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Abstract: Anthropogenic climate change poses a significant threat to both natural and social systems
worldwide. In this study, we aim to identify regions most impacted by climate change using the
National Centers for Environmental Prediction and the National Center for Atmospheric Research
(NCEP-NCAR) reanalysis of near-surface daily air temperature data spanning 73 years (1948–2020).
We develop a novel climate network framework to identify “hot spots”, regions that exhibit significant
impact or impacted characteristics. Specifically, we use the node degree, a fundamental feature of
the network, to measure the influence of each region and analyze its trend over time using the
Mann–Kendall test. Our findings reveal that the majority of land areas experiencing increasing
degrees are more closely connected to other regions, while the ocean shows the opposite trend due to
weakened oceanic circulations. In particular, the degree in the central Pacific Ocean’s El Niño region
is significantly reduced. Notably, we identify three “hot spots” in East Asia, South America, and
North Africa, respectively, with intensive increasing network degree fields. Additionally, we find that
the hot spot in East Asia is teleconnected to remote regions, such as the South Pacific, Siberia, and
North America, with stronger teleconnections in recent years. This provides a new perspective for
assessing the planetary impacts of anthropogenic global warming. By using a novel climate network
framework, our study highlights regions that are most vulnerable to the effects of climate change
and emphasizes the importance of understanding network structures to assess the global impacts of
anthropogenic climate change.

Keywords: climate change; climate network; complexity science; Mann–Kendall test; teleconnections

1. Introduction

The anthropogenic production of greenhouse gases has been identified as the primary
driver of climate change [1–3], resulting in a range of destabilizing consequences including
glacial melting, sea level rise, and unprecedented extreme weather events, such as intense
heat waves and catastrophic floods [4–7]. Global warming, the most prominent indicator of
climate change, has emerged as a pressing global issue with the potential to affect a range
of ecosystem variables [8–10]. Scientific studies have revealed that global warming, caused
by the increasing concentration of greenhouse gases in the atmosphere, has resulted in a
notable rise in extreme temperatures worldwide. These extreme temperatures can cause
harm to humans and other living organisms, leading to serious health concerns and even
fatalities in some cases [11,12]. In response, this growing threat of abrupt and irreversible
climate changes compels broader societal, political, and economic engagements to perform
early actions to reduce climate-related damages [13].

Currently, there is a significant focus on the issue of global warming and the con-
sequential effects on the environment. To investigate global warming, researchers have
developed comprehensive dynamical models and statistical methods [14–16]. For example,
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studies have been conducted to evaluate the impact of global warming on Atlantic circula-
tion and have highlighted the potential collapse of Atlantic thermohaline circulation [9,17].
The influence of global warming on the Amazon rainforest has also been examined, and
it has been reported that the reduction of the Amazon rainforest may lead to potential
dieback of the forest [18]. Huybrechts et al. [19] have discovered that global warming
can result in the decay of Greenland’s ice sheet. Global warming has the potential to
trigger the Qinghai-Tibet Plateau to become a new “tipping point” [20]. Furthermore,
Shawky et al. [21] estimated the land surface temperature trend over South Asia via an MK
test and Sen’s slope estimator. Their analysis also identified potential factors that could be
influencing temperature changes in the region. Ghaderpour et al. [22] discovered gradual
warming and declining annual precipitation in Italy via spectral and wavelet analyses.
Li at al. [23] investigated the role of climate change and anthropogenic activities on vegeta-
tion and land cover in China via residual analysis and correlation analysis. However, there
are still many uncertainties regarding the understanding of the effects of global warming
on some specific regions. Therefore, it is necessary to develop new approaches to fill
this gap.

In recent years, the field of network science has rapidly developed and has proven to
be a valuable tool for investigating the dynamic and structural properties of real systems
in a variety of disciplines including physics, biology, and social sciences [24–26]. Within
the context of climate science, the concept of complex networks has been successfully
applied. For example, Yamazaki et al. constructed a time-evolving climate network using
sea surface temperature data from the Pacific region and discovered a significant reduction
in network degree during El Niño periods [27]. The method of climate network has
also been used to identify the weakening of tropical circulation in recent years [14,28].
Furthermore, complex network methods have been employed to predict El Niño events
up to one year in advance [29–31]. Boers et al. made a significant breakthrough in the
understanding and forecasting of extreme rainfall events by using event synchronization
network analysis [32,33], while Fan et al. successfully predicted Indian monsoon rainfall
six months in advance by constructing a series of dynamic physical climate networks based
on global near-surface temperature fields [34]. In summary, complex network analysis is
an effective method for exploring the physical and statistical laws of the earth system [35].

