6-month lead times, which is far superior to that of numerical models. In addition,
the spatial structure of the errors in NAO-MCD forecasts does not spread to potentially
sensitive regions at two-month forecast lead times, as does the numerical model, and
spreads to the entire North Atlantic region at 3- to 6-month lead times, losing forecast
capability. The good performance may be derived from the fact that deep learning models
only learn from inputs and the initial perturbation of climate variables does not evolve
over time like numerical models. Inversely, the poor forecasts of the numerical models
come mainly from the incomplete dynamical mechanisms involved. It is possible that
the forecast skills in the 1-month lead come from the initial condition. For longer-lead
forecasts, the dynamic models do not produce a correct response pattern in the NAO.
However, the limitations inherent in conventional models can be circumvented through
the use of data-driven models that leverage advanced algorithms to discern previously
unidentified non-linear physical connections by extracting features autonomously from
the data. Additionally, we discovered that NAO may have a six-month cyclicality and
mid-latitude North Atlantic (30◦ N–50◦ N, 70◦ W–0◦ and 50◦ N–60◦ N, 0◦–40◦ E) and
Greenland may be the observation-sensitive targeted areas.

The study highlights the potential of data-driven methods as a powerful tool for sea-
sonal NAO forecast and air–sea interaction simulation. Despite the significant contributions
made by this study, there are several limitations. First, the causal discovery algorithms
driven by data can only perform mutual causal analysis on data from the same time period
(monthly), and cannot analyze NAO events at specific times, such as a particular season.
However, the seasonality of NAO events makes it helpful to conduct separate seasonal
analyses and forecasts. Furthermore, our experiments suggest that the causal discovery
algorithms may struggle to identify factors with long-term impacts on NAO or those that
exhibit teleconnections. Second, although data-driven methods can aid in predicting the
future by utilizing past and current information, the quality of predictions is heavily influ-
enced by the quality and quantity of data available. As monthly forecasting is conducted in
this study, the earliest observation data for SLP dates back to 1899, with only slightly over
1300 monthly data points available. The limited data may lead to overfitting issues during
model training. Third, deep learning, as a black-box method, lacks the ability to provide
reasonable explanations regarding the learned features and their physical implications.

Moving forward, several avenues of research may be pursued to overcome these
limitations. One promising direction is to explore alternative causal discovery algorithms
that are capable of analyzing NAO events at specific times and better account for seasonal
variability. Future studies may also explore the use of additional remotely related but
important variables such as equatorial Middle and East Pacific ENSO events, tropical SST
anomalies, and snowpack to improve forecast accuracy. To address the issue of limited
data, efforts could be made to incorporate data from a wider range of sources. For one
example, using data from high-quality assimilated model simulations to learn the physics
contained in the model. It is also important to develop methods that can handle missing
data, as this may improve the robustness of the models. To better understand the physical
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implications of the features learned by deep learning models, future research may explore
methods for interpreting and visualizing the internal representations of these models. Such
efforts could provide valuable insights into the underlying physical mechanisms and help
validate the models’ predictions. Overall, while data-driven approaches have limitations,
there are several promising avenues for future research that may help overcome these
limitations and further our understanding of NAO dynamics and their impacts.
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