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Abstract: The expansion of agricultural practices and the raising of animals are key contributors
to air pollution. Cattle farms contain hazardous gases, so we developed a cattle farm air pollution
analyzer to count the number of cattle and provide comprehensive statistics on different air pollutant
concentrations based on severity over various time periods. The modeling was performed in two
parts: the first stage focused on object detection using satellite data of farm images to identify and
count the number of cattle; the second stage predicted the next hour air pollutant concentration
of the seven cattle farm air pollutants considered. The output from the second stage was then
visualized based on severity, and analytics were performed on the historical data. The visualization
illustrates the relationship between cattle count and air pollutants, an important factor for analyzing
the pollutant concentration trend. We proposed the models Detectron2, YOLOv4, RetinaNet, and
YOLOv5 for the first stage, and LSTM (single/multi lag), CNN-LSTM, and Bi-LSTM for the second
stage. YOLOv5 performed best in stage one with an average precision of 0.916 and recall of 0.912,
with the average precision and recall for all models being above 0.87. For stage two, CNN-LSTM
performed well with an MAE of 3.511 and an MAPE of 0.016, while a stacked model had an MAE of
5.010 and an MAPE of 0.023.

Keywords: cattle farm; object detection; regression; air pollution; livestock

1. Introduction

The world population has been expanding exponentially, with this trend expecting
to continue in the years to come [1]. In order to meet the growing demand for food
and other necessities, it is essential to increase the available supply of these products [2].
Cattle farming is one such contributor to the increasing supply of people’s essentials
for meat, dairy, and other cattle products, and it has a substantial impact on multiple
global environmental issues including climate change and agricultural emissions [3]. The
increasing number of farms and livestock contributes considerably to the pollution of the
air we breathe [4]. Hazardous gases, such as carbon monoxide (CO), nitric oxide (NO),
nitrogen dioxide (NO2), methane (CH4), carbon dioxide (CO2), particulate matter (PM2.5,
PM10), and ammonia (NH3), are among the gases found in the troposphere on cow farms,
according to researchers [5]. The dangers of air pollution for human health are now widely
recognized by the scientific community. According to the American Journal of Respiratory
and Critical Care Medicine, individuals who live on or near cattle farms are at significant
risk of developing chronic diseases [6]. Every year in the United States, it is estimated that
air pollution from livestock farms causes approximately 17,900 deaths [7]. Cattle farms have
significant challenges in serving the needs of an expanding and changing consumer base
while simultaneously taking measures to decrease their negative impact on air pollution
and other environmental problems. CH4 and N2O are primary greenhouse gas emissions
from livestock, respectively accounting for 44% and 29% of total industry emissions [8].
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Due to the severity of this situation, there is a need for creating a detailed analysis of air
quality in relation to the cattle count of farms and nearby areas.

The research presented in this paper aimed to keep the area safe by ensuring that
livestock farms maintain adequate air quality. The collection, monitoring, and analysis of
data on the impact of cattle farms on air quality and environmental effects are necessary
to understand the situation better and take appropriate actions [9]. It can also help food
firms produce healthier food methods that release less hazardous emissions [10]. With the
help of remote sensing data, the severity of each of the air contaminants was estimated and
plotted on a map for specific geographic areas.

There are a variety of tools and methodologies available for real-time monitoring of
greenhouse gas emissions from cattle farms. Various models found in previous studies for
predicting pollutant concentrations include statistical, numerical, and machine learning
methodologies such as XGBoost, Random Forest, and deep learning [8,11–13]. For this
paper, a system was created for finding the number of cattle, pollutant prediction, classifi-
cation, and visualization of the severity of pollutants. The first problem was determined
as an object detection problem, the second was a prediction problem and the third was a
classification and visualization problem. Specifically, data from API [14], hourly remote
sensing (the level of pollutants), satellite data, farm data, and location were all incorporated
to train the model for air quality monitoring, while satellite images were used to find the
cattle count. By using remote sensing data from areas that are not farms, the system can
learn how to read different input values and help to understand how much pollution is
in the cattle fields. We designed a two-stage supervised model for regression and then
performed the classification task. In addition, we developed a web portal with two models
to estimate the ratio of each pollutant in the environment and classified them according to
the severity of their impact. The classification model for presenting the live severity of the
selected farms includes a map visualization that indicates the AQI [15] of greenhouse gases.
In addition, we provided a classification method for predicting the air quality of livestock
farms and analytics based on the number of cattle present. Farm owners will obtain an
understanding through map visualization of the amount of pollution the farm extension
activity can cause. They can use the model’s output to either lower the number of animals
on the farm or increase the size of the field in order to reduce the overall pollution level.
This study introduced a novel deep learning approach to analyzing air pollution on cattle
farms by combining cattle counting using satellite imaging and air quality prediction to
analyze the correlation between cattle population and air pollution. In addition, the system
developed in this study combines cattle detection, AQI classification, pollutant prediction,
and a map visualization application compared to other studies that only address one or
two of these components.

The rest of this paper is structured as follows: Section 2 reviews the related technology
and literature; Section 3 describes the data collection and preparation; Section 4 details
the design and development of each proposed model; Section 5 summarizes the system
development and structure; Section 6 concludes the paper and discusses future work.

2. Related Work
2.1. Technology and Solution Survey

There are a variety of different technologies and solutions that can be used for our
project. However, for a better understanding of the different models available and to be able
to choose the best among them, we made a comparison between all of the latest algorithms
we have found in Table 1.
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Table 1. Technologies and Solutions.

Model Purpose Advantages Disadvantages

SVR [16]
Predicts discrete values closest to

the hyperplane within a
threshold value

1. Easy to update.
2. Considers points with least

error rate.
3. Better model fitting.
4. Requires less

computational power.

1. Less accurate for noisy data.
2. Not suitable for

large datasets.
3. Underperforms when

number of features is
greater than
training sample.

Naive Bayes [17]
Calculates probability based on

naive independence assumptions
for real-time predictions

1. Highly scalable and
performs better than
multi-class classifications.

2. Suitable for continuous and
discrete data.

1. Unable to learn variable
relationships.

2. Assumes all features are
independent.

3. Assumes zero
frequency problem.

KNN [18] Classifies data points based on
proximity to each other

1. Suitable for noisy and large
training data.

2. No training time required.
3. New data can be updated in

real time.

1. Not suitable for higher
dimensional data.

2. Has a high computing cost.

U-Net CNN [19]
Inputs images and outputs a label

for biomedical image
segmentation

1. Allows for pixel-based
classification.

2. Can work on
smaller datasets.

1. Requires data to be labeled.
2. Requires features to be

labeled, which needs
domain knowledge.

(Linear) LRM [20]
Evaluates trends by assuming

linear relationship between input
and output variables

1. Works best with linearly
separable data.

2. Suitable for smaller number
of parameters.

1. Prone to overfitting.
2. Not suitable for noisy data.

YOLO [21]
Predicts objects in real time by

splitting input image into grids to
generate bounding boxes

1. Model is open source.
2. Faster and more accurate

image classification than
other models.

1. Grid cells can only predict a
single class at a time.

2. Spatial constraints are
strong.

RF [22]
Predicts and classifies data based

on randomly created decision
trees

1. Can be used on datasets
with missing values.

2. More accurate than most
classification algorithms.

1. Provides less data
interpretation.

2. More difficult to visualize.
3. Has a high memory cost for

datasets with many features.

