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Abstract: Shale oil and gas production areas are especially active in Texas. The Eagle Ford Shale in
south central Texas contributes substantially to US oil and gas production; it has repeatedly been the
focus of air quality studies due to its associated emissions. Among these emissions are hazardous air
pollutants such as benzene, a known carcinogen. To monitor exposure to such compounds, we teamed
up with local citizens in 2019 to begin a passive sampling study for hydrocarbons. The study tracked
selected non-methane hydrocarbons at six locations throughout a busy central production area of the
shale. A state air quality monitoring station allowed for a comparison exercise, and we report both
the results of that exercise and the observations from various properties affected by the surrounding
oil and gas exploration activities. The passive samplers accurately reflected mean to median ambient
hydrocarbon levels despite high variability and skewness in the hourly measurements. Field sites
either right next to oil and gas production pads, surrounded by more surface pads than other sites, or
affected by an additional emission source showed higher exposure to selected hydrocarbons. Passive
sampling shows promise to bridge the gap between centralized air monitoring and campaign-style
mobile monitoring to evaluate hydrocarbon emissions and abundances. It is a cost-effective way to
provide both spatial and temporal information on exposure levels.

Keywords: passive sampling; non-methane hydrocarbons; oil and gas production; shale; air
toxics exposure

1. Introduction

The renewed domestic oil and gas production boom in the United States has caused
a substantial increase in hydrocarbon emissions to the atmosphere [1]. Known as uncon-
ventional oil and gas (UOG) production, the associated “fracking” wells, typically several
horizontals per vertical borehole, produce hydrocarbons for several years following an
exponential decay from an initial maximum rate [2,3]. This requires continuous drilling
operations accessing different sections of the shale rock to maintain overall field produc-
tion rates [4,5], leading to many hundreds of sites in shale production areas [6–8] that
require gas and liquids handling hardware and infrastructure, including gas flares, which
act as sources of the hydrocarbons emitted into the atmosphere [1,9–14]. Methane and
non-methane hydrocarbons (NMHCs) can escape into the atmosphere via leaks in gas
handling infrastructure (fugitive emissions) or through accidental or purposeful venting
(e.g., a pressure relief valve) [14–18]. They also partially dissolve in liquid hydrocarbons
containing five or more carbon atoms and then outgas from the liquids routed to and
stored in local tank batteries. Tanks holding condensate or raw oil products are significant
sources of NMHCs based on high vapor pressures and direct vapor displacement upon
tank filling (flushing), liquid transfers offsite, or evaporation and fugitive emission during
storage [12,17,19].

Once in the lower atmosphere, NMHCs can contribute to near-surface ozone for-
mation upon their oxidation and based on their reactivity with the OH radical as well

Atmosphere 2023, 14, 744. https://doi.org/10.3390/atmos14040744 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14040744
https://doi.org/10.3390/atmos14040744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-4327-0839
https://doi.org/10.3390/atmos14040744
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14040744?type=check_update&version=2


Atmosphere 2023, 14, 744 2 of 17

as the regional NOx abundance [15,20–23]. Although most emissions from oil and gas
production activities consist of saturated NMHCs, such as alkanes, which have relatively
low atmospheric reactivity, high abundances can compensate in environments where more
reactive hydrocarbons such as isoprene have low emission rates [24]. This also includes
the simplest aromatic hydrocarbon, benzene, which has an average tropospheric lifetime
of 7–10 days [25]. Such NMHCs with a comparatively long lifetime can therefore accumu-
late in the regional atmospheric boundary layer, causing higher exposures for the local
population and environment. This has caused additional concerns based on the toxicity
of selected NMHCs, particularly from the group of aromatic hydrocarbons called BTEX
(benzene, toluene, ethylbenzene, and xylenes) [26–38].