Using climate network to reveal the impacts of global warming has certain advantages
over traditional statistical analysis methods regarding nonlinear feedbacks and complex
mechanisms of climate system. The hot spots under the effect of global warming can be
further quantified, thus reflecting the nature of global warming more comprehensively.
Currently, numerous methods, including machine learning, deep learning, and wavelet
analysis have been employed to study climate change and its influential factors, as doc-
umented in several studies [36–38]. However, there has been relatively little research on
the use of climate networks for this purpose. Here, an approach based on climate network
is developed.

This study aims to reveal hot spots under the effects of global warming using the
climate networks approach. We have identified three main objectives for our research:

(1) Investigating the tendencies of climate network measures, such as the degree, under
the effects of global warming.

(2) Identifying hot spots with an intensive increase in climate network measures
over time.

(3) Revealing critical regions that influence the identified hot spots under the effects of
global warming.

2. Materials and Methods
2.1. Data

In this study, we employ the National Centers for Environmental Prediction (NCEP)
and the National Center for Atmospheric Research (NCAR) reanalysis of near-surface
(sig995 level) daily air temperature data, which is provided on a 2.5◦ × 2.5◦ spatial grid
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with daily temporal resolution [39]. The dataset covers the time period from 1948 to 2020
and comprises 10,512 nodes, with each node corresponding to a time series length of
73 × 365 days. Leap days were excluded from the dataset to simplify the analysis. To
construct the network, we selected 726 nodes distributed approximately uniformly over
the globe [40].

2.2. Methods

For each node i, we first removed the trend by calculating the daily atmospheric
temperature anomaly value Ti(t). This was done by subtracting the climate average from
the actual temperature value of each calendar day in different years and then dividing by
the climate standard deviation [28]. To avoid the effect of global warming, we calculated the
average and standard deviation of climate states for three time windows (we divided the
data of 72 years into three 24-year time windows). Note that since we used the calculation
method with the time delay, the first climate network is constructed in 1949 but not 1948.

We constructed a climate network for each calendar year and computed the time-
delayed cross-correlation functions. For a given time delay τ, the link strength between
each pair of nodes i and j was measured by the cross-correlation. The correlation time
series Cij(τ) between node i and j is:

Cij(τ) =
Ti(t− τ)T j(t)− Ti(t− τ)·Tj(t)√

(Ti(t)− Ti(t))
2·
√
(Tj(t− τ)− T j(t− τ))

2
, (1)

where the bar denotes an average over the past 365 days, according to

−
x(t) =

1
365

365

∑
a=1

x(t− a). (2)

We considered the time lag of τ∈ [−200, 200] days. Here, Cij(τ) ≡ Cji(−τ)
was defined.

Next, we defined the positive strength of the link between each pair of nodes i and j in
the network as below:

W+
ij =

max
(
Cij
)
−mean

(
Cij
)

std
(
Cij
) , (3)

where max represents the maximum Cij
(
τ*) in the range of [−200, 200] days; mean and

std are the mean and standard deviation of the cross-correlation function, respectively.
Meanwhile, we identified the value of the highest peak in the cross-correlation function
and denoted the corresponding time lag of this peak as τ∗ij [30]. When the time lag was
positive (τ∗ij > 0), the direction of the link was from i to j.

After that, we sorted the links in decreasing order of strength and then added one by
one according to the strength W+

ij ; we first chose the most important link with the highest
weight, then the second strongest link and so on. In the current study, we considered
the top 5% of weights as significant links. We calculated the adjacency matrix Aij and
determined the direction of each link according to the sign of the maximum value in the
cross-correlation function corresponding to the time delay τ∗.

Aij = H
(

W+
ij −Wc

)
. (4)

2.3. Network Measures

In this study, the interaction mode of the climate network was defined as the network
degree. Each node has two different degrees: The in-degree, lin

i , and out-degree, lout
i .
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The in-degree is the number of incoming links, and the out-degree is the number of
outgoing links.

lin
i =

N

∑
j=1,j 6=i

Aij, lout
j =

N

∑
i=1,i 6=j

Aij, (5)

where N is the amount of nodes in the network and Aij is the adjacency matrix as defied in
Equation (4).

For each node i, we constructed its in-degree and out-degree time series by counting
the number of incoming and outgoing links to this node i for each calendar year. A region
with an increasing in-degree (out-degree) with year indicates that it is more influenced by
(more influences) other regions such that we identified the region as a “hot spot”, which is
more vulnerable to and significantly affected by global warming.