XGBoost [23]

Classifies large datasets using
gradient boosting framework

with parallel decision trees
boosting

1. Deals with missing values.
2. Has several useful

hyperparameters.

1. Sensitive to outliers.
2. Not suitable for structured

data.

VGG-Net [24] Recognizes images using VGG,
2D convolution, and max pooling

1. Has benchmarking for tasks.
2. Model is open source and

free.

1. Difficult to train.
2. Network architecture has

large weights.

(Logistic) LR [25]
Predicts pollutant concentrations

with discrete outcome
probabilities

1. Can be scaled to
multiple classes.

2. Classifies unknowns
quickly.

1. Has linear boundaries.
2. Requires many features.

LSTM [26]
Predicts pollutant concentrations

by selectively remembering
patterns from historical data

1. Provides a wide range of
parameters for tuning.

2. Handles the vanishing
gradient problem.

1. Has a high computing and
memory cost for real-world
problems.

2. Prone to overfitting.
3. Requires large datasets.
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Table 1. Cont.

Model Purpose Advantages Disadvantages

RetinaNet [27] Detects objects in satellite images
using single-state object detection

1. Better performance than
traditional two
stage models.

2. Suitable for dense
object detection.

1. Generates a large number of
negative samples.

2. Slower detection speed
than YOLO.

The above models include machine learning and deep learning techniques, which
were used in previous studies for the classification of pollutants, the detection of cattle,
image segmentation, predictions of the gases emitted, and cattle counting. A combination
of these models also provided a good result for the current study. These models overcome
the weaknesses of a single model and perform a given task with better accuracy and
performance. Random Forest, KNN, and linear regression are the models mainly used for
the classification of pollutants and their severity, whereas models such as YOLO, VGG,
and U-Net CNN and RetinaNet are used for detecting cattle from remote sensing and
satellite images.

2.2. Literature Survey

Depending on the requirements of this study, the papers related to remote sensing data
were helpful in understanding the handling of the captured real-time air pollutant concen-
tration. As part of the literature survey, various research works and journals were parsed to
ascertain an idea of how to go about the cattle farm air quality analysis project [28–41]. The
search proceeded across four different categories of models using the following data:

1. Remote sensing data;
2. Satellite dataset;
3. Air pollution data;
4. Cattle farm data.

Table 2 shows the comparison of papers that used remote sensing data for air pollution
prediction models. Monthly AOD and elevation were the most important predictors in
the model, according to variable importance analysis [29]. Cubist, Random Forest, and
eXtreme Gradient Boosting were the algorithms that performed the best, according to
the results, with Cubist being the best [5]. The authors of [30] suggest using Radial Basis
Function (RBF) with Support Vector Regression for greater accuracy. The table shows the
comparison of projects that developed prediction models for air quality analysis on cattle
farms. The authors of [33] used eight different regression approaches with evaluation
metrics of four accuracy measures, and used correlation analysis to select the significant
features. To forecast hourly PM10 concentrations, this research used the Gradient Boosted
Regression Trees (GBRT) model trained to forecast them [38]. Through this method, the
effects of diverse environmental variables on PM10 can be isolated and quantified. In
general, the model is more sensitive to climatic conditions than it is to land cover features.
In 2020, an air quality forecasting model was created using satellite data using deep neural
networks [39]. The authors used CNN, RNN, LSTM, and a spatiotemporal deep network.
The results suggest that using the CNN-LSTM model with the satellite data gives a lower
RMSE and MAE.

Papers on working with satellite imagery data were explored to handle the counting
mechanism used by different researchers for counting objects such as cars and buildings to
help us with cattle counting on each farm. Table 3 shows the comparison of projects that
have implemented counting algorithms for modeling. In [39], Google Earth API was used
as the data source and a framework was built that collects satellite data of different regions
using the attention based re-weighting technique. FusionNet was used to capture the build
structure density and MAE and R-squared measures were used to find the performance.
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Some studies used deep learning models such as CNN, CSRNet and LCFCN for cattle
detection and counting [39–42].

Table 2. Literature survey of air pollution prediction methods.

Reference Region Purpose Model Metrics Input Parameters

[28] Canada Predicting ground
level PM2.5

MLR
BRNN
SVM

LASSO
MARS

RF

CV-RMSE
CV-R2

(Data: MODIS)
PM2.5, AOD, LST, NDVI, HPBL,
wind speed, elevation, distance,

month

[29] Andhra Pradesh,
India

Predicting air
pollution

SVR
MVR RMSE (Data: LANDSAT ETM+, IRS P6)

NDVI, TVI, VI, UI, API

[5] California,
United States

Predict AQI for
California

SVR with RBF
kernel Accuracy

(Data: API)
CO, SO2, NO2, ozone, PM2.5,
temperature, humidity, wind

[30] China
Measuring air

pollutants with
lidar signals

SVM
LR
RF

BPNN

RMSE
(Data: Lidar)

SO2 ON, SO2 OFF, NO2 ON,
NO2 OFF

[31] Germany
Predicting annual
CH4 emission in

farms

SVM
RF

MLR

RMSE
MAE

(Data: Sensors)
Methane, cattle,

temperature, humidity

[32] USA Predicting NO2
cattle emissions Genetic algorithm RMSPE (Data: USDA EMET Lab)

Lactating and dry cows, steers

[33] Germany Predicting NH3
cattle emissions

GBM
RF

LRM
SVM

RMLR

RMSE
MAE

R2

(Data: farm sensors)
Cow count and mass, milk yield,
temperature, humidity, CO2, NH3

[34] Malaysia Mapping air
pollution

RF
SVR

RMSE
MSE

(Data: Himawari-8, Sentinel 5p)
CO, HCHO, NO2, O3, SO2, CH4

[35] United Kingdom Retrieving AOT ERDAS MICROTOPS II
photometer

(Data: Landsat)
ozone transmittance, water vapor
transmittance, aerosol scattering,

surface reflectance

[36] Germany
Mapping and
identifying air

quality patterns
GBRT R2;

RMSE

(Data: MAIAC, MODIS, EEA)
NOx, PM10, PM2.5, RH, SO2, NH3,

temperature, moisture, images

[37] China Forecasting AOT LSTM
CNN

RMSE
MAE

(Data: MODIS, MAIAC,
MISR, OLI)

CO3, PM2.5, SO2, PM10, O3

[38] India
Air pollution

forecasting and
AQI classification

Smotednn
XGBoost

RF
SVM
KNN

Accuracy
RBF
FPR
FNR

(Data: NAMP)
NOx, NO, SO2, PM10, PM2.5, CO,

O3, NH3, B, X, Touluene

Abbreviations: LR (logistic regression), LRM (linear regression model), ERDAS (Euclidean distance algorithm in
ERDAS Imagine®).
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Table 3. Literature survey of object detection methods for counting cattle.

Reference Region Purpose Model Metrics Input Parameters

[39] Asia, Europe,
America, Africa

Counting in
satellite images

FusionNet
DRC

SS-Net

MAE
R2

(Data: Google Earth API)
RGB satellite images

[40] South America Counting and
identifying livestock

CNN
KNN

RF
RMSE (Data: Farm image sensors)

RGB images

[41] Brazil Counting cattle CNN Precision, Recall
F-measure

(Data: UAV)
Drone images

[42] Amazon Tracking illegal
cattle ranching

CSRNet
LCFCN
VGG16
FCN8

MAPE
MAE

(Data: Maxar satellite)
RGB images

Our
study United States

Cattle and air pollution
correlation, counting

cattle, AQI classification
and mapping

Detectron2
YOLOv4
YOLOv5

RetinaNet
LSTM

CNN-LSTM
Bi-LSTM

MSE
RMSE
MAPE
MAE

GAMPE
MSLR

(Data: Google Earth API,
Openweather API)

RGB satellite images, CO,
NH3, NO, NO2, O3, PM10,

PM2.5, SO2

Abbreviations: VGG16 (VGG 16-layer net), FCN8 (FCN with 8 pixel stride).