As the most toxic among the BTEX compounds, benzene has been recognized as a
major toxic air pollutant for several decades [39]. EPA lists a non-cancer toxicity threshold
of approximately 9 ppb (reference concentration for chronic inhalation exposure, RfC [39]),
the lowest among atmospheric NMHCs. Benzene is also a cancer-causing agent; however,
there is no widely agreed upon threshold or reference concentration corresponding to,
e.g., a 1:105 likelihood of contracting cancer upon life-long exposure [40]. While the World
Health Organization (WHO) set a lower guideline of approximately 0.5 ppb benzene [41],
several US states have set thresholds triggering state agency action (such as more detailed
monitoring) if exceeded, varying from values as low as 0.2 ppb (24-h average) in Maine to
as high as 1.4 ppb (annual average) in the State of Texas.

Ambient air benzene abundances dropped significantly in response to the introduction
of reformulated gasoline, improving combustion efficiency, and the catalytic conversion of
vehicle exhaust, addressing its former main emission source: on-road car traffic [42–47].
However, direct evaporative benzene emissions from the oil and gas industry, such as at
refineries, remain a significant source [46,48]. This source was previously very small in rural
areas but has now become the dominant source in UOG production areas, exposing rural
populations to significant amounts of a subset of toxic NMHCs, including benzene [49].

Areas in Texas where such exposures have developed with the “shale boom” include
the Eagle Ford Shale in south central Texas and the Permian Basin in northwest Texas.
However, few air quality monitoring stations exist across these large rural regions. While a
single, even central station can characterize local exposure over time, mobile monitoring
can characterize spatial exposures over short periods. In both cases, though, significant
investments must be made into the measurement platforms and their maintenance. A cost-
effective alternative increasingly employed instead is passive sampling [50]. Monitoring
for NMHCs, particularly BTEX compounds, using passive samplers has been employed for
at least two decades [51,52]. It was recently made mandatory for fenceline monitoring at oil
refineries by the US EPA, known as Method 325 [48,53–55]. The EPA methodology, as well
as recently described methodologies derived from it [56–59], have relatively low NMHC
uptake rates based on the geometry of collection. In contrast, cartridges using the Radiello®

system have more than ten times higher uptake rates. The Radiello® system has been
described and used by numerous authors [51,60–73] but is not widely used in the US. Our
group began using Radiello® metal mesh cartridges with Carbograph 4 filling, deployed
inside yellow diffusion tubes, in 2018 [74]. Here, we report results from a long-term study
in the central production area of the Eagle Ford Shale, around Karnes and neighboring
counties. Our objectives were (i) to evaluate the passive sampling methodology against
data recorded at an hourly frequency by a Texas state-operated local air monitoring station,
and (ii) to determine whether these central, but localized monitoring data are representative
of NMHC exposures across a larger region, especially when compared with data from
locations closer to known emissions sources. We review the analytical methods in Section 2,
present validation data from the local state air monitoring station in Karnes City in Section 3,
describe the field observations in Section 4, discuss our findings in Section 5, and offer
some conclusions in Section 6.
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2. Methods

The air sampling methods and sample analysis were described in more detail in
Sablan et al. [74]. We used Radiello® cartridge passive air sampling (RAD145, 350 mg
carbograph 4 filling, purchased from Restek Inc., Bellefonte, PA, USA) to determine am-
bient hydrocarbon concentrations via a diffusion and adsorption process. The samplers
were exposed to ambient air inside yellow diffusive bodies (RAD1202, also purchased
from Restek), suspended underneath a protective plastic dome to keep out rainwater, and
installed approximately 1–1.5 m above ground using commercial shepherd hooks. During
transport to and from a deployment site, or during necessary storage times, the sampling
cartridges were kept inside glass tubes sealed with tight polyethylene caps (RAD1991,
2.8 mL volume) [67]. Although this methodology has been evaluated for selected hydro-
carbons [55,61–63,67], only the similar EPA Method 325 has previously been used in shale
oil production areas [75]. Hence, we decided to carry out a comparison with the State of
Texas’ validated, hourly hydrocarbon measurements to verify our data’s compatibility with
legally accepted observations in Texas.

