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Abstract: To improve the accuracy of short-term wind speed forecasting, we proposed a Gated
Recurrent Unit network forecasting method, based on ensemble empirical mode decomposition and
a Grid Search Cross Validation parameter optimization algorithm. In this study, first, in the process of
decomposing, the set empirical mode of decomposition was introduced to divide the wind time series
into high-frequency modal, low-frequency modal, and trend modal, using the Pearson correlation
coefficient. Second, during parameter optimization, the grid parameter optimization algorithm
was employed in the GRU model to search for the combination of optimal parameters. Third, the
improved GRU model was driven with the decomposed components to predict the new components,
which were used to obtain the predicted wind speed by modal reorganization. Compared with
other models (i.e., the LSTM, GS-LSTM, EEMD-LSTM, and the EEMD-GS-LSTM), the proposed
model was applied to the case study on wind speed of a wind farm, located in northwest China. The
results showed that the presented forecasting model could reduce the forecasting error (RMSE) from
1.411 m/s to 0.685 m/s and can improve the accuracy of forecasts. This model provides a new
approach for short-term wind speed forecasting.

Keywords: wind speed forecasting; gated recurrent unit; ensemble empirical mode decomposition;
Grid Search Cross Validation

1. Introduction

As China aims to reach its carbon peak in 2030 and to achieve its double carbon goal
by 2060, it was estimated that the country’s electricity consumption will surpass 16 trillion
kWh, with 80% of that energy being derived from carbon-free sources. The integration of
wind power into the provision of energy will pose significant challenges to the capacity of
the power grid [1], due to the intermittent and fluctuating nature of wind energy; therefore,
the accurate forecasting of wind speed will play a crucial role in enabling the power system
to effectively integrate and utilize wind power, to ensure the safe and stable operation of
the grid.

In recent years, researchers have proposed a variety of wind speed forecasting and
wind power forecasting methods. For instance, Ji L et al. [2] used the CNN-GRU model to
predict the wind speed of canyons; experimental results showed that the proposed method
improved MAE and RMSE by nearly 20%, which provided new ideas for the application of
wind speed forecasting in canyons under complex terrain. Some studies have shown that
signal analysis methods for the data preprocessing of wind speed time series can effectively
reduce the impact of wind speed’s nonstationarity on forecasting results; therefore, the
decomposition–reconstruction forecasting model, which has received an increasing amount
of attention based on signal analysis methods [3]. In this model, the wind speed time series
was decomposed into different modes using the mode decomposition algorithm to forecast.
This could effectively reduce the complexity of the time series and eliminate the noise
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of the original data to enhance the forecast’s accuracy. For example, Ding et al. [4] used
the ensemble empirical mode decomposition algorithm to decompose the wind power
time series into several subsequences, and then predicted them separately, in combination
with LSTM-SVR. This was seen to improve the system’s wind power absorption capacity
and operating efficiency, while also achieving low-carbon emission goals. In addition,
Gao et al. [5] used a Complementary Ensemble Empirical Mode Decomposition algorithm
(CEEMD) to decompose the wind speed time series into different wind speed subsequences.
After this, they established Extreme Learning Machine (ELM) models for the subsequences’
forecasting. The results showed that the accuracy of wind speed forecasting was improved.
Furthermore, Chen et al. [6] used the K-means algorithm to cluster the wind speed time
series on similar days, which they combined with the Variational Mode Decomposition
algorithm (VMD) to decompose the wind speed series and then constructed a long short-
term neural network. Long Short-Term Memory (LSTM) were the results of a combined
forecasting model and they showed that combined models could effectively improve the
accuracy of short-term wind speed forecasting. Jiang et al. [7] applied the Empirical Mode
Decomposition (EMD) method to decompose the wind speed time series, and to obtain
multiple intrinsic modal components. This enabled them to construct a Vector Autoregres-
sive model (VAR) for each modal component of the forecasting. The experimental results
showed that the accuracy of seasonal wind speed forecasts could be effectively improved.
Nasiri et al. [8] decomposed the input signal to several IMFs by VMD, each of the IMFs was
given to a separate MFRFNN for forecasting and predicted signals, which were summed to
reconstruct the output; experimental results indicated that VMD-MFRFNN obtained better
prediction results compared to the comparison model in the paper.