The literature survey on various machine learning and deep learning models for a
variety of dataset types helped with understanding how to use the proposed models for
object detection in stage 1 and air pollutant concentration prediction in stage 2 for our cattle
farm air quality analysis project. For comparison with other studies, this study is included
as the last row in Table 3.

3. Data Engineering
3.1. Study Area

For this study, we analyzed and evaluated air quality and environmental implications
at selected animal farms using big data, deep learning, and machine learning models. The
location chosen for this project is in Colorado, United States. To count the cattle, four farms
in Colorado composed of beef and dairy farms were chosen: Prado Dairy, Hillrose Dairy,
Producers Livestock, and Docheff Dairy Farm.

We chose to investigate the eight most common pollutants that were concentrated
in cattle farms. In our investigations of the targeted farms, we found very few sources of
emissions outside of livestock, the most notable being one to two tractors and cattle feeders
on the farm. As the emissions values from these sources are very low and constant [43], we
assumed that the farm emissions are primarily from livestock. Images from the satellite
and pollutant and weather data from the API were collected for the four farms. The time
range for this study was November 2020 to 15 August 2022. Figure 1 illustrates the AQI
map visualization and our targeted pollutants and cattle farms. This study will educate
farmers and anyone interested in the subject and increase public awareness of livestock
greenhouse gas emissions.
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Figure 1. Map visualization of AQI of each pollutant for the cattle farms selected. Pollutants analyzed
and cattle farm coordinates are included on the map.

3.2. Data Process

Data processing was considered as a significant step in this project as there were
various types and sets of data used in order to achieve the goal of the project. The data
required for the project were categorized into the following:

1. Cattle detection and counting, which requires satellite data;
2. Air pollutants based on coordinates, which requires remote sensing API.

The stages of the data processing included collecting raw data from a reliable source
and splitting the data for training, testing, and validation purposes. The data processing
methods for the categories mentioned above are explained below.

3.2.1. Satellite Data

In selecting the right data source to fetch the satellite images, we chose the Google
Earth engine [44], as it has the numbers of satellites available and provides the time period
of the data required. From the list of satellites, it was important to select a satellite with
high resolution for cattle counting. After some research, we chose Sentinel-2 [45] and
Landsat-8 [46] as they provide a greater resolution (30 m to 10 m resolution) and are the
nearest imagery satellites for object detection. Figure 2 includes examples of satellite images
taken from Google Earth engine.
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3.2.2. Remote Sensing Data

To predict the air quality in cattle farms, it is mandatory to capture the pollutants level
at each farm location. The coordinates of the four chosen farms were taken and pollutants
levels were measured using remote sensing API. We used the free source OpenWeather
API [47] to obtain the detailed level of each pollutant used in the project. The air quality
provided by this API is in hourly granularity available from November 2020. As these
are API data, not much storage was required from our end for the data processing. The
coordinates are given to this API for testing purposes.

3.3. Data Collection

The data collection process for the four farms started with the cattle count in each
farm, followed by collecting pollutant data and then weather data. The collection methods
of each task are explained in detail below.

3.3.1. Cattle Count

The images from 15 March 2021 to 15 August 2022 were chosen from the Google Earth
engine, and were split into training, validation, and testing data. The satellite images had a
spatial resolution of 10 to 30 m and a zoom level of 100 m. A snippet was given to obtain the
required data from the historical dataset. The farm coordinates and required time period
were used to fetch high-resolution image data, which was provided by the Google Earth
engine in collaboration with NAIP: the National Agriculture Imagery Program [48]. Once
these details were given, the next step was to execute the program in Python to collect the
data.

3.3.2. Air Pollutants

For this project, we collected the following parameters of the air pollutants from the
OpenWeather API:

• Carbon monoxide (CO);
• Nitrogen dioxide (NO2);
• Ozone (O3);
• Sulfur dioxide (SO2);
• Ammonia (NH3);
• Particulate matter (PM2.5);
• Particulate matter (PM10).
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From the above list of pollutants, nitrogen and Ammonia (NH3) were the main metric,
as cattle are the major contributors of these pollutants [49]. Table 4 shows the air quality
index levels [50]. These values were later classified into different colors based on their
health concern level, ranging from good to hazardous.

Table 4. Air quality index and classification.

AQI Pollutant Concentration

Category Value NO2 PM10 O3 PM2.5 NH3 CO SO2

Good 0–50 0–53 (1 h) 0–54 (24 h) 0–54 (8 h) 0–12 (24 h) 0–200 (24 h) 0–4.4 (8 h) 0–35 (1 h)
Moderate 51–100 54–10 (1 h) 55–154 (24 h) 55–70 (8 h) 12.1–35.4 (24 h) 201–400 (24 h) 4.5–8.4 (8 h) 36–75 (1 h)
Unhealthy

for Sensitive
Groups

101–150 101–360 (1 h) 155–254 (24 h) 71–85 (8 h) 35.5–55.4 (24 h) 401–800 (24 h) 9.5–12.4 (8 h) 76–185 (1 h)

Unhealthy 151–200 361–649 (1 h) 255–354 (24 h) 86–105 (8 h) 55.5–150.4 (24 h) 801–1200 (24 h) 12.5–15.4 (8 h) 186–304 (1 h)
Very

Unhealthy 201–300 650–1249 (1 h) 355–424 (24 h) 106–200 (8 h) 150.5–250.4 (24 h) 1201–1800 (24 h) 15.5–30.4 (8 h) 305–604 (24 h)

Hazardous 301–500 1249–2049 (1 h) 425–604 (24 h) 405–604 (1 h) 250.5–500.4 (24 h) 1800+ (24 h) 30.5–50.4 (8 h) 605–1004 (24 h)

In order to collect the pollutant data from the API, an {API key} was first generated
from the OpenWeather website. Once the {API key} was received, the API key and location
coordinates (latitude and longitude) were used for collecting the pollutants level.

3.4. Data Pre-Processing

The next step was to remove any anomalies in the data and prepare the data for smooth
model training. As this process involves different types of datasets, preprocessing was
required for all of them. After finding geographical data for each of the four chosen farms,
we used API to extract pollutant data for each farm. This was performed in Google Colab.
The raw dataset contains columns with the hourly values of each pollutant, longitude and
latitude, cattle count, and date time. The format of date time was changed from timestamp
to date and hour. We merged all four extracted datasets into one and labeled images
for training the model for cattle detection and counting with Roboflow [51] for image
annotation.

