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Abstract: The Qinling Mountains (QMs) are considered to be the division in geology, geochemistry,
and physical geography between northern China and southern China. They have crucial effects on
regional climate, especially on rainfall and temperature, and have shown great scientific relevance to
climate change research in China. Using the observational daily and monthly rainfall and temperature
data derived from meteorological and regional automatic stations—as well as the methods of correla-
tion analysis, climate trend analysis, and Mann–Kendal and t tests—we revealed the spatiotemporal
change characteristics of temperature and rainfall and their correlation with elevation, longitude,
and latitude. The results show that the annual mean temperature (AMT) underwent a significant
increasing trend in the QMs. The maximum AMT increase occurred in spring, and the minimum
occurred in summer. Positive anomalies of annual mean rainfall amount (AMRA) occurred in the
1960s, 1980s, and 2010s, and negative anomalies occurred in the 1970s, 1990s, and 2000s. In the
QMs, the amount of moderate rainfall (MR) occupied the maximum proportion and accounted for
27.9% of the AMRA, whereas the torrential rainfall (TR) occupied the minimum proportion and
accounted for 12.8%. The AMRA amount significantly decreased by 130.1 mm from the 1980s to
the 1990s and accounted for 13.5% of the measure in the 1980s. The AMT and AMRA showed
consistent change trends with increases in elevation and latitude and showed the opposite trend as
the longitude increased. The results offer a further understanding of the meteorological background
of the QMs, helping us in further investigating the potential physical mechanisms that influence the
spatiotemporal distribution characteristics of temperature and rainfall in the QMs. This study will
provide a scientific basis for rainfall and temperature forecasts, with relevance to local ecosystems,
agriculture, soil erosion, and the prevention and mitigation of floods in the future.

Keywords: Qinling mountains; temperature; rainfall; change characteristics; geographical factors

1. Introduction

Global warming has increased the scope of climate system changes, leading to frequent
extreme rainfall events, high temperature events, and drought events, which seriously
threaten the safety of global ecological and environmental systems [1–4]. According to
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC),
human activities have affected the climate to various degrees in different ways. Compared
to pre-industrialization levels (1850–1900), the increase in global temperature from 2010 to
2019 was about 0.8–1.3 ◦C, which has had a profound impact on social development [5].
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The Qinling Mountains (QMs), located predominantly in the south of Shanxi province
in central China, are considered to be a division in geology, geochemistry, and physical
geography between northern China and southern China [6]. Furthermore, as an important
geographical boundary between central and eastern China, the QMs are situated at the
edge of the Asian monsoon region and are sensitive to climate change [7,8]. Thus, they
represent a climate transition belt where the typical subtropical zone gradually shifts into a
warm temperate zone from south to north and the humidity shifts towards a semi-humid
zone from east to west [9].

The effects of the QMs on regional climate, especially rainfall and temperature, have
been shown to have great scientific relevance for climate change research in China [10–12].
As a key region in the study of regional climate change in China, the changes experienced
in the climate elements in the QMs in the past decades have been the research focus of many
scholars. In previous studies, both increasing and decreasing trends in annual rainfall have
been reported in northwest China [13–15]. Meng et al. [16] indicated a declining trend in
annual rainfall in the QMs. Seasonally, a decreasing trend was also observed in spring and
autumn, while increasing trends were observed in summer and winter. Spring and autumn
rainfall significantly contributed to this observed decline in annual rainfall. Li et al. [17]
concluded that the intensity of extreme rainfall increased in the Qinling–Daba Mountains.
Shao et al. [18] pointed out that most extreme rainfall indices decreased in spring, autumn,
and winter and increased in summer in the Qinling–Daba Mountains. Li et al. [6] revealed
that the Qinling–Daba Mountains have an obvious effect on both the spatial–temporal
distribution and diurnal cycle of regional rainfall. Zhang et al. [4] used CMIP 6 data to
estimate future rainfall changes in the QMs and revealed the basic characteristics of the
atmospheric water cycle in mountainous areas under the action of monsoons as well as the
temporal and spatial variation mechanisms of water resources in the “central water tower”.

Mo et al. [19] simulated the temperature field in the QMs by constructing a digital
elevation model (DEM) map. Liu et al. [20] analyzed and compared the temperature of the
QMs over the past 200 years using the tree ring statistical method. Bai et al. [21] concluded
that the isotherm found in January in the QMs has gradually moved northward in the
past 50 years. Bai et al. [22] found that the trend of climate change and the time points of
abrupt climate change were consistent over the northern and southern slopes in the QMs.
Li et al. [23] indicated that the total rainfall amount has decreased, whereas the amount
of extreme rainfall has increased, based on eight extreme rainfall indexes in the northern
and southern QMs. According to the study of Zhang et al. [24], the rainfall in the QMs has
shown a downward trend in the last 50 years, and the 800 mm rainfall contour line has
clearly moved. Zhang et al. [25] found that the rainfall belt in the QMs has moved over the
last 40 years compared with the standard period. The study of Gao et al. [26] showed that
the climate in the QMs has undergone a warming and humidifying trend.