Although the above studies focused on the decomposition of the wind speed series,
they neglected the hyperparameter selection of the neural network. Artificially selecting
the hyperparameters of the network could not make a model’s forecasting optimal and
consumed a lot of time. Therefore, other studies used smart algorithms to choose hyper-
parameters which improved forecasting accuracy. Some scholars have further proposed
combined models forecasting, which included a parameter search algorithm. Wu et al. [9]
combined the hybrid variational modal decomposition rain bat algorithm to optimize the
Least Squares Support Vector Machine for the short-term forecasting of wind speed. This
showed that VMD had a stronger decomposition ability than EEMD and that its forecast-
ing accuracy was significantly better than the proposed comparison model. Li et al. [10]
combined the EEMD method with the Backpropagation (BP) neural network, which was
optimized by the flower pollination algorithm, to predict wind speed time series. This
obtained a higher forecasting accuracy than that of the single model forecasting. Nasiri
et al. [11] proposed a novel Multifunctional Recurrent Fuzzy Neural Network (MFRFNN)
for chaotic time series forecasting and a new learning algorithm was developed which
used the PSO algorithm for training the weights of MFRFNN. Overall, the experimental
results showed that MFRFNN got a better accuracy rate on both chaotic benchmarks and
real-world datasets. Li et al. [12] used the EEMD algorithm to decompose the wind power
time series, and then the BI-LSTM after Bayesian optimization was established to predict
the subsequences. This improved wind power forecasting accuracy. Nevertheless, few of
the above studies decomposed the time series modalities and then divided the modalities
into different types of modalities, which could improve the forecast accuracy when using
neural networks to predict separately.

Based on the above literature review, the following gaps still exist in time series
forecasting. Firstly, optimization algorithms were not commonly used in neural networks;
some studies directly input wind speed time series into the neural network for forecasting.
These methods could obtain great prediction results, but there is still scope to improve
the prediction accuracy. Secondly, a part of studies used the same forecasting method for
all subsequences after decomposition of wind speed time series, without considering the
unique nature of each subsequence having different frequencies. Finally, existing artificial
intelligence methods for wind speed forecasting always selected parameters through
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manual experience, which took a lot of time and not easy to match the optimal combination
of parameters; it would affect the accuracy of wind speed forecasting. Therefore, the paper
proposed a wind speed forecasting algorithm based on gated recurrent units and grid
optimization search in an attempt to enhance existing forecasting models. Firstly, EEMD
decomposed the original wind speed time series in the model preprocessing process, and
several IMFs were obtained. Secondly, all components were separated into high-frequency,
low-frequency, and trend modals based on the Pearson correlation coefficient method.
Thirdly, the GRU model was established to predict the low, high, and trend subsequences,
respectively. The Grid Search Cross Validation algorithm enhanced was used to optimize
the GRU model. Finally, the forecasting for these components were summed to give
the ultimate wind speed value. Experimental results have demonstrated that this model
outperforms contrast models in this paper in terms of its forecasting accuracy.

2. Research Methods
2.1. Ensemble Empirical Mode Decomposition Method

In addressing nonstationary and nonlinear time series data, the empirical mode
decomposition (EMD) method (first proposed in [13], in 1998) offered a means of processing
signals by generating intrinsic mode functions. This approach eliminates the need for
spurious harmonics in representing nonlinear and nonstationary signals and was effective
in dealing with nonlinear time series data, such as wind speed and wind power, among
others. The EMD technology was allowed for the extraction of different intrinsic mode
functions (IMFs) and residuals, based on the local characteristics of the original data. The
IMFs must satisfy two principles: (1) the number of local minimum extreme points and
zero-crossing points must either be the same or differ by one, at the most; (2) the mean
value of the upper and lower envelopes, whose local maximum and minimum must be
equal zero.

While the EMD technology has demonstrated promising results, the IMFs generated
from its decomposition may suffer from modal aliasing. To address this, the EEMD
method—a noise-assisted data analysis approach—was proposed in [14]. This method
has the advantage of adaptively extracting the signal components and changing trends,
while also significantly reducing the modal aliasing phenomenon present in the EMD
method [15]. The EEMD overcame the issue of false harmonics in the wavelet transforms
by incorporating uniformly distributed white noise during the decomposition process,
multiple times. This covered the noise in the signal with artificially added noise, resulting
in more accurate envelopes. Additionally, averaging the decomposition results further
reduced the impact of noise. The more the process was repeated, the lower the impact of
noise on the decomposition [16].