Figures 3 and 4 are examples of satellite images after they were annotated in Roboflow.
After annotating the images, we auto oriented them and transformed the cattle farm
images into tiles for better model understanding. The augmentations used to generalize the
object detection models were horizontal and vertical flipping, shearing with ±15 degree
horizontal and vertical, brightness between −25% to +25%, blur and noise up to 2.5 px and
3% of pixel respectively, bounding box rotation between −15 and +15 degrees, bounding
box shear ±15 degree horizontal and vertical and mosaic.
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3.5. Data Transformation

The remote sensing and satellite image data were transformed to make it organized
so that it would be quick and easy for the different models in each stage of modeling
to work on. During data transformation, pre-processed data were transformed into a
particular dataset. Improving the quality and variety of the training dataset is critical for
the performance and ability of the model to generalize. The data transformation steps
differed for satellite image data for object detection in stage 1 and remote sensing data for
air pollutant concentration prediction in stage 2.

3.5.1. Stage 1—Satellite Imagery Dataset

For stage 1, we collected satellite image data for each of the four different farms
selected in Colorado to detect cattle and calculate their total count. For the transformation
of the data collected, we increased the size and variety of the training dataset by including
more transformed versions of existing data in the training dataset. By reproducing existing
images in different orientations, we fed the model additional information to learn from
without having to gather and label more training data. The sample image data for this
project employed horizontal flipping, vertical flipping, random brightness augmentation,
random cropping, and rotation by no more than 45 degrees to chosen images from the
dataset. Since the cattle in the images were in different positions, our model will be able
to better handle changes in object orientation when using rotation as an augmentation
technique. Noise in satellite images was removed as part of data smoothing. A binning
algorithm was implemented in this data transformation stage where the entire farm area
was split into bins and smoothing of each of the bin regions was performed. Figure 5 shows
the satellite image before binning, and Figure 6 shows the same image after binning.

3.5.2. Stage 2—Remote Sensing Data

For stage 2, remote sensing data were collected from OpenWeather API for the four
different farms selected to predict the next hour air pollutant concentration in cattle farms
for the eight pollutants selected. For each timestamp of hourly air quality, the remote
sensing dataset was combined into different time periods such as a week, month, season
and year. New features that were added to the dataset, such as the latitude and longitude,
were encoded for further usage. As we needed data in ascending sequence of time, the
dataset needed to be sorted in the datetime index. Since diverse scales of variables do not
contribute equally to model fitting and learning, resulting in a bias, it was important to
normalize the dataset. StandardScaler was used for normalizing the dataset. Due to the fact
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that different scales of variables contributed differently to fitting to the model and learning,
resulting in bias, it was critical to normalize the dataset. We used StandarScaler() in the
sklearn.preprocessing package to normalize our stage 2 dataset. After the values dataset
had been normalized and standardized, the value of all the images in the array was between
zero and one. As part of data standardization, the image features were converted to have
zero mean and unit variance as seen in Figure 7. This conversion helped the model have no
bias during the gradient computation and also helped the model coverage be better.
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3.6. Data Preparation

To prepare the data, we generated training, validation, and testing datasets to avoid
overfitting and to obtain a proper model accuracy. This step was crucial for the further
training of our models as it is an important factor while training the model. The number
of features involved in training the model was directly proportional to the complexity of
the model. Not all features were needed during the training and testing process, and those
such as longitude and latitude could be removed. It is necessary to have a system in place
to determine how effectively the model generalizes. The input image dataset was split into
training and testing data. Training data contained the training dataset and the validation
dataset. Data were divided into 60% training, 20% validation, and 20% testing data using
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Roboflow. Validation parameters were evaluated after each training epoch to monitor the
performance of the model and see whether it had reached optimum performance with the
validation set. Training, validation, and testing datasets used preprocessed images. Only
test and validation datasets used ground truth and images with augmentation were only in
the training dataset.
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Because weather and air quality datasets are time series, they could not be randomly
divided and were instead divided by timestamp and trained using time-based splitting.
The time-series data utilized the unix time system for each image since other time formats
would lead to an unreliable result. Weather and remote sensing datasets contained data
for the time interval. Divided datasets needed to be reshaped for each used model to meet
its requirements.

The images were annotated with Roboflow before feeding them to the models. Roboflow
annotated the images quickly while keeping track of the annotated and unannotated images,
and split the images into training, testing, and validation sets as illustrated in Figure 8. This
was all carried out in Google Colab with Roboflow API, which helped to maintain the code
neatly. The images were then flipped and rotated with other augmentation techniques.
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3.7. Data Statistics

The satellite image dataset, weather data, and hazardous gases data for the four
chosen farms were collected and saved in the required format files. The remote sensing
data containing air pollutants were collected, pre-processed, transformed, and prepared.
Different image rotations and cattle densities may be observed in the given images and
their flipped counterparts. Figure 9 shows a spider map with various pollutants and their
concentration across months for the farms. These spider maps were compared for several
pollutants for the months of April, July, October, and February.
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Figure 9. Spider map for levels of different pollutants in chosen farms.

Figure 10 shows the correlation between variables—the brighter the color, the higher
the correlation between variables. We can see a high correlation between PM2.5 and PM10.
We can see the correlation between each of the pollutant concentrations with respect to the
cattle count.
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Figure 10. Covariance matrix.

Figure 11 shows the density distribution of each of the pollutants. There is a dense
concentration for NO2 from 50 to 150, indicating medium concentrations. However, for
most of the other pollutants, such as CO, NH3, NO, O3, PM10, SO2, PM2.5, there is a spike
at the beginning, indicating smaller concentrations for those respective pollutants. This
allows us to get an idea of the values for each of the pollutants for further analysis.
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The below Figure 12 shows the trend of pollutant concentrations over a year. All these
pollutants are displayed with different colors for better comparison. As we can see, there is a
spike in the first quarter of CO, NH3, and NO, and the opposite can be observed for PM10
and PM2.5, where the spike is towards the end. Then, it settles to a lower side and it is much
more random throughout the year for NO2. High SO2 is present from the middle of the term.
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4. Model Development
4.1. Model Proposal

The proposed cattle farm air quality analyzer has three facets, which are counting
cattle, predicting pollutants, and visualization based on the pollutant severity. A satellite
dataset collected from the Google Earth engine was used to train the stage 1 models for
counting the number of cattle in a satellite image. Using weather and remote sensing data,
a stage 2 model was developed to predict the presence of different pollutant concentrations
in particular cattle farms. Once the prediction was made, these data were visualized on
a map with the help of Tableau [52] to show the severity of each of the pollutants. We
proposed multiple machine learning/deep learning multivariate models for time series
data to provide better evaluation results in this project.

In the first stage model, the most important part for counting the cattle is the object
detection. For object detection, this project used four models—YOLO v4 [53], YOLO v5 [54],
ResNet [55], and RetinaNet [56]. For YOLOv4, the input of the initial convolutional layer
dimension was 416 × 416 × 3 on which 32 filters were applied. These are the standard
dimensions for YOLOv4 and create a balanced model. For YOLOv5, the input dimensions
for the first convolutional layer started with 64 × 64 × 3 with initial 3520 parameters.
This model was built with eight convolutional layers. The next model used for object
detection and counting was ResNet, which was pre-trained using ImageNet [57]. We
modified ResNet50 with two FC layers, which were connected with 512 neurons. These
modifications were made to better count the cattle and reduce the vanishing gradient
problem. Furthermore, the Detectron2 model developed by Meta was used as a part of
ResNet for cattle counting [58,59]. Our Detectron2 model had an input dimension of
256 × 256 × 3 with deep convolutional layers. RetinaNet, a bottom-up pathway and one-
stage detection model that uses a focus loss function, was used for calculating the cattle
count [10]. The input dimensions on the first convolutional layer were given as 64 × 64 × 3.