In addition, these studies on climate change in the QMs are mainly based on the data
obtained from more than 30 meteorological stations in recent years, and different results
show that the temperature has undergone an upward shift [25,27,28]. Furthermore, there is
a huge elevation difference of more than 3000 m in the QMs, and the meteorological data for
the high-elevation regions are based on the conventional vertical lapse rate of temperature
and the data derived from low-altitude stations. However, these extrapolation methods
cannot fully reflect the complex variability in temperature and rainfall in the QMs, and it is
necessary to obtain data from higher-elevation stations for supplementary correction [29].

Therefore, studying the rules of trends, as well as their attributions at different altitudes
and different time scales in the QMs, is essential to exploring climate change in China. In
this study, climate trend analysis, mutation tests, spatial interpolation, etc., were applied
to determine the rainfall and temperature trends as well as their hidden values and to
analyze the correlations with geographic factors, such as altitude, longitude, and latitude
in the QMs so as to determine the influence of geographical factors on mountain climate.
The aim of the work is to understand the response of regional climate change to global
warming; the results of this study will enhance the scientific basis of guidelines regarding
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how to deal with future climate change and promoting sustainable development and
ecological protection.

This paper is organized as follows: The details of the datasets and methodology are
given in the Materials and Methods section. The rainfall and temperature trends on annual
and seasonal scales, and analyses of their correlations with geographic factors, are given in
the Results section. The Discussion and Conclusions sections are given at the end.

2. Data and Methods
2.1. Data

In this study, the QM region refers to the mountains between the Weihe River and
the Hanjiang River in the south of Shaanxi Province, bounded by the Bahe River and the
Danjiang River Valley in the east and ending at the Jialing River in the west. The range
of the QMs is 32.42◦ N–35.27◦ N, 103.8◦ E–113.07◦ E. We used the daily and monthly
mean temperature and rainfall gauge data from 32 national surface weather stations
during the period 1961–2021 and annual mean temperature and rainfall gauge data from
406 regional automated stations during the period 2020–2021. All the data were used
to analyze climate change in the QMs and were subjected to quality control (QC). The
QC procedures for the current gauge data include the station information check, the
missing value and eigenvalue check, the time consistency check, the climate extreme value
behavior check, the spatial consistency check, and the interior consistency check. The
spatial distribution of meteorological stations and the study area are shown in Figure 1.
DEM data at a 30 m resolution were downloaded from the National Science Data Mirroring
Website of the Computer Network Information Center, Chinese Academy of Science (http:
//www.gscloud.cn, accessed on 1 March 2022) [30]. Moreover, the periods of March–May,
June–August, September–November, and December–February represent spring, summer,
autumn, and winter, respectively.

Figure 1. Spatial distribution of meteorological stations in the Qinling Mountains.

2.2. Methods
2.2.1. Climate Trend Analysis

The function of climate trend analysis is primarily to calculate and analyze the tenden-
cies and rates of meteorological elements via the following formula [31]:

Yi = a0 + a1t1 (1)

In this study, Yi is the value of the meteorological element, t1 is the time (1961–2021), a1
is the linear trend (that is, the annual climate tendency rate), and a0 is the constant term.

http://www.gscloud.cn
http://www.gscloud.cn
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2.2.2. Mann–Kendall (M-K) Test

The Mann–Kendall (M-K) method is a detection method on the basis of non-parametric
statistics proposed by Mann et al. [32] and Kendall et al. [33]. It can infer overall distribution
through the analysis of sample data, introducing the inverse sequence calculation, which
can be applied to the detection of the mutation and can reflect the exact location of the
mutations [34]. It is widely employed to detect monotonic trends in the time series of hy-
drometeorological variables, including temperature [35], streamflow [36], and rainfall [37].
This method does not require that the detected data adhere to a specific distribution, and
as such, this method requires no assumptions about the data that need to be tested [34].

In this study, the M-K method is used to test the abrupt change in temperature and
rainfall series. Its principle is to construct a rank sequence Sk in chronological order for
element sequence x:

Sk = ∑k
i=1 ri, k = 2, 3, · · · , n (2)

where

ri =

{
1, f or xi > xj,
0, f or xi ≤ xj,

j = 1, 2, · · · , i.

The statistics UFk are defined under the assumption of random independence of
time series:

UFk =
|Sk − E(Sk)|√

var(Sk)
(3)

where UF1 = 0, E(Sk), is the mean of the cumulative Sk; var(Sk) is the variance of the
cumulative Sk. 

E(Sk) =
k(k− 1)

4
,

var(Sk) =
k(k− 1)(2k + 5)

72
.