The EEMD decomposition steps were as follows:

1. Set the overall average times, M.
2. Add white noise, ni(t), with a normal distribution to the original signal, x(t), to

generate a new signal, as follows:

xi(t) = x(t) + ni(t) (1)

where ni(t) represents the addition of a white noise sequence for the i-th time and
xi(t) represents the additional noise signal of the i-th test, i = 1, 2, . . . M.

3. EMD decomposition was performed on the obtained noise-containing signal, xi(t),
and the form of the respective IMF’s sum was obtained, as follows:

xi(t) = ∑J
j=1 ci,j(t) + ri,j(t) (2)

where ci,j(t) was the j-th IMF decomposed after adding white noise for the i-th time;
ri,j(t) was the residual function, which represents the average trend of the signal; and
J was the IMF’s quantity.
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4. Repeat steps 2 and 3 for M times, adding white noise signals with different amplitudes
for each decomposition to obtain the set of the IMF, as follows: c1,j(t)c2,j(t) . . .
cM,j(t) = 1, 2, . . . J.

5. Using the principle that the statistical average value of uncorrelated sequences was
zero, the above corresponding IMFs are subjected to collective averaging operations
to obtain the final IMF after EEMD decomposition, as follows:

cj(t) =
1
M∑M

i=1 ci,j(t) (3)

where cj(t) was the jth IMF decomposed by EEMD, i = 1, 2, . . . M, j = 1, 2, . . . J.

2.2. Grid Search Cross Validation Parameter Optimization Method

In part of the time series forecasting projects, some authors wasted some time in
choosing model hyperparameters by artificial experience. With the advancement of technol-
ogy, there were many hyperparametric optimization algorithms used for neural networks,
which could find the optimal combination of hyperparameters; Grid Search Cross Valida-
tion was one of these optimization algorithms. The performance of the model depended
heavily on the values of the hyperparameters, but there was no way to know the optimal
value of the hyperparameters in advance, and researchers would need to try all possible
values to know the optimal value; performing this operation manually could be time and
resource intensive. So, GridSearchCV was used to automatically adjust hyperparameters.

The Grid Search Cross Validation parameter optimization algorithm referred to grid-
ding the variable area, evaluating it by traversing all of the given parameter combinations,
and finally comparing and selecting the optimal parameter combination. The required
parameters must be set to their optimization range, which could be combined with the size
of the neural network loss function, and cross validation must be performed to find the
best parameter combination for the neural network [17].

Cross validation (CV) was a statistical method that was used to verify the performance
of classifiers. It divided the original data into training sets and test sets, first, by using
the training set to train the network and, second, by using the verification set to test the
training. The obtained model was used as the evaluation index of the model. Researchers
often used K-fold CV to divide the original data into K groups (usually evenly divided) and
to make each subset of data a verification set. The remaining K-1 subset of data was made
into a training set so that the K models can be obtained. The average of the classification
accuracy of the final verification set of these K models was used as the performance index
of the classifier under this K-CV [18].

After setting the hyperparameter range of its neural network, it traversed various
parameter combinations and conducted cross validation to determine the most effective
parameters. In this study, five-fold cross validation was used to select the appropriate
hyperparameters, as shown in the Figure 1.

2.3. Long Short-Term Memory Network

The Long Short-Term Memory (LSTM) [19] was a variation of the Recurrent Neural
Network (RNN), which incorporated the concept of memory cells and gates to store and
controlled the flow of information. This mechanism allowed for the long-term retention of
information, avoiding the issue of information loss due to the lateral depth of the network.
Furthermore, the gating mechanism in the memory unit addresses the gradient attenuation
during the gradient descent, thus mitigating issues such as gradient disappearance and
explosion during the model training.

The internal specific structure of the LSTM neuron was shown in the figure below. In
Figure 2, σ and tanh represent the sigmoid and tanh activation functions, respectively. The
output range of the sigmoid between zero and one was used to simulate the opening of the
gate. The output range of tanh between −1 and 1 was used for the normalization of the
output. The input information flow enters between ht−1 and xt, and—through the control
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of the input, output, and forget gates—the memory unit, ct−1, was updated to ct, and the
neuron output, ht, was also obtained.
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Its calculation formula was as follows:

ft = sigmoid
(

θ f ·[ht−1, xt] + b f

)
(4)

it = sigmoid(·[ht−1, xt] + bi) (5)

ot = sigmoid(θo·[ht−1, xt] + bo) (6)
∼
ct = tanh(θc·[ht−1, xt] + bc) (7)

ct = ft � ct−1 + it � ct (8)

ht = ot � tanh(ct) (9)

where xt ∈ Rd is the input vector of the LSTM unit; ft ∈ (0, 1)h is the activation vector of
the forget gate; it ∈ (0, 1)h is the input/update gate activation vector; ot ∈ (0, 1)h is the
activation vector of the output gate; ht ∈ (−1, 1)h is the hidden state vector—also known
as the output vector of the LSTM unit;