Once the stage 1 models had been completed, stage 2 models were used for the
pollutant prediction. We implemented a combination of RNN models, including CNN-
LSTM, Bi-LSTM, and the multiple lag timestep LSTM. The CNN-LSTM model was used
for pollution prediction based on the last 24 h of pollutant data, and predicted the next
hour data with training using remote sensing data. The modeling was performed by
creating 64 filters on the convolutional layer with the activation function ReLU, and was
then connected with an LSTM layer followed by a fully connected layer to produce the
prediction results. The batch size for this model was kept as 64 with 2176 parameters and
ran for 12 epochs. For the Bi-LSTM model, two layers of LSTM were added—a forward
LSTM layer and a backward LSTM layer. The output from the Bi-LSTM was concatenated,
after which the prediction results were provided by the model. The batch size of the
Bi-LSTM model was kept as eight with a window length of 64 and was deployed for
50 epochs.

In order to predict the pollutant concentration for each of the specified farms, sup-
port vector regression (SVR) [60], linear regression, and convolutional neural networks
(CNN) [61] were proposed. For SVR, the maximum error parameter was defined and
fine-tuned to increase the accuracy of our model. The linear regression model attempts
to identify potential associations between two variables by fitting linear equations to the
dataset, and calculate best fit by minimizing the squared errors [50]. For CNN, the input
data were resized and fed to a convolution layer where the ReLU activation function was
followed for all the layers except the last layer, which used sigmoid activation. CNNs
are best with image data for analysis, but these can be extended for predicting by adding
regression layers at the end of the network after a convolutional network for regression
tasks [62].

Figure 13 outlines the proposed model architecture flow for this project, showing
the first stage modeling for counting cattle with the proposed YOLOv4, YOLOv5, Detec-
tron2, and RetinaNet models, and the second stage of modeling with models CNN-LSTM,
Decision tree regressor, support vector regressor, and Bi-LSTM for air quality prediction.
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Models CNN-LSTM and Multilag LSTM were used as stacked models to provide high
accuracy. The output of the first stage was fed as input to the stage 2 models along with
the remote sensing data to predict the pollutant concentration. The output from all the
stage 2 models was used to classify the pollutants predicted based on their severity for
visualization, and this output was displayed using Tableau, which was then fetched to the
web application. Figure 14 shows the pipeline of the system.
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4.2. Model Supports

In this project, there were a large amount of data that were hard to store and process
on a local machine. Thus, Amazon S3 was used as support to store the dataset for all the
machine learning and deep learning approaches proposed, including SVR, linear regression,
random forest, linear regression, Bi-LSTM and CNN-LSTM. Amazon Web Service (AWS)
was also used for the storage of data, which were retrieved and stored using the secured
Hypertext Protocol Transfer Secure (https). All the data collected online were migrated to
the S3 bucket and were extracted from the stored database when preparing for modeling.
Detectron2, RetinaNet, YOLOv5, LSTM, Bi-LSTM, and CNN-LSTN were run with GPU
Nvidia K80/T4 and memory of 12 GB/16 GB. YOLOv4 was run with GPU: Tesla T4 with
memory of 12 GB. Linear regression, DTR, and SVR were run with CPU: Intel(R) Xeon(R)
with memory of 12 GB. All models were run in Google Colab, written in Python 3, and
developed using keras, Tensorflow, Pytorch, and scikit-learn packages.

For stage 1 modeling, data preprocessing was performed using Roboflow. Augmen-
tation techniques such as flip, shear, brightness, blur, mosaic, noise, bounding box: shear,
and bounding box: rotation were supported by Roboflow for this project. For the sec-
ond modeling stage, the hourly air pollutant data were preprocessed with the help of the
Google Colab platform in Google Drive using Python3. These platforms were considered
because they provide shared and up-to-date access across all the team members. A selec-
tion technique used for image segmentation was performed by comparing the evaluation
metric Intersection over Union (IoU) score of the different image segmentation models,
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YOLOv4, YOLOv5, ResNet and RetinaNet. All models were trained in Python 3.7, since it
has the built-in libraries we required for a variety of computational and modeling problems.
Pytorch was used for easier data loading and processing for all the ML and deep learning
models proposed. For the first stage, we trained different models and picked the most
accurate one, which took periodic satellite image data of cattle farms as input and helped
to count the number of cattle in each farm. After preprocessing of the input, data were
split into train, validation, and test sets in the ratio of 60:20:20 for model training and
evaluation. New data were given after training for the model to count the cattle in a new
image accurately. Figure 15 illustrates the architecture for the first stage of modeling.
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For the second stage of modeling, data from other sources, such as the farm data,
weather data, and pollutant data, formed the input to the model. Similar to stage one,
we split the data for training, validation, and testing. In the stage two model, we used
the previous model outputs, such as cattle count, as one of its input features to best
predict the pollutant concentration and classify them based on their severity. The proposed
models—support vector regression (SVR), linear regression (LR), LSTM (RNN), CNN-
LSTM, Bi-LSTM, and decision tree regressor—were used in the prediction of air pollutants
in this stage of modeling shown in the ML data flow diagram below. Figure 16 illustrates
the architecture for the second stage of modeling.

Atmosphere 2023, 14, 771 20 of 35 
 

 

 
Figure 16. ML data flow for stage two modeling. 

4.3. Model Comparison 
We compared various models for both stages including Cubist [63], eXtreme Gradi-

ent Boosting algorithms [64], CSRNet [65], logistic regression [66], YOLOv5 [67], and 
Fuzzy KNN [68]. For comparing models that have used counting methods using images 
retrieved from UAV, we considered various algorithms including ResNet, YOLOv4, Mo-
bilenet—SSD, RetinaNet, and YOLOv5. Detecting livestock is a crucial stage in the cattle 
counting process and, when trying to anticipate the concentration of gasses across the 
farm, the projection of the number of cattle provided us with an important factor to take 
into consideration. The improved model YOLOv5 has a similar structure to YOLOv4. In 
detection problems, the common methodology is that all inputs are of the same size and 
dimension, but in YOLOv5, the borders are ignored and the focus is more towards the 
detection part which in turn increases target detection speed. YOLOv5 added a new focus 
mechanism to our model and was the backbone for target detection. CSPnet enhances the 
ability of feature integration and, instead of using CIOU_Loss as with YOLOv4, YOLOv5 
uses GIOU_loss. RetinaNet utilizes Focal Loss, which neutralizes the problem of class im-
balance. The feature pyramid in RetinaNet helps detect objects at multiple scales [69]. For 
our purpose, the YOLOv5 mechanism gave the best converging rate due to its method of 
adding positive sample anchors to boost convergence and training efficiency, and is sig-
nificantly smaller than YOLOv4 [70]. The model has three main modules: a backbone for 
feature extraction from images; a neck for combining extracted features from the previous 
module and passing to the next module; and a head module that takes features from the 
neck network and makes predictions. YOLOv5 also has a better inference time than 
YOLOv4, and results in higher average precision and recall than the other models we 
tested. After comparing the different models, we decided to implement YOLOv4, 
YOLOv5, ResNet, and RetinaNet for stage one modeling. Table 5 provides an overview 
and comparison of each model we used in stage one and stage two. 

  

Figure 16. ML data flow for stage two modeling.