(4)

Variable UFk obeys normal distribution, and different significance levels are set to
determine whether the trend of variable UFk is significant in the confidence interval. The
element sequence x is arranged in reverse chronological order, and the above process is
repeated with UBk = −UFk(k = n, n− 1, · · · , 1), UB1 = 0. By analyzing the trend of UFk
and UBk, the trend of element sequence x can be obtained and the time of its mutation
can be determined. If UFk > 0, it indicates that the sequence tends to rise; otherwise, it
declines. If the values of UFk and UBk are greater than the critical value of a significance
level, the sequence shows a significant trend. If there is an intersection point between UFk
and UBk, the position of the intersection point is the place at which the mutation occurs [38].
However, this method has some drawbacks. In the case of multiple mutation points or
multiple scale mutations in the sequence, this method is not suitable to be applied [34].

2.2.3. Running t-Test

Considering some disadvantages of the Mann–Kendall test, we also used the running
t-test method to test the abrupt change of temperature and rainfall series at the same
time. The basic idea of the running t-test is based on the significance test; to determine
if two samples will occur as mutations, one must analyze whether the difference in the
two samples’ mean values is obvious or not [34]. If the difference is greater than the given
significance level, the two samples exist with obvious qualitative changes.

The principle of this operation is as follows: x is the time series, and n is the number of
samples; a certain time point is artificially set as the reference point, and n1 and n2 are the
numbers of samples before (x1 ) and after (x2) the reference point; t meets the distribution
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of t(n1 + n2 − 2). x1 and x2 are the mean values of x1 and x2, respectively; S2
1 and S2

2 are the
variances of x1 and x2, respectively. The test statistics (t) are calculated as follows [34,38]:

t =
x1 − x2

S
√

1
n1

+ 1
n2

∼ t(n1 + n2 − 2) (5)

S =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
(6)

For a significance level of α, we can calculate the test statistic tα, and if |t| > tα, a
mutation exists. However, according to the descriptive analysis of test methods and the
previous research experience, the running t-test is relatively appropriate for the recognition
of mean value type mutations [34,38].

2.2.4. Kriging Interpolation

Kriging interpolation is the method of interpolation deriving from regionalized vari-
able theory, it is a geostatistical interpolation method and an optimal method for estimating
regional spatial differences based on the spatial variation of the property in terms of the
variogram [39–41]. Kriging interpolation obtains the estimated values of unknown points
using known point data by considering the spatial relationship between sample points, us-
ing the variogram calculation and structural information. There is no boundary effect in the
region and the output surface is smooth. The formula of calculation is as follows [39,41–43]:

Z(x0) = ∑k
i=1 λiZ(xi) (7)

where Z(x0) is the estimated value of the meteorological point; λi is the weight coefficient of
the measured sample point i; Z(xi) is the value of the known meteorological station. Kriging
interpolation is widely used in the study of variables with spatial correlation [44–46].

In this study, monthly and annual 0.1◦ × 0.1◦ grid data are generated using Kriging
interpolation, and a correlation analysis between temperature, precipitation data, and the
geographical factors is subsequently applied. Statistical significance has been assessed
using Student’s t-test. All the significance values are at the 95% confidence level unless
otherwise stated.

3. Results
3.1. Temporal Characteristics of Temperature and Rainfall
3.1.1. Interannual and Interdecadal

The time series of regionally averaged annual mean temperature (AMT) (Figure 2) in
the QMs during the period from 1961–2021 shows that the AMT in the QMs has increased
significantly over the past 61 years, and the temperature tendency rate (TTR) is 0.22 ◦C/10a
(p = 0.05). The maximum annual temperature was 14.4 ◦C, which occurred in 2013. In that
year, an anomalous long-term high temperature occurred in the QMs, the subtropical high
was stronger to the north (Figures not shown), and the atmospheric circulation anomaly
may be the reason for the temperature increase in the QMs [47]. On the other hand,
the minimum value was 12.2 ◦C, which occurred in 1984. In that year, the La Niña event
triggered a strong East Asian winter monsoon, the Siberian high pressure was strengthened,
and the cold air was active in East Asia (Figures not shown), so the minimum temperature
occurred in the QMs [48,49]. According to the five-year moving mean temperature, the
upward trend of temperature was relatively slow before the 1980s, and the TTR value
was 0.09 ◦C/10a. Then, the AMT gradually increased from the 1980s, and the TTR was
0.54 ◦C/10a during the period 1981–1998. After that, the increasing trend slowed down,
and the TTR was 0.13 ◦C/10a during the period 1999–2021.
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Figure 2. Time series of regionally averaged annual mean temperature (AMT) (unit: ◦C) from
32 stations in the QMs during the period 1961–2021. The black line denotes the temperature curve,
the red dashed line denotes the 5-year moving average curve, and the blue line denotes the linear
trend curve.