As our field study was in a rural area distant from the laboratory and intended to
be long-term, we established a volunteer community to deploy the samplers with the
assistance of a local nun traveling the area frequently for social work. Sampler deployment,
turnaround, and analysis were structured as shown in Figure 1. Each location’s property
owner (“host”) accommodating a sampling setup was provided with three sets of sam-
plers, one deployed, one currently in analysis or circulation, and one to install at the next
desired switchover time. A protocol sheet was completed at switchover time recording
site location, cartridge sampler codes, and installment and de-installment times. As in
our pilot study [74], two replicates were deployed at each monitoring site, and one blank
(unopened glass container with cartridge) was kept at each site. The volunteers, typically
the local landowners themselves, were trained to exchange the cartridges approximately
once weekly, replace them with the spare set, and fill out the protocol sheet. The exposed
sets were collected during a 24 h period and express-shipped to our laboratory at Texas
A&M University in College Station (Figure 1). Analyses were typically completed within
another 24–48 h, after which all desorbed cartridges were additionally cleaned (heating for
20 min at 240 ◦C under high-purity H2 flow) and return-shipped for redistribution to the
landowners (Figure 1).
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Figure 1. Flowchart of Radiello® hydrocarbon passive sampler turnaround. Individual process steps
are outlined inside grey rectangles, critical steps inside black rectangles. Oval connectors provide
background information on two intermediate steps each. A data input step provided in the field is
outlined by a black rhombus. Numbers alongside the progress arrows provide the approximate times
in days between the process steps.
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2.1. Study Sites

Field sites within the Eagle Ford were selected after a meeting and discussion with
locally interested citizens from in and around Nordheim, TX, a small community located
immediately north of a recently established oil waste landfill facility operated by Petro
Waste Environmental LP (hereinafter called the “Hohn Rd. facility”). Citizens were
interested in evaluating potential air quality impacts from the surrounding oil and gas
exploration and the related new oil waste dump. Two sites were initially selected (summer
2019), one in Nordheim and one next to a large oil production pad site with a near-constant
flare. Three additional sites were added later, and the Nordheim site was moved closer
to the waste dump after approximately half a year of monitoring. All sites are shown on
a map of the area in Figure 2 alongside the density of active oil and gas production sites.
The site Panna (P), along TX-123, was located 300–400 m west (W) of a larger oil and gas
production site with a gas flare. Fifteen additional, active pad-sites were found within
2 km of the residence. An “odor log” was kept by the landowner volunteer at this site,
describing visual and olfactometric observations from the volunteer’s residence weekly.
The site Karnes East (KE) was surrounded by four oil and gas production pad sites to its
immediate northeast (NE), southeast (SE), and southwest (SW), all within 500 m distance;
17 more pad sites within a 2 km distance, mostly to its NW and SW; and a large midstream
facility 1 km to its SW. The site Osterloh (O) had fewer active pad sites surrounding it, with
only one to its ENE within 500 m, and an additional 12 within 2 km in all directions. The
initial town of Nordheim site (Nh) had two pad sites within 500 m located to its E, but
an additional 11 within a 2 km distance (mostly within its NW sector), plus the Hohn Rd.
facility 1.5 km to its SE. The 2nd Nordheim site was directly north (<400 m) of the Hohn Rd.
facility, 1.5 km east of the town center, but had only four oil and gas production pad sites
within a 2 km distance. Lastly, the Texas Commission on Environmental Quality (TCEQ)
Karnes City air monitor (site KC) is located at the SE end of the small city. It has one active
pad site within 500 m, but an additional ten pad sites within a 2 km distance, mostly in
its southern and eastern sectors. There is also a midstream facility located 2.2 km to its
SW. The Karnes City center is located 1.5 km to its WNW. Our sampling was carried out
approximately 50 m to the SW of the monitor.

We note that this rural area overall has a low car traffic density, a factor commonly im-
portant as a major source of NMHC emissions. However, as we have shown previously [50],
NMHC data from the Karnes City air monitor were not dominantly influenced by car traffic
in the area even when it was located in the center of town. Rather, NMHC emission sources
from the industrial oil and gas exploration in the region dominate ambient abundances.