Atmosphere 2023, 14, 771 19 of 32

4.3. Model Comparison

We compared various models for both stages including Cubist [63], eXtreme Gradient
Boosting algorithms [64], CSRNet [65], logistic regression [66], YOLOv5 [67], and Fuzzy
KNN [68]. For comparing models that have used counting methods using images retrieved
from UAV, we considered various algorithms including ResNet, YOLOv4, Mobilenet—SSD,
RetinaNet, and YOLOv5. Detecting livestock is a crucial stage in the cattle counting process
and, when trying to anticipate the concentration of gasses across the farm, the projection of
the number of cattle provided us with an important factor to take into consideration. The
improved model YOLOv5 has a similar structure to YOLOv4. In detection problems, the
common methodology is that all inputs are of the same size and dimension, but in YOLOv5,
the borders are ignored and the focus is more towards the detection part which in turn
increases target detection speed. YOLOv5 added a new focus mechanism to our model and
was the backbone for target detection. CSPnet enhances the ability of feature integration
and, instead of using CIOU_Loss as with YOLOv4, YOLOv5 uses GIOU_loss. RetinaNet
utilizes Focal Loss, which neutralizes the problem of class imbalance. The feature pyramid
in RetinaNet helps detect objects at multiple scales [69]. For our purpose, the YOLOv5
mechanism gave the best converging rate due to its method of adding positive sample
anchors to boost convergence and training efficiency, and is significantly smaller than
YOLOv4 [70]. The model has three main modules: a backbone for feature extraction from
images; a neck for combining extracted features from the previous module and passing to
the next module; and a head module that takes features from the neck network and makes
predictions. YOLOv5 also has a better inference time than YOLOv4, and results in higher
average precision and recall than the other models we tested. After comparing the different
models, we decided to implement YOLOv4, YOLOv5, ResNet, and RetinaNet for stage one
modeling. Table 5 provides an overview and comparison of each model we used in stage
one and stage two.

Table 5. Machine learning model comparison—Stages 1 and 2.

Model Mechanism Advantage Disadvantage

YOLOv4

It splits the input image in m-sized grids
and for every grid it generates 2

bounding boxes and classes
with probabilities

It is fast and open source. Classifying
images in real time is faster and more

accurate than other algorithms.

Spatial constraints are strong, two grid
cells only predict a single class at a time.

YOLOv5

Uses auto anchor boxes, mosaic
augmentation, scaling, adjust colors,
combines sliced images into one and

finds new classes.

Provides better converging rate, is faster,
smaller, implements new findings,

shows good performance in real- time
detection, and gets higher accuracy.

Has limited literary support, predicts
single class at a time.

ResNet
Multiple layers of plain networks with a

shortcut connection that creates a
residual network.

Deeper training of the network,
minimizing the information loss issue.

Identity mapping for
vanishing gradients.

The model training process is
time-consuming.

RetinaNet
Is a unified network consisting of a main
network and two specialized networks

for different tasks,

Takes on the difficulty of detecting small
and dense things. Solves the

class-imbalanced problem. Is fast
and accurate.

More suitable for when a greater mean
average precision in recognition

is needed.

LSTM
Single step

Stores or writes information by using a
gating mechanism to read.

Learning long-term dependencies, in
backpropagation, solves the problem of

vanishing gradient.

It requires a long training time, is easy to
be overfitted, and takes a lot of memory.

LSTM
Multi step

Similar to LSTM, it considers multiple
influenced factors.

Predicts several outputs simultaneously,
is suitable for short-period predictions.

Is under the presumption that the time
series is conditionally Gaussian.

CNN-LSTM
Selectively remembers patterns for a
longer period of time where CNN is

used to extract time features.

Provides a wide range of parameters
(learning rate, input & output bias) for

tuning. Handles vanishing
gradient problem.

Time duration for training to solve real
world problems needs time. Also prone
to overfitting and requires memory to

be trained.

Bi-LSTM
Gets input from both sides and

examines sequences front-to- back and
back-to- front.

Provides a past and future context.
Is a costly model due to the additional

LSTM layer, long training time,
slow model.
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For building a cattle farm air quality analyzer, various models were compared to
find the best fit for the collected dataset from various sources. Model comparison was
carried out in different categories depending on the use case, namely: regression models,
classification models, models using satellite data, models used in counting methods, and
models using remote sensing data. When comparing models that have used remote sensing
data for predicting air pollution, we had to consider various features and labels for these
pollutants. We compared Cubist and eXtreme Gradient Boosting algorithms from the
paper [64], with Cubist performing the best. We also compared different models used in
other papers such as CNN-LSTM, LSTM, LSTM (Multivariate), CNN, and BiLSTM. For
cattle farm pollution prediction, we considered CSRNet, LCFCN, genetic algorithms, linear
regression, and support vector regression models. These models predict the future trends
to estimate the pollution across the farm. For classifying the predicted pollutants based on
their severity, we used ML classification models such as Random Forest, logistic regression,
K Nearest Neighbor, and Fuzzy KNN. The output was displayed on heat maps. After
comparing the different models, we decided to implement LSTM single step and multi
step, CNN-LSTM, and Bi-LSTM for stage two modeling.

4.4. Model Evaluation

A comparison of models was made with the help of a validation set, and we selected
our model from the evaluation metrics results on testing data. For comparing models
that use remote sensing data for predicting air pollution, the best evaluation metrics are
usually MSE [71] and RMSE [72]. MSE is not robust to noisy data so we considered RMSE
instead, where RMSE values were inversely proportional to model accuracy [65]. For stage
2 modeling, proposed regression models such as SVR, linear regression, and CNN use
these metrics. For comparing models that have prediction models, such as CNN, linear
regression, and support vector regression, and for the cattle farm pollution, comparing
models such as CNN-LSTM that have used satellite data, we used a 10-fold cross validation
in which we divided the data into subsets and then ran them on all models. The CV-RMSE
and CV-R2 were evaluated to identify the models with the best accuracy [28]. CV-RMSE
gives us a value in absolute terms while CVR2 tells us how well a model can predict in
terms of percentage. For comparing models that utilize counting methods using images,
we used mean absolute percentage error (MAPE) to differentiate between sparse regions
and densely populated regions, and grid average mean absolute percentage error (GAMPE)
to measure localization performance and counting the cattle.

For the classification models linear regression and Random Forest, we used a confusion
matrix [73] to understand the performance of our model and to check its ability to predict
either true or false for given data. For counting the number of cattle in a given image as part
of the first stage of modeling, models such as RetinaNet and YOLO use the Intersection over
Union (IoU) [74] evaluation metric for performance comparison of the image segmentation.
Equation (1) shows the calculation for the IoU metric [75].

IoU = TP/FP + TP + FN. (1)

The evaluation metrics that were calculated for model performance in the second stage
of modeling included accuracy, sensitivity, specificity, and precision [76]. The formulas for
each metric are given below [77].

Accuracy = TP + TN/TP + TN + FN + FP;

Sensitivity (Recall) = TP/TP + FN;

Specificity = TN/TN + FP;
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Precision = TP/TP + FP. (2)

The F1 score shown in Equation (3) combines recall and precision in a single metric
while giving equal weight to both, which in turn provides a greater interpretation of our
model and balances the imbalanced data [78]. It is mainly used in classification problems as
part of the second stage of modeling when classifying pollutants based on their severity [79].