Figure 3 shows the time series of regionally averaged annual mean rainfall amount
(AMRA) in the QMs during the period 1961–2021; it is noted that the trend of AMRA in the
QMs over the last 61 years was not significant. The maximum AMRA was 1184.2 mm, which
occurred in 2021. In that year, the anomalous plateau upper trough and the anomalous
subtropical high affected the rainfall in the QMs [50]. On the other hand, the minimum
value was 492.1 mm, which occurred in 1997. In that year, the occurrence of El Niño
phenomenon caused the Western Pacific subtropical high to move northward and retreat
southward rapidly, which was the reason for the negative rainfall anomaly in the QMs [51].
The variability in types of rainfall is consistent with the variability in AMRA, with large
interannual fluctuation, but this trend is not significant (Figures not shown).
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dashed line denotes the 5-year moving average curve, and the blue line denotes the linear trend curve.
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Table 1 shows the interdecadal statistics of regionally averaged AMT in the QMs,
indicating that negative temperature anomalies occurred in the 1960s, 1970s, and 1980s.
However, a positive temperature anomaly occurred after the 1990s. The differences seen
in the temperature anomalies in the 1960s, 1970s, 1980s, and 2010s were 1.0 ◦C (p = 0.05),
0.9 ◦C (p = 0.05), and 1.1 ◦C (p = 0.05), respectively. This indicates that the temperature has
increased significantly across the QMs in the past 51 years.

Table 1. The regionally averaged AMT in QMs for different periods.

Variable 1960s 1970s 1980s 1990s 2000s 2010s

AMT (◦C) 12.8 13.0 12.7 13.3 13.6 13.8
AMT anomaly (◦C) −0.4 −0.2 −0.5 0.1 0.4 0.6

To further understand the features of rainfall, we have examined the different clas-
sifications of rainfall in the QM region. Here, we have divided the daily rainfall into
five types: light rainfall (LR; 0.1–9.9 mm), moderate rainfall (MR; 10.0–24.9 mm), heavy
rainfall (HR; 25.0–49.9 mm), torrential rainfall (TR; 50.0–99.9 mm), and downpour rainfall
(DR; ≥100.0 mm); after this, we calculated the monthly mean values of LR, MR, HR, TR,
and DR during the period from 1961–2021.

As shown in Table 2, regarding the regionally averaged differences in types of rainfall
in the QMs during the period from 1961–2021, the MR type represents the maximum
proportion, accounting for 27.9% of the AMRA, while the TR type represents the minimum
proportion, accounting for 12.8% of the AMRA. Moreover, LR, HR, and DR accounted for
24.0%, 21.5%, and 13.8%, respectively.

Table 2. The regionally averaged light rainfall (LR), moderate rainfall (MR), heavy rainfall (HR),
torrential rainfall (TR), and downpour rainfall (DR) in the QMs during the period 1961–2021.

Period (Years) LR
(mm)

MR
(mm)

HR
(mm)

TR
(mm)

DR
(mm)

1961–2021 218.9 254.3 196.2 116.9 125.4

As shown in Table 3, positive AMRA anomalies occurred in the 1960s, 1980s, and
2010s, and the value of the difference exceeded 50 mm in the 1980s. Negative AMRA
anomalies occurred in the 1970s, 1990s, and 2000s, and the value of the difference was
−76.4 mm in the 1990s. The AMRA significantly decreased by 130.1 mm from the 1980s to
1990s, accounting for 13.5% in the 1980s; this indicates a declining trend in the AMRA in
the QMs from the 1980s to the 1990s, which is also supported by previous studies, which
reported an obvious change in the QMs after the 1980s, with a declining rainfall trend over
the QMs [16]. In addition, a trend of increase in the AMRA was seen from the 1990s to 2010s,
and it accounted for 13.0% in the 1990s. Furthermore, a positive LR anomaly occurred
during the period 1960–1980, after which a negative LR anomaly occurred. Negative MR
and TR anomalies occurred in the 1990s and 2000s, and positive anomalies occurred in
the 2010s. Negative HR and TR anomalies occurred in the 1990s, and positive anomalies
occurred after the 2000s. The above analysis shows that the increase in the AMRA across
the QMs in the 2010s was mainly caused by increases in MR, HR, TR, and DR; in addition,
the LR had been lower than the mean rainfall since the 1990s.

According to the above analysis, the results suggest that the annual rainfall trend was
declining in the QMs before the 2000s; this result is consistent with those of Meng et al. [52]
and Wang et al. [14]. In addition, we found an increasing trend in the AMRA in the QMs
from the 1990s to the 2010s and a declining trend from the 1980s to the 1990s. Global
warming [53], Pacific decadal oscillation (PDO) [53], Atlantic multidecadal oscillation
(AMO) [53], and Asian–Pacific oscillation (APO) [54] might be the reason for AMRA
change in the QMs.
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Table 3. The regionally averaged annual mean rainfall amount (AMRA), light rainfall (LR), moderate
rainfall (MR), heavy rainfall (HR), torrential rainfall (TR), and downpour rainfall (DR) in the QMs in
different periods.