∼
ct ∈ (−1, 1)h is the input activation vector of the cell;

and ct ∈ Rh is the cell state vector.
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2.4. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) network [20] was an optimized and simplified
version of the long short-term memory (LSTM) network. The GRU network incorporated
improvements to the forget and input gates, which were present in the LSTM network,
by combining them into a single update gate. In this study, this update gate was used to
determine the retention degree of the previous state information. The larger the update
gate value, the higher the retention degree. The GRU network has several advantages over
the LSTM network, including reduced training parameters, faster learning times, and, in
many cases, improved forecasting performance. The structural unit of the GRU network
was depicted in Figure 3, and its calculation formula could be represented as follows:

rt = σ(xtWxr + Ht−1Whr + br) (10)

zt = σ(xtWxz + Ht−1Whz + bz) (11)
∼
Ht = tan h(xtWhx + Rt � Ht−1Whh + bh) (12)

Ht = (1− Zt)� Ht−1 + Zt �
∼
Ht (13)

where σ is a sigmoid function, and its output range is between zero and one; Ht−1 contains

past information; Rt is a reset gate; � is the element-wise multiplication;
∼
Ht is a candidate

hidden state; and Zt is the update gate.
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3. Wind Speed Forecasting Model
3.1. EEMD-GS-GRU Modeling Process

Considering the uncertainty and seasonality of wind speed, it was difficult to make
accurate forecasts; therefore, in this paper, the time series was decomposed by EEMD, and
the GS-GRU model was constructed for forecasting. The specific steps in this process were
as follows:

1. EEMD was decomposed the original wind speed time series into subsequences.
2. According to the modes decomposed in (1), the low-frequency, high-frequency, and

trend components were judged, and the models were established for forecasting.
3. The results of each subsequence predicted in (2) were superimposed to obtain the

final result of the wind speed forecasting.

The model forecasting process was shown in Figure 4.
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3.2. Predictive Evaluation Index

Mean absolute error “MAE”, coefficient of determination “R2”, and root mean square
error “RMSE” were used to assess the stability of the model outcomes. “MAE” was a
measure of errors between paired observations expressing the same phenomenon. “MAE”
was calculated as the sum of absolute errors divided by the sample size. “R2”, known
as the “goodness of fit”, was used to evaluate models’ accuracy. R2 ranges from 0 to 1
(R2 closer to 1 represents high model reliability). In general, R2 is the proportion of the
variance in the output that was predictable from the input variables [21].

In this study, to quantitatively compare the forecasting results, we used the root mean
square error (RMSE), the mean absolute error (MAE), and then R2 to evaluate the formula,
as follows:

RMSE =

√
1
n∑n

i=1

(
ypre_i − yact_i

)2 (14)

MAE =
1
n∑n

i=1

∣∣ypre_i − yact_i
∣∣ (15)

R2 = 1−
∑n

i=1 (ypre_i − yact_i)
2

∑i(yacti−ypre)
2 (16)

where n was the number of sample points; yact_i was the actual value at the time step,
i; ypre_i was the predicted value at time step, i; and ypre was the mean of the sample
forecasting.
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3.3. Case Analysis

In this calculation example, we used the measured wind speed data from a wind farm
in northwest China, from 1 March 2020 to 28 February 2021, as the example analysis. The
data interval was 1 h, with a total of 8760 pieces of data. In total, 0.2% of the data were
missing, so the data were completed using the linear interpolation method. The wind speed
time series was shown in the Figure 5.
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Figure 5. Original wind speed time series and rose chart.

In statistics, the Pearson correlation coefficient was also known as Pearson’s r, which
was a measure of linear correlation between two sets of data. It was the ratio between
the covariance of two variables and the product of their standard deviations; thus, it was
essentially a normalized measurement of the covariance, such that the result always has a
value between −1 and 1. After decomposing the original wind speed time series by EEMD,
the Pearson correlation coefficient method would be used for the decomposed time series.
The correlation coefficients of each subsequence with the original wind speed were shown
in Table 1 below. The EEMD decomposition of the above time series and the introduction of
Gaussian noise were decomposed into 12 IMFs, of which IMF1-IMF6 were high-frequency
components, IMF7-IMF10 were low-frequency components, and IMF11-IMF12 were trend
components. These models were shown in Figure 6.