F1 = 2 ∗ (precision ∗ recall)/(precision + recall). (3)

The Receiver Operating Characteristic (ROC) curve is used to determine the perfor-
mance of classification models at various threshold settings. For our classification purpose,
it was essential to understand how the model performed while classifying cattle into dif-
ferent classes, as a wrong classification might result in erroneous results for predicting
the emitted gasses from cattle. The Area Under the ROC Curve (AUC) [80] is used to
give the average performance across thresholds and measure the quality of predictions
and their ranking. The higher the AUC, the better the performance of the model. MAE
(mean absolute error) is used to evaluate model accuracy, and was calculated separately
for each pollutant. A lower MAE value corresponds to a better model and accuracy [81].
Equation (4) shows the formula for MAE.

MAE = 1/n ∗ Σ|yi − ŷi|. (4)

4.5. Two-Stage Model Experimental Results
4.5.1. Stage One Modeling Results

For the first stage of modeling, we sourced the satellite image data from the Sentinel-2
satellite. Figure 17 shows the evaluation results from the four different object detection
models—Detectron2, YOLOv4, RetinaNet, and YOLOv5. We can see the cattle being
detected by each of the different models using bounding boxes. These bounding boxes
have an object accuracy score for each object detected in the image.

Table 6 below shows the average precision and average recall metrics values for each
of the proposed stage 1 deep learning models. It is observed that YOLOv5 gave the best
results and Detectron2 performed poorly compared to the other models.

Table 6. Average precision and recall for stage 1 modeling.

Models Average Precision Average Recall

Detectron2 0.871 0.075
Yolov5 0.916 0.912
Yolov4 0.872 0.879

RetinaNet 0.881 0.887

Detectron2

For the Detectron2 model, the fine-tuning was accomplished with changing the batch
size from 32 to 64 and increasing the iterations from 1500 to 3000. When running with this
final version, a greater performance was witnessed with less training time. Initially, the
training time was around 1 h and 53 min. But, the current time is around 2 h and 58 min
as the iterations are doubled. The average precision improved from 0.702 to 0.871, and
average recall from 0.710 to 0.875.

YOLOv4

In the case of YOLOv4, which was cloned from Darknet, we tuned the model by
increasing the batch size from 32 to 64, adding dense layers, and increasing iterations
from 500 to 2000. When running with this final-tuned model, a greater performance was
witnessed with a slight increase in training time. Training time was initially around 1 h and
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3 min with 500 iterations and the current time is around 1 h and 58 min with 2000 iterations.
The average precision of 0.773 is now 0.872, and the average recall of 0.727 is now 0.879.
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YOLOv5

YOLOv5 was initially trained with 150 epochs and the training time was noted to be
approximately 1 h and 12 min. After fine tuning, the number of epochs was increased to
650. The final model took a training time of around 3 h and 59 min. Although the training
time was extended, the model had a significant increase in average precision and recall,
with average precision increasing from 0.782 to 0.916 and average recall increasing from
0.727 to 0.912.

RetinaNet

The RetinaNet model was initially trained with 80 epochs with a training time of 2 h
and 29 min. During the fine tuning, the model was deployed with 300 epochs and training
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time was increased to 4 h and 18 min. This resulted in an improved average precision of
0.881 compared to the initial 0.776, and an average recall of 0.887 from 0.729.

4.5.2. Stage Two Modeling

The figures below show the prediction results for the LSTM model, where the blue
curve indicates the training loss and the orange line represents the validation loss curve.
The left graph in Figure 18 displays the train and validation errors for the single lag
multivariate LSTM where the train error is seen to be more than the validation error. This
shows that the model has learnt the input dataset well and is overfitting. The right graph
on the figure illustrates the LSTM multiple lag timestep loss curve where both the train and
validation errors are more or less similar. Figure 19 shows the graph of the CNN-LSTM
model’s performance, where we can see that there is a steady difference between the blue
curve showing training loss and the orange validation loss curve, making it a good model
to work with. The actual and predicted curves show several small spikes in the middle
but are achieving similar values by the 15th epoch. Similarly, the right graph on the figure
shows the training and testing loss curve for Bi-LSTM. All models used mean absolute
error for loss calculation.
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Metrics MSE, RMSE, MAE, and MAPE were used to calculate prediction errors and
evaluate the performance of the various models shown in the table below. Six models have
been developed and the results were compared with the different error metrics mentioned
in the table. The Decision Tree Regressor outperforms all other models for MSE, RMSE, and
MAE error values. However, the MAPE of 0.556 is still higher than the standard accepted
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values between 0.05 and 0.09. The CNN-LSTM model was able to achieve the lowest error
rate of 0.016 in MAPE. For the LSTM multivariate time series models, LSTM single lag
performs inadequately with high error rates, while LSTM multiple lag performs better
than single lag in all metrics, but the error rates for LSTM multiple lag are still higher than
the standard accepted error values. The error rates for linear regression are lower in all
metrics except MAPE when compared to models other than the Decision Tree Regressor.
SVR (direct multi output regression) has a 0.079 value for MAE, which is higher than the
Decision Tree Regressor and linear regression values. Bi-LSTM performed with high error
rates for MSE and MAPE. Seeing the model performance, we also developed a stacked
model with the CNN-LSTM and LSTM multi lag models, which achieved good results
with an MSE value of 114.983, RMSE of 10.723, MAE of 5.010, and MAPE of 0.023. Table 7
provides the evaluation results for the stage 2 models, which were used for predicting the
cattle pollutant.

Table 7. MSE, RMSE, MAE, MAPE for stage 2 modeling.

Models MSE RMSE MAE MAPE

Decision Tree Regressor 0.035 0.187 0.076 0.556
CNN-LSTM 59.870 7.738 3.511 0.016

LSTM—Single lag
—Multiple lag

55,527.062 767.944 233.430 -
272.517 20.356 10.263 0.045

Linear Regression 0.122 0.349 0.155 1.236
Bi-LSTM 428.907 20.710 3.920 3,875,151
Stacked 114.983 10.723 5.010 0.023

Table 8 summarizes the metrics values for Bi-LSTM. Comparing RMSE scores, SO2
has a significantly lower value than that of other pollutants except for nitric oxide (NO),
while PM2.5 has the highest RMSE value followed by CO and then by PM10. For MAE, SO2
has the lowest value with 0.119, whereas PM2.5 has the highest with 17.304. The MAPE
scores are lowest for SO2 at 0.089 and highest for NH3 at 626,472,000. The highest MSE
score is PM2.5 at 3268.632 and the lowest is SO2 with a score of 0.048. The MSLR has a high
score of 0.052 for NH3 and a low score of 0.001 for NO.

Table 8. MSE, RMSE, MAE, MAPE of Bi-LSTM for air pollutants.

Models Pollutants MSE RMSE MAE MAPE MSLR

Bi-LSTM

CO 103.541 10.175 6.033 2.992 0.015
NH3 2.293 1.514 1.362 6,264,720 0.052
NO 0.472 0.687 0.211 34.711 0.001
NO2 21.333 4.618 3.236 3.726 0.003
O3 0.277 0.526 0.223 12,422.202 0.012

PM10 34.662 5.887 2.873 12.635 0.0264
PM2.5 3268.632 57.171 17.304 13.007 0.0342
SO2 0.048 0.220 0.119 0.089 0.007

Table 9 shows the modeling test results of machine learning models Decision Tree
Regressor and linear regression for each of the pollutants considered for prediction. The
relative mean squared error for each model was tabulated. Comparing error values for
each pollutant, we found that the MSE error was the lowest for carbon monoxide (CO) and
highest for ammonia (NH3) for the Decision Tree and linear regression models. The errors
calculated from both models are similar but linear regression is seen to perform better than
the Decision Tree for all pollutants.
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Table 9. MSE of Decision Tree and linear regression models for air pollutants.