Variable 1960s 1970s 1980s 1990s 2000s 2010s

AMRA (mm) 941.9 885.8 965.5 835.4 898.4 943.9
AMRA anomaly (mm) 30.1 −26.0 53.7 −76.4 −13.5 32.1

LR (mm) 236.0 219.3 227.7 203.2 214.6 212.8
LR anomaly (mm) 17.1 0.4 8.8 −15.7 −4.4 −6.2

MR (mm) 279.7 246.4 266.3 233.4 240.7 259.5
MR anomaly (mm) 25.5 −7.9 12.1 −20.8 −14.2 5.3

HR (mm) 195.3 180.1 219.8 167.5 199.1 215.5
HR anomaly (mm) −0.9 −16.1 23.6 −28.7 2.9 19.2

TR (mm) 111.6 112.4 131.1 109.3 112.2 125.0
TR anomaly (mm) −5.3 −4.5 14.1 −7.7 −4.7 8.1

DR (mm) 119.3 127.6 120.6 122.0 131.8 131.1
DR anomaly (mm) −6.1 2.2 −4.8 −3.4 6.4 5.7

3.1.2. Seasonal

To further determine the seasonal features of temperature and rainfall, we have
examined the different seasonal features of AMT and AMRA in the QMs (Table 4). The
results show that the AMT increased from spring to winter, and the tendency rates were
0.33 ◦C/10a (p = 0.01), 0.07 ◦C/10a, 0.20 ◦C/10a (p = 0.05) and 0.28 ◦C/10a (p = 0.05),
respectively. The maximum increase in AMT occurred in spring, and the minimum occurred
in summer. In addition, the polar vorticity index and Atlantic SST index were the most
relevant circulation index and climate index, respectively, to seasonal AMT. These two
indices revealed the trend of climate warming in the past 50 years and might be related to
the significant warming in the QMs [55]. Furthermore, the significant warming might also
be associated with the warm phase of Atlantic multidecadal oscillation (AMO) [56].

Table 4. The regionally averaged AMT and AMRA in the QMs during different seasons in the period
1961–2021.

Variable Spring Summer Autumn Winter

AMT (◦C) 13.8 23.9 13.2 2.0
Tendency rate (◦C/10a) 0.33 *** 0.07 0.20 ** 0.28 **

AMRA (mm) 240.0 512.9 401.0 34.8
Tendency rate (mm/10a) −6.35 8.14 −1.10 0.66

LR (mm) 61.2 68.9 69.0 20.3
LR tendency rate (mm/10a) −1.77 −1.53 −1.46 0.06

MR (mm) 66.1 107.0 80.3 14.5
MR tendency rate (mm/10a) −3.36 2.06 −2.78 0.10

HR (mm) 48.6 113.5 70.6 –
HR tendency rate (mm/10a) −0.83 3.03 0.33 –

TR (mm) 64.1 98.8 72.9 –
TR tendency rate (mm/10a) −0.36 2.06 0.41 –

DR (mm) – 124.7 108.1 –
DR tendency rate (mm/10a) – 1.16 – –

(Note: the superscript “*” indicates the following—*** p = 0.01, ** p = 0.05; the 10a stands for 10 years).

Furthermore, the trend of increase in the AMRA manifested in winter and summer in
the QMs, with the maximum increase in summer and the minimum increase in winter. In
spring and autumn, decreases in AMRA occurred, with the maximum decreasing trend
seen in spring and the minimum decreasing trend seen in autumn. Zuo et al. [57] and
Zhao et al. [58] noted that the spring AMRA decreased in the QMs might be caused by a
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significant decrease in snow cover in Eurasia and a strengthening northerly wind from
East Asia in spring. Gu et al. [59] indicated that the decrease in AMRA in autumn in the
QMs might be closely related to SST anomalies in the tropical Pacific. In addition, the
increased AMRA in winter and summer were related to global warming, Pacific decadal
oscillation (PDO), and Atlantic multidecadal oscillation (AMO) [53]. Regarding the seasonal
distributions of the different types of rainfall, MR, HR, TR, and DR showed increasing
trends in summer, but LR did not, so we can infer that the increase in AMRA in summer
was mainly caused by the increases in MR, HR, TR, and DR. In winter, LR and MR showed
increasing trends. In spring, MR, HR, TR, and DR showed decreasing trends, which is
consistent with the decreasing trend of AMRA. In autumn, LR and MR showed decreasing
trends, while HR and TR showed increasing trends; as such, we can infer that the decrease in
AMRA in autumn was mainly caused by the decreases in LR and MR. Moreover, the change
in temperature and specific humidity in the lower atmosphere were strongly associated
with the decrease in the frequency of LR occurred in summer. The increasing temperature
was considered to reduce the frequency of LR occurred [60].

In addition, previous studies suggested that the annual and seasonal rainfall in the
QMs was influenced by climate anomalies and geographical factors [61], which could be
due to atmospheric circulation anomalies, the Asian monsoon anomaly, or a combination
of factors (i.e., vegetation cover percentage, direction of slope, degree of slope, and
so on) [62,63].