2.2. Sample Analysis

All Radiello cartridges were analyzed for selected NMHCs using thermal desorp-
tion (Perkin-Elmer ATD400 autosampler) followed by gas chromatography with flame
ionization detection (TD-GC-FID) [74]. Quantification was achieved by producing 3-point
calibration curves via the dilution of a standard mixture containing ppm-level toluene and
n-hexane produced in 2014. The standard was recently re-evaluated against a new gas
standard containing the same hydrocarbons and found not to deviate. All field samples
and standards were desorbed at 220 ◦C for 15 min under high-purity hydrogen flow from a
generator (Matheson TriGas, Montgomeryville, PA, USA); pre-concentrated onto a cooled
microtrap (−5 ◦C) filled with Carbotrap X inside the ATD400; then rapidly thermally
desorbed on-column. The previously used 60 m, 0.25 mm ID Rtx-624 separation column
was replaced with a wide-bore, 60 m non-polar Rtx-1 column in fall 2019, the same column
used by TCEQ for NMHC measurements at its air quality monitors.

High-purity hydrogen was used as a carrier and FID fuel gas. Analytical precision at
the ppb level was 2% or better (from replicates of standards), while accuracy was 5% or
better based on the standard’s accuracy as provided by the manufacturer. Quality control
using blanks and field replicates revealed (i) background levels were present for several
hydrocarbons analyzed, but typically did not exceed 5% or less of the ambient levels except
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for the xylenes; and (ii) median replicate differences were typically within 10–20% of each
other depending on the compound, but occasionally exceeded 50–100%, especially for small-
abundance compounds such as n-octane or the xylenes. Cartridges were flagged when
replicate differences exceeded 50% and replaced when the large difference persisted (three
cartridges over one year). Data are reported as averages between the two replicates, as a
single value if one replicate was lost, or as NA if both replicates were lost or it was unclear
which replicate represented the outlier in a comparison with differences exceeding 100%.
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Figure 2. Map of the investigation area in the Eagle Ford shale. Deployment sites (east to west:
Nordheim—Nh, Osterloh—O, Karnes East—KE, Karnes City—KC, Panna Maria—P) are depicted as
larger black dots; actively producing wells as small black dots; and wells linked to surface pads within
2 km of each sampling site as blue triangles. The old Nordheim site is depicted as a grey dot. The
inset shows a map of Texas with an outline of the Eagle Ford Shale area (in grey) and the study region
highlighted by a red rectangle southeast of San Antonio. Figure created in ArcGIS using “World
Navigation Map” with inputs from Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap
contributors, and the GIS User Community. Well data used in the map are freely available from the
Railroad Commission of Texas (RRC) at https://www.rrc.texas.gov (accessed on 11 April 2023).

Independent of precision, the accuracy of Radiello® passive sampling measurements
against higher-time-resolution data in the field has only been evaluated once in detail [68].
Based on our own laboratory and field testing, we previously estimated that the accuracy
of passively sampled hydrocarbon concentrations using Radiello® samplers is in the order
of 25% or better. By comparing our field data to nearby, validated hourly measurements we
could make a better classification and estimate of the field-based accuracy for those NMHCs
quantified using either methodology, and we report on this comparison in Section 3 for
several relevant compounds, including benzene and toluene.

https://www.rrc.texas.gov
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2.3. Auxiliary Data

Meteorological and air quality data were collected from the air quality monitoring
station in Karnes City (CAMS 1070, EPA Site Number 482551070), operated by TCEQ. New
observations were recorded by the station hourly, for both meteorology and air quality data.
Data were downloaded in 2022 from TCEQ’s online database at https://www.tceq.texas.
gov/cgi-bin/compliance/monops/yearly_summary.pl?cams=1070, (last accessed 11 April
2023) and R software was used to analyze and calculate statistics for all data (R: A language
and environment for statistical computing; R Foundation for Statistical Computing, Vienna,
Austria, https://www.R-project.org/, last accessed 11 April 2023).

