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Abstract: Coronavirus disease 2019 (COVID-19) swept the world at the beginning of 2020, and strict
activity control measures were adopted in China’s concentrated and local outbreak areas, which
led to social shutdown. This study was conducted in southwest China from 2019 to 2021, and was
divided into the year before COVID-19 (2019), the year of COVID-19 outbreak (2020), and the year
of normalization of COVID-19 prevention and control (2021). A geographically and temporally
weighted regression (GTWR) model was used to invert the spatial distribution of PM2.5 by combining
PM2.5 on-site monitoring data and related driving factors. At the same time, a multiple linear
regression (MLR) model was constructed for comparison with the GTWR model. The results showed
that: (1) The inversion accuracy of the GTWR model was higher than that of the MLR model. In
comparison with the commonly used PM2.5 datasets “CHAP” and “ACAG”, PM2.5 inverted by the
GTWR model had higher data accuracy in southwest China. (2) The average PM2.5 concentrations in
the entire southwest region were 32.1, 26.5, and 28.6 µg/m3 over the three years, indicating that the
society stopped production and work and the atmospheric PM2.5 concentration reduced when the
pandemic control was highest in 2020. (3) The winter and spring of 2020 were the relatively strict
periods for pandemic control when the PM2.5 concentration showed the most significant drop. In the
same period of 2021, the degree of control was weakened, and the PM2.5 concentration showed an
upward trend.

Keywords: COVID-19 control; PM2.5 estimations; GTWR; AOD

1. Introduction

The coronavirus disease 2019 (COVID-19) broke out at the beginning of 2020 and
caused widespread concern. On 11 March 2020, the World Health Organization (WHO)
declared COVID-19 as a pandemic and projected that 40% to 60% of the world’s popu-
lation will be infected with the virus [1]. COVID-19 posed enormous social, economic,
environmental, and health challenges to the world [2–5]. Many regions adopted measures
that restricted human activities to curb the spread of the pandemic [6–10], such as the first
“lockdown” measures in Wuhan, China [11–15]. These restrictions in human activities have
led to a significant reduction in pollutant emissions, and the area controlled by human
activities can be used as a natural experiment area to evaluate the impact on atmospheric
pollution in the context of emission reduction [16–19].

Studies have shown that atmospheric particulate matter can be used as a vector
to transmit the virus, and its concentration is a powerful predictor of the incidence of
COVID-19 [20–22]. For every 10 µg/m3 increase in PM2.5 and PM10 concentrations, the
lethality of COVID-19 increases by 0.24% and 0.26%, respectively [23,24]. Therefore,
the knowledge of the spatial concentration variation characteristics of atmospheric
particulate matter during the special period of COVID-19 has important implications for
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understanding the impact on atmospheric particulate pollution and human health in the
context of emission reduction.

After the outbreak of COVID-19, the level of air pollution in many countries and re-
gions was reduced to a certain extent [25–30]. Studies in Europe [31–33], America [34–36],
Asia [37–39], and other countries and regions showed that air pollution levels signifi-
cantly decreased during COVID-19 control. For instance, Richard et al. [40] combined
urban air quality monitoring networks, satellite monitoring, traffic activities, and road
transport emission models to compare the concentrations of PM2.5, NOX, and CO in
the Santiago Metropolitan Area of Chile from March to May 2020 and compared the
results with those of the same period from 2017 to 2019. These authors showed that the
concentrations of PM2.5, NOX, and CO decreased by 11%, 54%, and 13%, respectively.
Jesse et al. [41] compared county-level pollutant concentrations in the United States
with the same historical period, and found that PM2.5 and NO2 concentrations signifi-
cantly decreased during COVID-19 control in more densely populated urban counties as
compared with rural counties.

Some scholars divide China’s epidemic control period into multiple stages and ana-
lyzed the changes in air pollution at different stages [42–46]. For example, In 2020, Zhao
et al. [47] divided the control period in the Beijing–Tianjin–Hebei region into four stages,
namely, the uncontrolled period (1 to 23 January), the initial control stage (24 January to
19 February), the intermediate control stage (20 February to 30 April), and the late control
stage (1 to 31 May). These authors analyzed the changes in air pollution at each stage and
found that the air quality index (AQI) of five pollutants (PM2.5, PM10, SO2, NO2, and CO)
showed a general downward trend from the initial control stage to the late control stage. In
the Guanzhong Plain of China, Zhang et al. [48] divided the eight months after the onset of
COVID-19 into six control stages, and constructed a multi-scale geographic spatiotemporal
weighted regression model based on variables such as aerosol optical depth (AOD), meteo-
rological factors, and normalized difference vegetation index (NDVI) to simulate changes
in PM2.5 concentrations at each stage. The results showed that the concentration of PM2.5
continued to decrease since the beginning of the control and the rate of decline was lower
in the subsequent stages.