3.2. Spatial Characteristics of Temperature and Rainfall
3.2.1. Spatial Distribution of Temperature

Figure 4A shows a “dipole-type” spatial pattern in the AMT, which was distributed
from southeast to northwest in the QMs. The highest AMT was measured in Ankang
and its neighboring regions, with maximum values of above 15 ◦C. Mean temperatures of
14.0–15.0 ◦C were measured in Mianxian, Yangxian, Hanzhong, Shangnan, Shangluo, and
Danfeng. Taibai in the northwestern region of the QMs and Luonan in the northeast yielded
the minimum AMT, with values of about 8.0 ◦C; the difference between the maximum
and minimum AMT was about 7.0 ◦C. In the QM region, the AMT showed an increasing
trend (Figure 4B). The greatest increases in AMT occurred in Zhen’an, Zhashui, Fuping,
and Baoji, with a rate of over 0.3 ◦C/10a, and the smallest increases were measured in
Shiquan, Ankang, Hanyin, and Ziyang, primarily distributed in the southern region of
the QMs, with increase rates below 0.1 ◦C/10a. The above results show obvious regional
differences in the increases in AMT; the increase rate was higher in the northwestern and
central regions of the QMs and could be associated with Figure 1 for elevation. That is,
the AMT increase rate appeared to be greater at higher elevations, which was basically
consistent with the analysis results of Dong et al. [64].

Over the past 50 years, the changing temperature trends over the northern and south-
ern regions of the QMs have been obvious and synchronous, with the warming process
manifesting a “non-smooth, nonlinear, and ladder-shaped” pattern. The spatial variation
in temperature is characterized by “synchronous warming and differential north–south
change” [63]. The QM region displays differences in temperature in response to global
warming over the north and south. The northern boundary of the north subtropical zone ex-
tends upwards along the southern QMs, whereas the warming zone extends in the form of
an enclave into the northern QMs due to rapid urbanization and mountain blocking [63,65].

3.2.2. Spatial Distribution of Rainfall

As can be seen in Figure 5A, the greatest AMRA was measured in the southwest,
while lower levels occurred in the northeast of the QMs. The maximum AMRA values
were measured in Foping, Ningshan, Shiquan, Hanyin, and Ziyang, which were above
1000 mm. On the contrary, the minimum AMRA values were measured in Baoji, Xi’an, and
Weinan, located in the north of the QMs, and were below 600 mm. The difference between
the maximum and minimum AMRA was over 400 mm. The maximum trends of increase
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in AMRA were measured in Shangnan and Danfeng, with rates of 10.1–18.8 mm/10a
(Figure 5B).
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(B) The spatial distribution of linear variation in AMT trends (unit: ◦C/10a) in the QMs.

As shown in Figure 6, the greatest distribution of LR occurred in the southwest of
the QMs, and the least occurred in the northeast. The total amount of LR type in the QM
region was above 170.8 mm, with the highest measurements in Liuba, Ziyang, Foping,
and Ningshan and the smallest in Huayin, Huazhou, and Tongguan. More MR type was
measured in the central QM region, and less occurred in the eastern and western regions; its
total value was above 195.6 mm, with the highest values measured in Ankang and Foping
in the east of Hanzhong and Zhashui and Zhen’an in the west of Shangluo. The smallest
values measured were in the west of Baoji and the east of Shangluo. More HR and TR were
measured in the south of the QMs, and less were measured in the remaining regions; the
highest values occurred in Ziyang, Foping, Ningshan, and Hanyin, and the smallest values
occurred in the north and east of the QMs. In addition, a decreasing LR trend was seen
across most of the QM region, while increasing trends were seen in Zhashui and Chenggu.
The increases in MR, HR, and TR occurred in the central QM region, with decreases in the
remaining regions.
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3.3. The Abrupt Changes in Temperature and Rainfall

In this study, we used the M-K test and running t-test to examine dramatic changes
in the spatiotemporal characteristics of temperature. As can be seen from the results of
the M-K test (Figure 7A) and running t-test (Figure 7B) applied to the AMT time series
across the QMs, the most abrupt change occurred in 1997—that is, a significant shift in
the AMT occurred in 1997. The AMT showed an increasing trend after 1997. In fact, the
most significant increase trend was seen after 2002 (p = 0.05), signifying that the AMT in
the QMs has increased significantly since this time. In 1997, the occurrence of El Niño
phenomenon led to a global atmospheric circulation anomaly, subtropical high anomaly,
and hot and dry weather [51]. After that, solar activity, volcanic activity, human factors,
greenhouse gas emissions, and land use changes played a major role in climate warming,
and the increase in AMT in the QMs continued [66]. It can be seen from Figure 8, regarding
the M-K test (Figure 8A) and running t-test (Figure 8B) applied to the annual DR time series
across the QMs, that the year of most abrupt change was 1984; that is, a significant shift in
the annual DR occurred in 1984. The rainfall anomaly in the QMs might be associated with
sea surface temperature (SST) anomaly over the central-eastern equatorial Pacific and the
North Atlantic [67]. In 1984, an SST anomaly occurred in the east-central equatorial Pacific,
accompanied by the Walker circulation and meridional circulation anomalies. Additionally,
the DR increased in the QMs [67]. In addition, the time series of AMRA, LR, MR, and
HR showed no obvious year of abrupt change (Figures not shown), and they generally
remained stable. Other previous studies have indicated that various external forcing factors,
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such as solar radiation, greenhouse gases, and land use, could cause the abrupt changes in
the QMs during the period from 1961−2021 [68].
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Figure 7. Mann–Kendall (A) and running t-tests (B) for the time series of the AMT over the QMs during
the period from 1961−2021. The two black dashed lines indicate the 95% confidence level of the two
tests. In (A), the black line denotes the sequential statistical curve, UF, and the red dashed line denotes
the reverse statistical curve, UB. The black lines in (B) denote the sequential statistical curve t.