Pollutants Decision Tree Linear Regression

CO 0.020 0.057
NH3 1.474 1.882
NO 0.282 0.576
NO2 0.035 0.085
O3 0.298 0.771

PM10 0.120 0.276
PM2.5 0.158 0.356
SO2 0.209 0.483

5. System Development
5.1. System Requirements Analysis

The targeted users of our system are cattle farms and farm owners, followed by the
state’s Department of Public Health and Environment, where the potential actors in this use
case are the air quality inspectors. One other major use case that deals with the health of
human beings is the homeowners living near livestock farms. Since this is a web application,
the system can be accessed from anywhere by providing the location coordinates to get the
pollutant levels.

Figure 20 provides the picturization of how the system interconnects every user with
the use case. In the first use case, the owner uses the system to see the current pollution
level based on the predefined air quality index with the current count of the cattle present
in the farm. The web portal system has an option to enter the future count of cattle that are
planned to be bought. The system now predicts the new pollutant level after the increase
in the cattle count. This helps the cattle owner to plan and manage the number of cattle in
their farm.
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In the next use case, with the help of this system the air quality inspectors can measure
the current level of pollutant in the air in their county. This helps them to potentially
identify whether to provide or deny a cattle farm license to any new owner in the nearby
coordinates. The important use case is that this system helps in preventing chronic obstruc-
tive pulmonary disease (COPD), since people living close to livestock farms are exposed
to acute respiratory effects. So, this system which is used via their computers can help to
predict the current pollutant level and the people living nearby the cattle farm can take
precautionary measures well in advance.

5.2. System Design

For developing the cattle pollution detecting system, AWS was used for model train-
ing and storing the satellite data and weather data loaded from the weather API. The
image detection and pollutant prediction deep learning (DL) [82] models were developed
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with Torch, Python3, and scikit-learn packages. All the different models developed were
trained, validated, tested, and shared, and different stages were concatenated in Google
Colab shared over a shared Google drive. All the models, training data, and results were
continuously synced/uploaded with AWS. For training the model, satellite data were
collected from USGS earth explorer, which provides a variety of satellite data out of which
we collected raw data from Google Earth engine, which uses Sentinel.

Figure 21 shows the system architecture for the cattle pollution detecting system, high-
lighting the frontend and backend architecture. In the front end, the user provides the
coordinates of their farm along with the cattle count to the ‘Cattle Pollution Predictor’ appli-
cation interface via the computer monitor. There are two options: provide farm coordinates
only or input cattle count along with the coordinates. In the backend, the user input goes
into the cattle pollution detecting system, where it undergoes three stages: cattle counting,
pollutant prediction, and visualization. In the first stage, the inputted coordinates are used to
find the satellite images of the farm, which are then sent to YOLOv4, YOLOv5, ResNet, and
RetinaNet models to find the number of cattle present in the farm. If the user has provided
the cattle count in their input, a flag will skip this stage. After the cattle count is found, the
cattle count and coordinate data go into the pollutant prediction system. These data, along
with the corresponding weather data from the weather API, go through a stacked model
prediction system containing a long short-term memory (LSTM) multivariate time series [83],
CNN-LSTM [84], and Bi-LSTM [85] to predict the pollutant concentration for the following
day. In the second stage, the predicted output pollutants are then classified based on severity.
In the third stage, a visualization system is created to visualize the different classified pollu-
tants from the previous stage showing the severity of each of the pollutant concentrations.
The visualization results are sent to the Cattle Pollution Application and the user views the
output via the computer monitor. The system provides the option to visualize the overall and
individual severity of all pollutants for any hour from historical data and shows the trend
for each of the different pollutant concentrations separately, as well as with the overall AQI.
Figure 22 displays the user interface for the air pollutant severity map, while Figures 23 and 24
show the data visualizations for AQI and cattle count.
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Figure 24. User interface visualization showing overall AQI for cattle count. 

6. Conclusions 
6.1. Summary 

The objective of this project was to predict air quality in cattle farms with respect to 
the number of cattle present in each farm. In order to achieve this, the project was divided 
into three major stages. Firstly, we counted the number of cattle for which satellite images 
from the Google Earth engine were used in stage 1. We used four models: YOLOv5, 
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6. Conclusions
6.1. Summary

The objective of this project was to predict air quality in cattle farms with respect to the
number of cattle present in each farm. In order to achieve this, the project was divided into
three major stages. Firstly, we counted the number of cattle for which satellite images from
the Google Earth engine were used in stage 1. We used four models: YOLOv5, YOLOv4, De-
tectron2, and RetinaNet. Our best results on the YOLOv5 model occurred with 650 epochs,
with an average precision of 0.916 and recall of 0.912. YOLOv4 was able to produce an
average precision of 0.872 and an average recall of 0.879 in 2000 iterations. Detectron2
provided an average precision of 0.871 and a recall of 0.875 in 3000 iterations. RetinaNet
provided an average precision of 0.881 and an average recall of 0.887 with 300 epochs. In
the second stage, four cattle farms from Colorado were chosen, namely Prado, Producers
Livestock, Hillrose, and Docheff. The count of cattle from stage 1 models was given as the
input to stage 2 models along with the air quality data from the OpenWeather API, which
provided the live pollutant level of each location using location coordinates. The pollutants
provided by the API were CO, NH3, NO2, O3, PM2.5, PM10, and SO2. Next, we created
AQI and classified the level of pollutants. The models used for air quality prediction were
LSTM (single lag and multi lag), Bi-LSTM, and CNN LSTM. The output of this stage was
then fetched to the Tableau for the map visualization.

Lastly, a visualization was created in the Tableau map, along with the pollutant levels
for each farm. The pollutant level was then mapped to the AQI created earlier based on
distinct colors for each level of pollutant. A web application was developed using JS for
the frontend and Flask API for the backend. The app was then linked to the saved models
as a single Python file, which was connected to Tableau using GET and POST from Flask.
Once a farm was chosen in the web app, the Flask API ran the Python file that performed
the counting and prediction and visualized it in the Tableau. Finally, the interactive map
dashboard was visualized to show the count and pollutant level for the seven pollutants in
the cattle farms.
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6.2. Recommendations for Future Work

As we targeted outdoor and open pen farms in this study, we assumed that there was
no indoor manure processing or storing. Our study is not applicable to indoor storage
collections and processing but, should there be different processing methods that may
affect the correlation of the number of cattle with pollutant concentration, comparisons
with indoor and outdoor farms can be performed using the same methodology for similar
cattle counts to see the difference. Additionally, we plan to extend the scope of this study
by further classifying pollutants from other livestock such as sheep, pigs, and ducks. Due
to no funding, we had to limit our satellite images to free sources such as the Google Earth
API, but we hope to obtain satellite images from a different satellite API in the future.
Further improvements can be made to the model, and our model can be extended to predict
the AQI of farms using user input of cattle count. This can be useful if the user plans to
increase his livestock and wants to get an idea of AQI at a later stage in time.

Furthermore, this research can be extended to several states in the United States.
Additional possibilities include other agricultural countries such as India and China, where
the size and terrain of farms may differ from country to country. The guidelines for farm
pollution standards and policies are different for each country and depend on their current
government. These factors will make the model more robust and able to predict pollutants
concentration for different farms globally.
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