The meteorology in this part of Texas is strongly seasonal and regular. Winds are
modest and blow steadily from the S to SE during summer (June to October). Spring and
fall seasons (March to May, November) display slightly stronger winds and wind direction
variability, while gustier winds generally shift between southerly and northerly directions
during the cool season (December to February) as regular cold fronts pass into Texas. A
wind rose for the 2-year 2019–2020 period is provided in Figure 3.
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3. NMHC Validation Measurements

Passive sample collection commenced near the Karnes City air quality monitoring
station for several months supported by two different volunteers living in the area. Sam-
pling at this site was identical to sampling at all other sites. Validated NMHC data from
the monitor were downloaded in 2022, and all hourly measurements between the passive
sampler deployment and removal dates and times were assigned to the passive sampling
periods. This included numerous hourly measurements for which no ambient air data
were available due to quality control checks, overwhelmingly occurring at night. As
night-time NMHC abundances are often higher than daytime ones, leading to a stronger
weighing of daytime data when calculating statistics, we used linear extrapolation to fill
in all missing values. Furthermore, we replaced all hourly zero values with one half the
respective detection limit, given by TCEQ as 0.4 ppbC [24]. Figure 4a,b show a linear
regression between the calculated monitor averages and passive sampling data for benzene
and toluene. To reflect the substantial NMHC variability and positive skewness during all

https://www.tceq.texas.gov/cgi-bin/compliance/monops/yearly_summary.pl?cams=1070
https://www.tceq.texas.gov/cgi-bin/compliance/monops/yearly_summary.pl?cams=1070
https://www.R-project.org/
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analyzed periods, interquartile ranges (IQRs) were included in the plot. Despite this large
variability, the passive samplers reflected NMHC averages to within 20–30% in both cases.
The same was true for most other NMHCs investigated. Most NMHCs discussed here
and listed in Table 1 showed regression slopes deviating less than 30% and not statistically
different from unity, and with no intercept biases (intercepts not statistically different from
zero). In the case of the two minor-abundance NMHCs n-heptane and xylenes, a better
comparison, i.e., a slope closer to one, was obtained when using the medians of the monitor
data. For these compounds, the average bias (MNB, Table 1) was still moderate. In all cases,
regression checks (such as leave-one-out statistics) revealed no major issues with the raw
data, including no consistent trend related to the sampling period duration. Nevertheless,
most compounds showed a small but consistent low bias compared to the monitor data,
while benzene showed the opposite, and this needs to be evaluated further in future work
with Radiello® samplers in comparisons to other independent measurements.
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Figure 4. Regression plots of passively sampled benzene (a) and toluene (b) against average air
quality monitoring data. Dashed lines represent the ideal 1:1 relation, and solid lines the major axis
regression result. Horizontal bars represent the hourly air monitoring data interquartile ranges; the
dotted line in (b) is the result of an OLS regression forced through the origin.
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Table 1. Regression statistics for selected NMHCs comparing averaged hourly state monitor mea-
surements to passively sampled data for 5–17-day deployment periods. OLS = ordinary least squares,
RMA = ranged major axis, MNB = mean normalized bias [76].

NMHC Compound r2 OLS Intercept OLS Slope RMA Intercept RMA Slope MNB

n-hexane 0.832 0.129 0.742 0.061 0.801 −12.8%
benzene 0.630 0.042 0.989 −0.014 1.279 23.7%
toluene 0.665 −0.005 0.743 −0.042 0.900 −26.1%

methylcyclohexane 0.823 0.001 0.783 −0.014 0.845 −22.2%
cyclohexane 0.494 0.044 0.842 −0.029 1.141 4.3%
n-heptane 0.703 −0.009 0.463 −0.036 0.552 −57.1%
mp-xylene 0.022 0.034 0.109 −0.068 1.233 −42.9%