3.4. Correlation Analysis between Temperature, Rainfall, and Geographical Factors
3.4.1. Correlation Analysis of Temperature, Rainfall, and Elevation

In order to better understand the distribution and variation of temperature and rainfall
in the QMs, we used the research methods of Huang et al. [69] and Bi [70] to analyze the
correlation between AMT and AMRA with geographic factors in this paper. The correlation
coefficients of AMT and AMRA with altitude, longitude, and latitude and the variation
characteristics of AMT and AMRA with geographical factors were studied. Since the
highest elevation of the QMs is over 3700 m and the highest national meteorological station
is 2064.9 m, we combined the data from regional automatic stations with data from the
national station to complete the spatial interpolation analysis. This better reflects the
actual distribution of meteorological elements in the high-elevation region, helping us to
understand the relationship between temperature, rainfall, and geographical elements.
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As can be seen from Table 5, there was a significant negative correlation between AMT
and elevation, with a correlation coefficient of −0.700 (p = 0.01). On the other hand, the
correlation coefficient between AMRA and elevation was significantly positive, with a value
of 0.142 (p = 0.01). Furthermore, there was a significant positive correlation between AMT
and longitude, with a correlation coefficient of 0.147 (p = 0.01). The correlation coefficient
between AMRA and longitude was significantly negative, with a value of −0.233 (p = 0.01).
In addition, there was a significant negative correlation of AMT and AMRA with latitude,
with correlation coefficients of −0.617 (p = 0.01) and −0.868 (p = 0.01).

Table 5. Correlation coefficient between the AMT and AMRA and various geographical factors in the
QMs during the period from 1961–2021.

Elevation (m) Longitude (◦E) Latitude (◦N)

AMT (◦C) −0.700 *** 0.147 *** −0.617 ***
AMRA (mm) 0.142 *** −0.233 *** −0.868 ***

(Note: the superscript “*” indicates the following—*** p = 0.01).

In order to explore the changes in air temperature and rainfall with elevation in greater
detail, the mean temperature and rainfall within the corresponding elevation ranges were
calculated at intervals of 100 m [69,70]. As Figure 9 shows, the AMT exhibited a decreasing
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trend with elevation increase, at a rate of 0.45 ◦C/100 m (p = 0.01). In the elevation range of
0 m (16.4 ◦C) to 3730 m (−1.6 ◦C), the mean temperature decreased by 18 ◦C. In the elevation
range of 0 to 2400 m, the temperature decreased slowly as the elevation increased, but
above 2400 m, the temperature decreased rapidly. In particular, the maximum temperature
decreased as the elevation increased from 3300 to 3700 m.
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Figure 9. The AMT (unit: ◦C) and AMRA (unit: mm) change with elevation in the QMs. The brown
dashed line denotes the AMRA curve, and the blue dashed line denotes the AMT curve. The black
line denotes the linear trend of the temperature curve, and the black dashed line denotes the linear
trend of the rainfall curve.

The AMRA showed an increasing trend as the elevation increased. In the elevation
range of 0 to 3730 m, the changes in AMRA with increased elevation were more complicated,
with an alternating trend of “increase–decrease–increase–decrease”. In the elevation range
of 200 to 300 m, the maximum AMRA reached was 1050.0 mm. Above 900 m, the AMRA
began to increase gradually, and another maximum value was measured at the elevation of
2200 m to 2300 m—1038.8 mm. Then, above 2400 m, as the elevation increased, the AMRA
decreased in a fluctuating pattern; in the elevation range of 3600 to 3730 m, the minimum
AMRA was 817.6 mm. In addition, the AMRA rapidly dropped above 3400 m. These
results signify consistent change trends in the AMT and AMRA with elevation increases,
while the AMT and AMRA decreased from low to high elevation in the QM region.