2.4. Mann–Kenddall Test

Here, the Mann–Kendall test is employed to test the significance of the degree time
series. The Mann–Kendall trend test is a rank correlation test between the ranks of obser-
vations and their time series [41,42]. It is one of the most popular statistical significance
evaluation methods used to test the trend of climate series; its significance is not affected
by the actual distribution of the data.

3. Results

First, we calculated the cross-correlation and the weight W+
ij by Equations (1) and

(2) for any two nodes. To obtain significant links, we determined the threshold Wc (red
line) based on the top 5% level of probability density function (PDF) of W+

ij as shown in
Figure 1a. To determine the significance and reality of the correlations in our original data,
we compared our results to those of a shuffled dataset where the time series of each node
was randomized without any correlation between nodes. Specifically, we shuffled the time
series of each node while keeping the order of 365 days per year unchanged. We repeated
this process 100 times and recalculated W+

ij for each shuffled dataset. Since the shuffled
data mitigates the correlation between time series, any false correlation we calculated from
the shuffled data would be lower than the true correlation found in the original data. The
yellow curve in Figure 1a shows the PDF of W+

ij for the shuffled data for 1949. It can be
clearly found that the shuffled data has lost many relatively large values in comparison to
that of real data due to being shuffled data. Only less than 5% W+

ij of the shuffled data can
be larger than the threshold Wc. Thus, this suggests that the network we have built is not
artificial. We also show an example of PDF for 1971 in Figure 1b. All results are robust and
quite similar for different years.

Next, we calculated in- and out-degrees based on Equation (5) and showed the maps of
in- and out-degree distributions for 1949 and 2020 in Figure 2. We found that the in-degree
has large values in the mid-latitude regions, especially for the southern hemisphere for both
years in Figure 2a,b. For the out-degree field, similar results are also observed as shown in
Figure 2c,d. Actually, the large weight W+

ij is dominated by high frequency waves such
as Rossby waves. Rossby waves are mainly located in the mid-latitude regions and are
stronger in the southern hemisphere. In comparison to the mid-latitude region, weather
waves have lower frequencies in the equatorial region such that the degrees are smaller.
These results are consistent with previous studies [43,44].
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Figure 2. Maps of in-degree distribution for (a) 1949 and (b) 2020. Maps of out-degree distribution
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Then we tested the tendency of time series of degrees from 1949 to 2020 according
to the MK test method (Materials and Methods) and calculated the Pearson correlation
coefficient between the degree and year. Figure 3a,b show the tendency results for the in-
degree and out-degree, respectively. Here, we take the significance level of 99% for the MK
test, and the triangles shown in Figure 3 indicate that they pass the significance test. Notably,
the black upper triangles indicate that the degrees of these nodes increase significantly
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with year; however, the black lower triangles indicate the significant decreasing trends.
These increasing and decreasing trends are also depicted by the positive (red) and negative
(blue) values of the Pearson correlation coefficients in Figure 3. Interestingly, we find that
most of the land area has increasing in- and out-degrees (see Figure 3a,b). This implies that
the inland regions tend to be more strongly connected to others, which suggests they are
climate-sensitive areas under global warming. The regions with significantly enhanced
degrees are mainly concentrated in East Asia, South America, and North Africa. For the
ocean, the trends are the opposite, whereas most of the in- and out-degrees are decreasing.
The underlying mechanism for the weakening trend is associated with the weakened ocean
circulations [45]. In particular, we find that this weakening of in-degree is very significant
in the El Niño basin region as shown in Figure 3a.
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Figure 3. Tendency of (a) in-degree and (b) out-degree from 1949 to 2020. Colors represent the
Pearson correlation coefficient between the degree and year. The black upper triangle indicates that
the degree time series at this node is significantly increased with year, and the black lower triangle
indicates that it is significantly decreased according to the MK test with the 99% confidence level.

Next, according to Figure 3, we select and show three examples of “hot spots” with
significant increasing in-degrees, which are more influenced by other regions under global
warming. Figure 4a shows three hot spots highlighted by black boxes. They are located in
East Asia, North Africa, and South America, respectively. In Figure 4b, we find that the
time series of in-degree significantly increases with year for the hot spot in East Asia. The
Pearson correlation coefficient r is 0.49, and the slope k is 0.17 per year. Figure 4c shows the
increasing trend with coefficient r = 0.45 and slope k = 0.13 for North Africa. For the hot
spot in South America, Figure 4d shows that the in-degree has abruptly increased in recent
years. The coefficient r is 0.38, and the slope k is 0.12 for the entire period.