4. Ambient Exposure Observations
4.1. General Features

We depict the observed ambient levels of two different NMHCs in Figures 5 and 6.
Each measurement period is shown as a colored horizontal bar spanning the deployment
period at the different locations investigated. The main period of missing data fell into the
spring 2020 onset of the global COVID-19 pandemic, during which sampling was paused
for approximately two months in response to stay-at-home orders in Texas. Other missing
periods were typically caused by sample loss during processing due to large water loads on
the cartridges or damage to cartridges in the field. The longest overall record existed for the
Nordheim (Nh) site, albeit accompanied by a move within the town closer to the local Hohn
Rd. waste facility, as indicated. We observed both seasonal and weekly variations among
and between sites. Seasonally, higher concentrations were generally observed during the
cooler months (Dec, Jan) than in the other seasons. This is typically caused by seasonal
average planetary boundary layer (PBL) depth dynamics [24], with deeper PBLs in the hot
Texas summers and shallower PBLs during the cooler months. Week-to-week differences
tended to be small at some sites (KC, O) and larger at others (e.g., P). Abundances varied
between sites and showed at times large variability at individual sites (P, KE). The latter is
discussed below. Since all measured NMHCs were generally well-correlated, we focus our
discussion on n-hexane to represent n-alkanes, methylcyclohexane to represent naphthenes
(cycloalkanes), and benzene or toluene to represent aromatic compounds.
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The highest concentrations of benzene were recorded early during the study (P site,
fall 2019) and later at the KE field site. The P site’s pre-pandemic benzene levels were
not statistically significantly different from those of the Nh site (p = 0.11), due to higher
than usual early variability at the Nh site, as discussed below. During the cool period
from December to early March, the P site’s benzene data, however, were statistically
higher compared to both the Nh and especially the nearby KC site (p = 0.011, p < 0.001,
respectively). Similar statistical differences were observed in the subsequent cool season
from November 2020 to March 2021 between the higher levels at the KE site compared to
the O site (p = 0.019) and the Nh site (p = 0.014). These distinct differences held for several
other NMHCs measured, with the largest differences observed for the n-alkanes.

Data from the KC site were comparable in range to the other sites but showed less
variability overall and smaller week-to-week differences during the period of operation.

4.2. Concentration Anomalies

Three periods with significant deviations occurred at two different field sites. First,
high NMHC levels were recorded at the P site at the beginning of the project, September
2019 (Figures 5 and 6). Second, two weeks of high alkane and naphthene levels were
recorded in November 2019 at the Nh site (Figure 5). Third, several individual weeks of
elevated NMHC levels were encountered at the new Nh site mostly in late 2020 and early
2021 (Figure 6).

The first such anomalies, at the P site, were accompanied by odor complaints and
an associated odor log kept by the landowner. During the two weeks of high benzene
values at that location (P, Figure 5, 10–24 September), the owner repeatedly noted the same
“petroleum smells” and a “very large flare” or “extremely/very high [flare] flames” at
the adjacent pad site 300 m to his east. To relate the subjective odor log entries with our
observations, we converted each daily odor log entry into a number from zero to four
by qualifying smells as equal to four (“sickening”), three (“strong”), two (“medium”),
one (“mild”), or zero (“no smell”). Each day’s numbers during passive sampler deploy-
ments were then added together. In addition, observations of an at least “large” flare flame
were given an additional score of one. The scatter plot between our subjective odor totals
and measured n-hexane levels is shown in Figure 7. Despite our simple odor conversion,
there was a statistically significant correlation between those measures. Similar correlations
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held for other NMHCs. A similarly strong correlation (r2 = 0.31, p = 0.026) at the P site
existed between the odor estimate and the fraction of 1 h winds out of easterly directions.
In combination, these observations suggested a discernible local impact from the pad site
to the homeowner’s east during the observational period in 2019/20.
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The second set of anomalies occurred in early November 2019 and was related to
a gas-well blowout just 7.5 km north of Nordheim [77]. The NMHC emissions plume
from the blowout location was carried south over Nordheim twice at night in the first few
days of the blowout, and again a week later after a cold-front passage (8 November), at
which time, however, emissions from the blowout had dropped [77]. Both early November
samples from Nordheim clearly reflected elevated ambient NMHC levels, mostly n-alkanes
and naphthenes.