The reduction in the intensity of human activities after COVID-19 control has made
regional air pollution different from normal times, which provides an opportunity to
study the impact of human activities on air pollution. As China enters the post-epidemic
era, changes in human activities will pose long-term effects on the atmosphere. To
prevent the infection of the virus, people will take initiatives to change their living and
working habits, such as through telecommuting and online meetings. These changes in
behavior will have a long-term positive impact on the atmosphere due to the reduction
in pollution.

In China, the research on changes in atmospheric PM2.5 concentration during
COVID-19 is mainly concentrated in economically developed cities or regions, and
the time scale mainly focuses on the concentrated outbreak time, mostly monthly or
weekly short-term periods. Very few studies have investigated the impact of long-term
scale control [49–51]. Further, the climate change in southwest China is complex, and
the influence of different meteorological factors on PM2.5 in different seasons has rarely
been considered in existing studies. In this direction, this study used remote sensing
to monitor changes in PM2.5 in southwest China before and after the pandemic for
three consecutive years (2019–2021) on an annual and quarterly scale, and analyzed
changes in air quality in the period before and after the pandemic. The findings of this
study can provide a decision-making basis for promoting atmospheric environment
governance and formulating pollution prevention and control plans. This study pro-
vides useful data support for exploring the coordination and sustainable development
between economy and environment in southwest China.
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2. Materials and Methods
2.1. Study Area

Southwest China is located between 21◦8′ and 33◦4′ north latitude and 97◦2′ and
110◦1′ east longitude, and includes Chongqing (municipality directly under the central
government), Sichuan Province, Guizhou Province, and Yunnan Province. It comprises an
area of about 1.14 million km2 and accounts for 12% of China’s land area and a permanent
population of about 200 million, which comprises 14% of the country’s total population.
The study area mainly comprised Hengduan Mountain Range, Sichuan Basin, and the
Yunnan–Guizhou Plateau. The Hengduan Mountain Range is dominated by mountains,
the Sichuan Basin by plains, hills, and mountains, and the Yunnan–Guizhou Plateau by
plateaus, mountain basins, and mountains. The Chengdu–Chongqing urban agglomeration
in the east of Sichuan Province and the western part of Chongqing Municipality, the central
Yunnan region in Yunnan Province, and the Qianzhong region in Guizhou Province are
relatively developed areas in terms of economy, transportation, and industry. The rapid
economic development has increased atmospheric problems in southwest China, and there
are significant spatial differences in regional air pollution owing to the complex topography,
difference in urbanization process, and imbalance in economic development.

The Chengdu–Chongqing area is the fourth largest area with serious haze pollution
in China after the Beijing–Tianjin–Hebei urban agglomeration, the eastern Yangtze River
Delta urban agglomeration, and the southern Pearl River Delta urban agglomeration. Dali
City, Lijiang City, Shangri-La City and Ganzi Prefecture in the northwest region have higher
air quality.

2.2. Data

The monitoring data of PM2.5 ground stations were from the real-time release platform
of urban air quality in China (NUAQRRP). There were a total of 227 monitoring stations in
the study area, as shown in Figure 1, including 109 in Sichuan Province, 36 in Chongqing
City, 36 in Guizhou Province, and 46 in Yunnan Province.
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The temporal resolution of ground PM2.5 observation data is 1 h. The “Ambient
Air Quality Standard” (GB3095-2012) and “Determination of atmospheric articles PM10
and PM2.5 in ambient air by gravimetric method” (HJ618-2011) pointed out that China’s
ground PM2.5 concentration is obtained by continuous online monitoring using the tapered
element oscillating microbalance method (TEOM) or β-ray method. It was necessary to
use the Pauta criterion to eliminate errors in processing potentially erroneous information
from ground-station observations resulting from instrument failures [52]. Using a 99.7%
confidence probability, the standard deviation σ the dataset was calculated, and data
showing more than 3σ deviation from the mean were discarded. The standard deviation σ

of the remaining data was recalculated and the process was repeated until there were no
data in the dataset with a deviation of more than 3σ from the mean [53].