Table 1. Table of correlation coefficients.

IMF Name Correlation Coefficients

IMF1 0.223 ***
IMF2 0.364 ***
IMF3 0.579 ***
IMF4 0.630 ***
IMF5 0.531 ***
IMF6 0.418 ***
IMF7 0.290 ***
IMF8 0.234 ***
IMF9 0.136 ***

IMF10 0.123 ***
IMF11 0.090 ***
IMF12 0.064 ***

Note: *** represents a significance level of 1%.

The EEMD algorithm was used to decompose the mode of the original wind speed
time series, and the Pearson correlation coefficient was used to calculate the correlation
with the original data and to classify it into low-frequency modal, high-frequency modal.
Finally, each mode was predicted separately, and the superposition was performed after
the forecasting was completed.
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The wind speed time series contained a total of 8760 sample points. In this study, the
first 70% of the data—namely, 6132 pieces of data—were used as the training set, and the
last 30% of the data—namely, 2628 pieces of data—were used as the test set. According
to the parameter tuning experiment and the grid parameter optimization algorithm, the
hyperparameters of the network model were set, as shown in Table 2—where the time step
unit was 1 h and 24 historical wind speed samples were used to predict the wind speed in
the next 1 h. The LSTM network consisted of two LSTM layers; Dense fully connected the
layers, and Composition set the dropout layer after the LSTM layer to prevent overfitting.
Meanwhile, the GRU network consisted of two GRU layers; Dense fully connected the
layers, and Composition set the dropout layer after the GRU layer to prevent overfitting.
The experiments were run on an Intel Core i7-12700H, 2.30 GHz CPU with 16 GB RAM,
and an Nvidia RTX 3060Ti GPU. The run times for all models are shown in Table 3 below.
The parameters of models were as shown in Table 4.

Table 2. Grid search algorithm parameter setting.

Hyperparameter Grid Search Range

Batch size [8, 16, 24, 32, 64]
Epoch [10, 15, 20, 25, 30]

Optimization [adam, Adadelta, SGD]

Table 3. The running time of model.

Model Name Running Time

LSTM 3′16′′

GS-LSTM 8′20′′

EEMD-LSTM 25′46′′

EEMD-GS-LSTM 115′25′′

GRU 3′28′′

GS-GRU 8′36′′

EEMD-GRU 26′34′′

EEMD-GS-GRU 117′23′′

Table 4. Parameters and values of Models.

Hyperparameter Name Batch Size Dropout Epoch Optimization

Model I 24 0.2 25 Adam
Model I 16 0.2 30 Adam

Model III 24 0.2 25 Adam
Model IV 16 0.2 30 Adam
Model V 24 0.2 20 Adam
Model VI 16 0.2 30 Adam
Model VII 24 0.2 25 Adam
Model VIII 16 0.2 30 Adam
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To verify the feasibility of the model proposed in this study, the following models
were constructed to compare their forecasting accuracy:

Model I (LSTM): we input the wind speed time series directly into the LSTM model
for forecasting.

Model II (GS-LSTM): we input the wind speed time series into the LSTM model and
combine the GS parameters to adjust the parameters for forecasting.

Model III (EEMD-LSTM): first, we decomposed the original wind speed time series
into EEMD, and then we established LSTM models for forecasting.

Model IV (EEMD-GS-LSTM): first, we decomposed the original wind speed series into
EEMD, and then we established the GS-LSTM model for forecasting.

Model V (GRU): we input the wind speed time series directly into the GRU model
for forecasting.

Model VI (GS-GRU): we input the wind speed time series into the GRU model and
combined it with GS parameter adjustment for forecasting.

Model VII (EEMD-GRU): first, we decomposed the original wind speed time series
into EEMD and then we established a GRU model for forecasting.

Model VIII (EEMD-GS-GRU): first, we decomposed the original wind speed time
series into EEMD and then we established the GS-GRU model for forecasting.

Due to the uncertainty of the deep learning algorithm, there may be some bias in its
prediction results each time, so this would lead to some defects in the testing process of
the proposed model. To increase the feasibility of the model proposed in this paper, five
pre-experiments were conducted on the above eight models. The average value of the five
pre-experiments was taken as the forecasting result. The forecasting results were shown in
Table 5, below, and the forecasting comparison chart was shown in Figure 7, below.