The third anomaly occurred multiple times at the new Nordheim site, when much
higher-than-average concentrations of selected NMHCs were observed (Figure 6). The
six anomalies were characterized by elevated levels of NMHCs with seven or more carbon
atoms. For instance, the levels of methylcyclohexane, n-heptane, toluene, and the xylenes
were elevated, but the levels of the hexanes or benzene were not. This is illustrated in the
correlation plot in Figure 8, in which both the six weeks of elevated toluene levels and
the two blowout impact weeks are highlighted. The six periods of elevated, low-vapor-
pressure NMHCs were consistent with the nearby Hohn Rd. facility’s air emissions permit,
which listed mostly aromatic hydrocarbon emissions, though virtually no benzene, from
an oil/water separator tank as the expected allowable emissions (<15 tons per year; [78]).
Methylcyclohexane is not explicitly listed in the permit as it is not considered a hazardous
air pollutant (HAP). However, it is often associated with emissions from oil and gas
exploration [79–81]. Two of the highlighted periods coincided with official community
odor complaints submitted to the TCEQ at the end of July 2020 and the end of January
2021, in both cases prompting an onsite visit by an environmental investigator, who filed
a report. In both cases, the TCEQ agent observed brief “unpleasant” or “petrochemical”
odors downwind of the waste facility but did not detect elevated VOC concentrations using
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a hand-held meter (Multi-RAE Pro multi-gas analyzer, equipped with a PID for detecting
unsaturated volatile organic compounds (VOCs), such as aromatics). During neither of
the two investigations were any additional air samples taken. Notably, however, local
residents filed 30 odor complaints, and TCEQ investigators traveled to Nordheim 14 times
in response to these complaints between the summers of 2019 and 2021.
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5. Discussion

We carried out a successful field campaign in the central Eagle Ford shale oil and
gas production area from mid-2019 to early 2021. Our measurements occurred across
six field sites and were carried out on private property with the assistance of landowners
and volunteers, who collected and shipped samples to us and received and redistributed
returned passive sampler sets. Our results, when compared to Texas State validated
hourly measurements (Section 3), demonstrated that the passive hydrocarbon sampling
technique used accurately reflected the average NMHC concentrations. In other words,
in the context of rural Texas meteorological and geographical conditions, using Radiello®

passive NMHC sampling accurately reflected the average weekly exposures for most of
the compared NMHCs. Notably, the medians (and modes) of these NMHC data in the oil
patch were significantly lower than the averages due to the right-skewed nature of this
type of environmental data; additionally, for at least two of the minor NMHC compounds
measured, passive sampling was closer to the medians observed at the air monitoring site.
Furthermore, we note that while the hourly monitor data represent a legal standard, they
are rarely compared against independent measurements, and TCEQ accepts 20% analytical
precision over time.

While no obvious biases were encountered when we compared our data to hourly
TCEQ air monitoring station NMHC data, benzene and toluene data showed small, op-
posite deviations from the averages of the air monitoring data. Though these were not
statistically significant, they could lead to different benzene-to-toluene (B/T) ratios, and



Atmosphere 2023, 14, 744 12 of 17

this tendency needs to be explored in more detail in future work if the B/T ratio is used in
data interpretation, e.g., [82,83].

Our field data showed significant and highly variable ambient levels of benzene in
this environment. Pooling the data, we show a histogram of the benzene levels in Figure 9
alongside two health-based thresholds listed in Section 1. The TCEQ benzene long-term
AMCV of 1.4 ppb was not exceeded except for twice early in the measurement campaign,
with exceedances apparently related to non-standard operating conditions, including large
flare emissions, at a nearby oil and gas production site. Much higher benzene levels have
been observed in other shale oil and gas exploration areas [27,28]; however, these do not
reflect integral exposure levels like the passive samplers do.
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Overall, the benzene levels in this area of the Eagle Ford remained mostly below
0.5 ppb, the WHO long-term reference concentration, across the sites. No other NMHC
levels approached TCEQ’s long-term AMCVs in this study. While this was encouraging
from a public health perspective, the results may have been significantly affected by
the COVID-19 pandemic, its shutdowns in spring 2020, and the associated reductions
in regional oil and gas production. As we will show elsewhere, atmospheric NMHC
abundances in air masses crossing the Eagle Ford Shale are correlated with oil and gas
production amounts and dropped in 2020 alongside production. Thus, our results may be
biased towards low values for some or all NMHCs monitored.