The AOD data were derived from the NASA Center for Climate Simulation, version
number MCD19A2, and the strip numbers covering the study area were h26v05, h26v06,
h7v05, and h27v06, which is a 1 km spatial resolution product inverted by multi-angle
implementation of atmospheric correction (MAIAC) [54,55]. Its spatial resolution and effec-
tive coverage were effectively improved as compared with traditional algorithms [56,57].
Zhang et al. [58] conducted a comparative analysis on 1 km MAIAC AOD and AERONET
AOD in China. These authors showed that the correlation coefficient between Aqua and
Terra and AERONET was 0.92 and 0.93, respectively, which proves that MAIAC AOD has
high accuracy and can be used as an excellent AOD data source for air quality research in
China. In this study, Terra and Aqua, were used to select the 550 nm band for preprocessing,
such as reprojection, mosaicking, and cropping. As the gray value of the original data is
between 0–5000 and the scale factor is 1000, it is necessary to multiply by 0.001 on the basis
of the given value to obtain the true value. On this basis, the least squares method was used
to construct a linear regression model for the two data to compensate for the missing AOD
values. Finally, the average value of Terra and Aqua was fused to obtain the average AOD.

The meteorological data were derived from the fifth generation of global reanalysis
data product ERA5 launched by the European Centre for Medium-range Weather Fore-
casts (ECMWF), with a time resolution of 1 h and a spatial resolution of 0.25◦, including
near-ground temperature (TEM), total precipitation (TP), surface pressure (SP), relative
humidity (RH), near-ground wind speed (WS), and boundary layer height (BLH). When
used, the hourly data were processed as a daily average. Other parameters were as follows:
NDVI version number, MOD13A2; strip number, same as AOD; spatial resolution, 1 km;
temporal resolution, month; total scenes, 144; periods, 36. Meteorological and NDVI data
were preprocessed in the ENVI + IDL environment, such as projection transformation,
mosaicking, and clipping.

2.3. Model Structure and Validation
2.3.1. GTWR Model

PM2.5 has obvious spatial and temporal distribution characteristics [59,60], and the
geographically and temporally weighted regression (GTWR) model is a multiple linear
local regression model that considers both temporal and spatial variation, that is, the
model regression coefficient is an arbitrary function of geographic location and observation
time [61–63]. The model can generate local regression coefficients that fluctuate with spatial
and temporal position changes based on the corresponding information of the sample data.
The essence is to obtain the regression coefficient of continuous regional change by using
distance weighting. Therefore, GTWR is suitable for PM2.5 inversion research and its basic
expression is as follows:

Yi = β0(µi, vi, ti) +
d

∑
k=1

βk(µi, vi, ti)Xik + εi (1)

where (µi, vi, ti) are the space-time coordinates of the i-th sample point, and µi, vi, ti are
expressed as the longitude, latitude, and time of the i-th sample point, respectively;
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(Yi, Xi1, Xi2, . . . , Xid) are the observations of the dependent variable Y and the independent
variable X at the observation location (µi, vi, ti); β0(µi, vi, ti) is expressed as the regression
constant of the i-th sample point; βk(µi, vi, ti) is the k-th regression parameter for the i-th
sample point; Xik is the value of the k-th independent variable at point i; εi is the residual.
The local linear estimation method can be used to obtain the estimated value of each
regression coefficient at observation point i.

2.3.2. Model Variable Selection

In southwest China, the seasons are distinct and the factors affecting PM2.5 change in
different seasons are varied. Hence, it is important to construct GTWR estimation models
for different seasons (spring: March–May, summer: June–August, autumn: September–
November, winter: December–February). When constructing the GTWR model, multiple
linear regression (MLR) was performed to analyze the independent variables. At the
same time, the multi-collinearity effect among independent variables was eliminated
at variance inflation factor (VIF) < 7 [64,65]. The variable combination with the largest
coefficient of determination (R2) was selected as the independent variable factor to build
the GTWR model.