3.4.2. Correlation Analysis of Temperature, Rainfall, and Longitude

In order to explore the changes in air temperature and rainfall at different longitudes
in more detail, the mean temperature and rainfall values within corresponding longitudinal
ranges were calculated at intervals of 0.2◦ [69,70]. As can be seen from Figure 10, with
changes in longitude, the AMT showed an increasing trend at a rate of 0.04 ◦C/0.2◦ (no
significant). The minimum temperature was 9.8 ◦C, which was measured in the longitude
range of 107.4◦–107.6◦ E, and the maximum value was 14.4 ◦C in the longitude range
of 110.6◦–110.8◦ E. Furthermore, the AMRA increased in the western QM region and
decreased in the east with longitudinal increase. In the longitude range of 107.6◦–107.8◦ E,
the maximum AMRA was measured with a value of 1109.2 mm. To the east of 107.8◦ E, the
AMRA showed a decreasing trend, and the minimum value of 875.8 mm appeared in the
longitude range of 110.6◦–110.8◦ E. These results further prove that the AMT and AMRA
showed different change trends with longitudinal increase; the AMT increased and the
AMRA decreased from the west to the east in the QM region.
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3.4.3. Correlation Analysis of Temperature, Rainfall, and Latitude

In order to explore the changes in air temperature and rainfall that occurred with
latitude in more detail, the mean values of temperature and rainfall within the correspond-
ing latitude range were calculated at intervals of 0.1◦ [69,70]. Figure 11 shows that with
increases in latitude, the AMT decreased with a linear trend of 0.23 ◦C/0.1◦ (p = 0.01). The
minimum AMT was 10.0 ◦C, measured at 34◦ N, and the maximum AMT was 15.9 ◦C at
32.8◦ N. Furthermore, with increases in latitude, the AMRA showed a decreasing trend of
up to −12.6 mm/0.1◦ (p = 0.01). The minimum AMRA was 842.4 mm, measured at 34.5◦ N,
and the maximum AMRA was 1165.0 mm at 32.5◦ N. This indicates significant differences
in AMRA between the north and south of the QM region. The AMT and AMRA showed
consistent change trends with increases in latitude, with both decreasing gradually from
the south to the north of the QM region.
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4. Discussion and Conclusions

In this study, we investigated the spatiotemporal characteristics of temperature and
rainfall in the QMs during the period 1961–2021, and the correlations between temperature
and rainfall and geographical factors were studied in detail. The results show that the AMT
has significantly increased in the QMs. This increase has been significant in all seasons,
with the maximum increasing tendency in spring and the minimum increasing tendency in
summer. Positive AMRA anomalies occurred in the 1960s, 1980s, and 2010s, and negative
anomalies occurred in the 1970s, 1990s, and 2000s. In the last ten years, MR, HR, TR,
and DR showed increasing trends, but LR did not. The AMT increase rate was greater
in the northwest and central regions of the QMs, whereas this rate was smaller in the
southwestern and eastern regions of the QMs. Considering the elevation distribution of
the QMs, the AMT increase rate appeared to be greater at higher elevations, whereas this
rate was lower at lower elevations. This result indicates that higher-elevation regions have
a more respond positive to climate change than lower-elevation regions [71]. The AMRA
showed a decreasing trend in the southwestern and northeastern regions of the QMs, as
there were fewer regions with an increasing AMRA trend compared to those where a
decreasing AMRA trend occurred.

In the QMs, MR represented the maximum proportion and accounted for 27.9% of
the AMRA, whereas TR represented the minimum proportion and accounted for 12.8%.
The AMRA significantly decreased by 130.1 mm from the 1980s to the 1990s and accounted
for 13.5% of the total in the 1980s. The increase in AMRA in the QMs in the 2010s was
mainly caused by the increases in MR, HR, TR, and DR. The years with the most abrupt
changes in AMT and DR were 1997 and 1984, respectively, in the QMs. The AMT and
AMRA showed consistent change trends with elevation and latitude increases—the AMT
and AMRA decreased from a low elevation to high elevation and from the south to the
north of the QM region, respectively. The AMT and AMRA showed different change trends
with longitude increases—the AMT increased and the AMRA decreased from the west to
the east of the QM region.

In this paper, different types of rainfall have been analyzed. Most of the literature has
mainly focused on the TR type, indicating that the change trend of TR over the last 50 years
has not been obvious, but we suggest an increasing trend in the TR in this century, which is
basically consistent with the research conclusions of Kang [45] and Huang et al. [72].

It should be noted that although this study emphasizes the spatiotemporal char-
acteristics of temperature and rainfall in the QMs, several issues remain unclear. For
example, the primary limitations of this study are the limited number of surface weather
stations in the QMs, the limited duration of the data collection period and the complex
topography of the area, which require further exploration the correlation between mete-
orological factors and geographical factors in the QMs. Furthermore, it was difficult to
analyze all the human and natural factors that could affect rainfall and temperature in
this area because of the complex topography [16]. Additionally, solar radiation, aerosol,
ENSO, and snow depth may also affect rainfall and temperature in the QMs [73]. In the
future, studies should focus on the potential physical mechanisms that influence the
spatiotemporal distribution characteristics of temperature and rainfall in order to obtain
more accurate trends and perform attribution analyses. With increases in observational
data, more in-depth research should be carried out on the spatiotemporal distribution
characteristics of temperature and rainfall and their correlations with geographical
factors. Our results are expected to enhance the understanding of the meteorological
background of the QMs.
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