The averages, medians, and spread of our data were similar to the longer-term ob-
servations of benzene (and, by extension, the other NMHCs measured) at the regional
TCEQ air monitor in Karnes City [49], included in Figure 9. However, the monitor showed
a much higher fraction of data below 0.1 ppb and smaller fractions higher than 0.2 ppb
benzene. Our results thus showed that individual exposures can be higher when a nearby
emissions source contributes more to exposure than expected under standard operating
conditions with limited NMHC emissions. This was demonstrated (i) via the observed
time-series anomalies in combination with local visual and odor observations at the time
of sampling, exemplified via the odor log comparison, and (ii) via higher average abun-
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dances at sites very close to emissions sources (site P), or surrounded by a larger number of
emissions sources within 2 km than other sites, in this case site KE vs. site O or KC. The
latter difference was, however, not uniform across NMHCs. Alkanes such as n-hexane,
which are emitted from virtually all oil and gas exploration sites, showed fewer statistically
significant differences between sites than aromatic compounds such as benzene or toluene.
While the former is known to be emitted from gas flares [9,49,84], the latter was apparently
emitted in significant amounts from drilling muds and other solid and liquid oil (drilling)
wastes delivered to the facility upwind of the Nh site.

The ability of passive sampling to reflect both short- and long-term exposure levels was
illustrated by the impact a nearby gas-well blowout had on the observed concentrations.
Two of the anomalous NMHC levels recorded at the Nh site were likely driven by only a
few extreme values during 2, 3, and 8 November 2019. Based upon HYSPLIT modeling, the
fraction of hours for which parts of the emissions plume may have been over Nordheim
during those days was only 5–10%. We estimated that the NMHC levels in the plume must
have been 10–50 times higher than outside the plume to cause the two anomalous weeks
we observed. This was consistent with our earlier NMHC concentration estimates for the
Nordheim location based on said HYSPLIT modeling [77]. Furthermore, we note that the
blowout’s emissions plume also passed over the P site during the first week of November,
which can be seen as another anomalous methylcyclohexane value in Figure 6.

6. Conclusions

Overall, our data provide important observations that complement the still limited set
of exposure estimates from extrapolated measurements or modeling [37,40,85]. The passive
hydrocarbon sampling method is sensitive enough to observe low to sub-ppb abundances
during relatively short sampling periods of 5–10 days. The monitored NMHCs were
highly correlated to each other in this environment, where shale oil and gas production
dominates NMHC emissions. Deviations from these correlations (Figure 8) show that
independent emission sources can be discerned as they affect local exposure. Since the
employed Radiello® system is comparatively affordable, sensitive, and time-integrating, it
has advantages over stationary or mobile measurement systems when long-term exposure
estimates are desired, such as for public health studies [40]. The potential health effects
from exposure are caused by a mixture of acute and chronic exposures [40]. While the
former is typically evaluated with high frequency, i.e., at least hourly measurements, the
latter requires long-term monitoring. Our results demonstrated that passive sampling can
provide information on both.

While stationary 24/7 monitoring systems can be expensive to operate and maintain,
and may not be representative for larger areas (as shown here), mobile measurements
may cover larger areas, but typically only for limited periods such as during measurement
campaigns. Passive sampling can bridge these methodologies, providing speciated spatial
information at an adequate time resolution. A potential disadvantage is the requirement
for manual sample exchanges across a larger deployment area. While EPA Method 325
was designed for refinery monitoring at the fenceline [48,55], which represents a limited
sampling area, our deployment scheme to a shale oil and gas production area covered a
substantially larger area, thus requiring a longer period of accessing and changing samplers
on an approximately weekly basis. This was accomplished in our case through a regional
volunteer network, and we will present results from a similar study in the Permian basin of
Texas elsewhere.

Studies such as that described herein can be used to evaluate air toxics exposures
currently estimated using proxies—here, specifically, the “well activity proxy” [86]. This
proxy assumes well-site emissions that scale with production volumes such that exposure
is driven by emission sites and their proximity to the location in question [37]. Calculat-
ing exposure thus uses site-specific production inverse-weighted by distances, possibly
adjusted for activity measures or (seasonally changing) meteorology. Our study provides
some evidence that the well activity proxy may be appropriate. However, it also highlights
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that such a proxy is inadequate under abnormal operating conditions, when winds are
consistently arriving from a certain direction, or when specific sources are unaccounted for.
We conclude, therefore, that a particular proxy may need regional validation via measure-
ments and site-specific meteorological data. Passive sampling seems an appropriate way to
provide such data.
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