The PM2.5 ground monitoring stations were divided into two independent parts,
and 20% of the representative and spatially distributed stations were selected as model
verification points. The remaining 80% of the stations were used as sample points for model
construction. During the model construction, the remote sensing image metadata closest to
the ground monitoring site was matched to the measured data of the site to construct the
model parameter to solve the equation.

The results of independent variable factor selection in each time scale combined with
the MLR model are shown in Table 1. The cells with missing data indicate that the variable
does not meet the modeling conditions within the corresponding time range. AOD, RH,
and SP were positively correlated with PM2.5, and BLH, TEM, TP, WS, NDVI, and DEM
had a negative correlation with PM2.5. On this basis, an inversion model of PM2.5 spatial
change in southwest China was constructed on an annual and quarterly basis.

Table 1. Variable selection results.

Year Spring Summer Autumn Winter

variable coefficient VIF sig coefficient VIF sig coefficient VIF sig coefficient VIF sig coefficient VIF sig
AOD 0.34 1.23 0.001 0.35 2.28 0.001 037 1.18 0.001 0.37 1.11 0.001 0.30 1.29 0.001
BLH −0.09 3.91 0.028 −0.02 3.92 0.036 - - - −0.12 10.42 0.040 −0.18 22.31 0.025
RH 0.02 3.61 0.066 - - - 0.05 2.05 0.074 - - - 0.03 16.11 0.039
SP 0.19 2.17 0.025 0.19 5.25 0.021 0.16 3.16 0.056 0.17 4.42 0.041 0.11 3.35 0.019

TEM −0.16 4.18 0.019 −0.27 4.65 0.044 −0.23 3.34 0.046 −0.16 48.13 0.091 −0.08 2.54 0.056
TP −0.03 1.40 0.121 - - - −0.01 1.95 0.092 −0.11 2.08 0.088 - - -
WS −0.05 1.86 0.003 −0.07 3.09 0.002 −0.08 1.20 0.006 −0.05 1.41 0.008 −0.09 3.31 0.001

NDVI −0.05 1.42 0.001 - - - −0.06 1.15 0.001 −0.02 1.34 0.001 - - -
DEM −0.09 1.30 0.001 −0.11 1.19 0.001 −0.07 1.06 0.001 −0.09 1.10 0.001 −0.06 1.06 0.001

3. Results and Discussion
3.1. Statistical Analysis of Model Data

When constructing the model, the stations with less than three groups of daily data
were excluded. Finally, 173,161 groups of effective daily observation data were obtained
for 3 years, and the descriptive statistical analysis results are shown in Table 2. The PM2.5
concentration range in southwest China was between 4.8 and 95.1 µg/m3, and the annual
average value was between 27.9 and 28.9 µg/m3, which is lower than the annual average
level 2 limit of 35 µg/m3 stipulated in China’s “Ambient Air Quality Standards” (GB 3095-
2012). This result indicates the overall good quality of air. The AOD range was between
0.02 and 0.95, with an average of 0.35–0.38 and standard deviation (SD) of 0.17–0.21. Thus,
the regional difference in air pollution was large.
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Table 2. Results of descriptive statistical analysis of variables.

Variable MIN MAX AVG SD

PM2.5 (µg/m3) 4.8~6.2 74.2~95.1 27.9~28.9 10.9~17.4
AOD (unitless) 0.02~0.07 0.84~0.95 0.35~0.38 0.17~0.21

TEM (K) 267.6~276.5 303.5~315.3 292.4~297.6 44.1~69.8
TP (mm) 0~0.8 62.1~88.2 4.3~5.8 2.7~2.8
SP (hpa) 821.1~868.3 1044.3~1069.4 962.2~1002.9 32.5~38.1
RH (%) 3~9 83~100 41~61 17~21

WS (m/s) 0~0.6 4.6~5.8 1.4~2.4 0.9~1.2
BLH (m) 282.1~375.9 2115.7~2803.1 999.5~1041.7 335.2~375.1

NDVI (unitless) −0.02~0.09 0.91~0.92 0.59~0.62 0.15~0.17
ELEVATION (m) 77.5 6233.8 1995.3 1324.3