Table 5. Comparison of four model evaluation indicators.

Evaluation Index R2 RMSE (m/s) MAE (m/s)

Model I 0.877 1.411 1.051
Model II 0.889 1.341 0.998
Model III 0.953 0.876 0.729
Model IV 0.970 0.696 0.581
Model V 0.888 1.349 1.007
Model VI 0.892 1.324 0.978
Model VII 0.959 0.816 0.78
Model VIII 0.971 0.685 0.571

Experimental results could be concluded from the eight models constructed in this
paper, which could predict the overall trend of wind speed. Moreover, it could be seen that
the forecasting accuracy of Model VIII (EEMD-GS-GRU) was better than the accuracy of
the other seven models. Through the careful analysis of Table 3 and Figure 7, the following
conclusions can be drawn:

(a) By comparing the basic Model I (LSTM) and Model V (GRU) models, it could be
found that the forecasting effect of the GRU model used in this paper was slightly
better than the LSTM model.

(b) Comparing the error metrics of Model V (GRU) and Model VII (EEMD-GRU), in the
forecast result for test set, it could be found that the RMSE, MAE, and R2 of EEMD-
GRU were reduced by 39.51%, 22.54% respectively, and R2 was improved by 7.99%.
This indicated that the introduction of the ensemble empirical mode decomposition
method (EEMD) into the forecasting of wind speed time series could significantly
improve the forecasting accuracy of the model.

(c) In wind speed forecasting, the algorithm-optimized Model II (GS-LSTM) and Model
VI (GS-GRU) performed better than a single model. Taking the forecasting statistical
measures of wind farm which used LSTM and GRU models, respectively, as an exam-
ple, the RMSE of GS-LSTM was reduced by 4.96%, MAE was reduced by 5.04%, and
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R2 was increased 1.37%. The RMSE of GS-GRU is reduced 1.85%, MAE was reduced
by 2.15%, and R2 was increased 0.5%. This showed that adding algorithm optimiza-
tion could improve the forecast performance of the model; it meant the algorithm was
better able to find neural network parameters to achieve better forecasting results.

(d) From the forecast statistical error, compared with the Model V (GRU) and Model VIII
(EEMD-GS-GRU), the RMSE and MAE of EEMD-GS-GRU were reduced by 48.26%
and 43.29%, respectively, and R2 was increased by 9.34%. It shows that the composite
model combining the modal decomposition and the optimization search algorithm
was more suitable for wind speed forecasting.

(e) Comparing the indicators of the Model IV (EEMD-GS-LSTM) and Model VIII (EEMD-
GS-GRU), it could be seen that three error indicator values of the hybrid models using
GRU model were slightly better than using the LSTM hybrid model. This suggested
that the GRU method was more suitable for the forecasting of wind speed, which
could track the wind speed time series more effectively. As a result, the hybrid model
proposed in this study was suitable for the forecasting of wind speed.
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To sum up, the forecasting performance of the model suggested in this research was
superior to common benchmark models. However, the GS method proposed in this paper
has some disadvantages. When the data set was large, training the model would consume
a lot of time; this would be a waste of computing power. When the data set was small,
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the GS method could improve the wind speed forecasting. Overall, the method proposed
could improve the accuracy of wind speed forecasting.

4. Conclusions

In this study, a wind speed forecasting model based on EEMD-GS-GRU has been
proposed, and the following conclusions were obtained through an example analysis and
through model comparison, as follows:

(1) The grid parameter optimization algorithm was combined with the GRU model to
predict the wind speed, and the forecasting accuracy was slightly improved.

(2) The original wind speed time series was decomposed by EEMD, which could effec-
tively reduce the influence of wind speed nonlinearity, intermittency, and instability
on wind speed forecasting; therefore, the accuracy of the wind speed forecasting was
improved.

(3) We decomposed the original wind speed time series into high-frequency components,
low-frequency components, and trend quantities through EEMD, and we performed
GS-LSTM and GS-GRU modeling and forecasting on them, respectively. After this, the
forecasting accuracy was improved, to some extent. Therefore, the model presented
in this study can more clearly reflect the characteristics of the wind speed time series.

This study used nearly one year’s worth of historical wind speed data to build the
model and verify it. Wind speed was affected by many meteorological factors. Therefore,
in future studies, we will include more meteorological information as input data and use
more advanced time series decomposition algorithms to further enhance the accuracy of
the model’s wind speed forecasting.
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