To deeply understand which regions are linked to the hot spots, we here focus on the
hot spot in East Asia and compare the probability of emergence of links to the hot spot
between two different periods. We take out the links of the first 24 years (1949–1972) and
the last 24 years (1997–2020), separately. Then we calculate the sum of incoming (outgoing)
links to (from) the hot spot in East Asia divided by 24 for each node globally to obtain the
probability map for 1949–1972 and 1997–2020, respectively, as shown in Figure 5a–d. We
find that the nodes with the high probabilities of incoming links to the hot spot are mostly
located in East Asia and surrounding areas (see Figure 5a). This is since these nodes are
much closer to the hot spot in East Asia and, thus, more susceptible to the influence of the
hot spot. Figure 5b shows the probability distribution for the outgoing link from the hot
spot. The red cluster in Figure 5b shifts to the east relative to that of Figure 5a. This is due
to the fact that, in the middle latitudes of the Northern Hemisphere, the air flow is mainly
eastward. High probability values related to the hot spot are observed not only for the
neighbors, but also for a small number of remote areas (see Figure 5a,b). For the most recent
24 years (1997–2020), we find that there are more remote areas with high probability values
in comparison to the first 24 years (1949–1972), as shown in Figure 5c,d). To further show
the differences between the two periods, we use the probability of 1997–2020 minus that of
1949–1972, as shown in Figure 5e,f. The difference is significant when the values are above
1/8 (with 99% significance level). In this way, we obtain 15 nodes that are significantly
influenced, and 13 of them have the positive difference values, Figure 5e. There are 18/21
nodes with positive differences in Figure 5f. It further demonstrates that more areas are
connected to the hot spot in East Asia in recent years in comparison to that of early years.
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We find that the probabilities of incoming links from the South Pacific, Siberia, and the
Rocky Mountains in North America to the hot spot in East Asia have greatly increased
to >0.125 for 1997–2020, and the probabilities for 1949–1972 are only zero. Moreover, the
probability of outgoing links from the hot spot in East Asia to South Asia is found to be
greatly increased in recent years (see Figure 5f)
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significance level).
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4. Discussion

In recent years, the MK test has become a popular tool for studying climate change in
different regions. For instance, Shawky et al. [21] used the MK test to estimate spatiotempo-
ral changes in land surface temperature over South Asia, However, many of these studies
have focused solely on individual regions without considering potential teleconnections
between different regions, which can have significant impacts on climate patterns under
global warming.

One example of a teleconnection is the Asia–North America pathway, which has
been identified in several studies as a route for Rossby wave energy and extreme weather
events to propagate from East Asia to North America [46]. Zhu et al. [47] proposed
a new paradigm for summertime rainfall variation over the continental United States
and showed a close relationship between East Asian monsoon precipitation and summer
precipitation in the continental United States. Malloy et al. [48] indicated that the East
Asian monsoon can excite a trans-Pacific Rossby column, further confirming this Asia–
North America rainfall pattern. In addition, Wang et al. [49] examined successive extreme
precipitation events across different regions, including India–Sri Lanka flooding, East
Asian blizzard, and Canadian floods and found that they are connected by an Asia–North
America teleconnection. Importantly, our study indicates that such teleconnection may
become stronger under global warming, leading to more frequent and intense extreme
weather events.

5. Conclusions

We have developed a climate network-based approach to investigate the impact of
global warming on critical regions. To do this, we analyzed reanalysis (sig995 level) of
near-surface daily air temperature data for different years and quantified the interactions
between nodes using link weight to measure the interaction strength. The in- and out-
degrees of a node served as indicators for the number and strength of incoming and
outgoing links to and from it. We used the MK significance test to assess the degree
parameter trends and elucidated changes in some crucial regions over the past 70 years
under global warming. An increased in-degree or out-degree with time in a region indicated
that it either influenced or was more strongly influenced by other regions under global
warming, hence identifying it as a “hot spot”.

Our findings indicated that on land, the in-degree and out-degree increased with time,
in regions such as East Asia, South America, and North Africa passing the MK significance
test, possibly due to global warming. In contrast, the in-degree and out-degree in most
ocean areas decreased, and, in particular, the in-degree in the central Pacific Ocean’s El
Niño region significantly reduced due to weakened ocean circulations.

We presented three examples of hot spots on land, focusing on the East Asian hot
spot, and identified the key regions connected to it with an increased probability under
global warming. We found that in the most recent 24 years (1997–2020), more areas such
as the South Pacific, Siberia, and North America were teleconnected to the East Asian hot
spot than in the first 24 years (1949–1972). Moreover, the outgoing links from the East
Asian hot spot to South Asia substantially increased in recent years. Further studies are
needed to explore the mechanisms influencing the network evolution in these key areas
and determine the risk assessment of global warming.
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