3.2. Analysis of Model Fitting Results

R2, MAE, and RMSE values were used to evaluate the estimation accuracy of the
model [66,67]. R2 indicates the degree of consistency between the estimated value of the
model and the actual observation, and varies between 0 and 1. The larger the R2 value,
the closer the prediction result of the model is to the true value. MAE and RMSE indicate
the degree of deviation in the model estimate from the observation; the smaller the value,
the higher is the accuracy of the model. The GTWR and MLR models were constructed
simultaneously by combining the selection results of various seasonal variables shown in
Table 1 and using the same factors as independent variables. The fitting results are shown
in Figures 2 and 3.
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The results show that in the annual simulation (Figure 2), the simulated R2 value of
the two models exceeded 0.8, and the MAE and RMSE values of GTWR were smaller than
those of the MLR model. Thus, the prediction results of the two models showed a high
degree of agreement with the measured PM2.5 concentration at the ground station and the
fitting error of the GTWR model was low.

From the quarterly fitting results (Figure 3), it seems that the accuracy was the highest
in summer and the lowest in winter. Overall, the inversion accuracy of the GTWR model
was higher than that of the MLR model; hence, the GTWR model can be used to invert the
annual and quarterly PM2.5 changes in the study area.
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3.3. Comparison of Model Estimation Accuracy with Existing Datasets

To evaluate the accuracy of the PM2.5 data retrieved using the GTWR model and the
commonly used public PM2.5 dataset, the Global Ground PM2.5 dataset (ACAG data) [68]
and China High PM2.5 dataset (CHAP data) [69] were selected and compared with the site
monitoring data. The selected time range was from 2019 to 2021, and the spatial resolution
was 0.01◦.

The ACAG dataset is the Atmospheric Composition Analysis Group’s radiation mea-
sured by MODIS, MISR, and SeaWIFS to invert AOD data and is combined with GEOS-
Chem chemical transport models to estimate the concentration of surface PM2.5; the selected
version is V5.GL.03. The CHAP dataset is generated by Wei et al. using MAIAC AOD
products and combining multi-source satellite remote sensing data and machine learning,
mainly developed for the Chinese region. The selected version is V4, which exhibits high
overall accuracy.

The results of the comparison are shown in Figure 4. The R2, MAE, and RMSE of the
CHAP dataset were 0.78, 6.39, and 8.34, respectively, and those of the ACAG dataset were
0.74, 7.21, and 9.24, respectively. The accuracy of the ACAG dataset in the southwest region
was slightly lower than that of the CHAP dataset, but they can show that the remote sensing
data had a good correlation with the ground data. Together with Figure 2, the R2, MAE,
and RMSE inverted by the GTWR model were 0.86, 4.84, and 4.14, respectively. R2 was
greatly improved in this case as compared with that from the CHAP and ACAG datasets.
MAE and RMSE were reduced, indicating that the model accuracy was significantly higher
than that of CHAP and ACAG datasets. Thus, the model was suitable for PM2.5 inversion
research in southwest China.
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3.4. Analysis of Annual Spatial Distribution of PM2.5

The spatial change in PM2.5 in southwest China from 2019 to 2021 based on the
GTWR model is shown in Figure 5. From the perspective of spatial distribution, the high-
value areas were mainly located in the Sichuan–Chongqing urban agglomeration in the
east, the northern region of Guizhou Province, and some cities in the southern part of
Yunnan Province. The low-value areas were located in Aba Prefecture, Ganzi Prefecture,
and Liangshan Prefecture in the western Sichuan Plateau and Diqing Prefecture, Nujiang
Prefecture, and Lijiang City in the northwest of Yunnan Province. Thus, these results show
that the characteristics of the west were lower than those of the east.
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As shown in Table 3, the average PM2.5 concentration in 2020 was significantly
lower than that in 2019; the concentration increased in 2021, with the average values
being 32.1, 26.5, and 28.6 µg/m3 for 2019, 2020, and 2021, respectively; all these values
were lower than the annual average limit level 2 standard. From the perspective of
provinces and cities, the values for four provinces and cities in 2020 all decreased by
more than 15% as compared with those in 2019. Chongqing had the largest decline of
20.7%, and Sichuan, Guizhou, and Yunnan showed a decrease of 16.4%, 15.7%, and 15.4%,
respectively. In comparison with 2020, 2021 showed an increase of about 5–10%, where
the value in Chongqing increased by 9.6% (the largest increase) and that in Guizhou
Province, Sichuan Province, and Yunnan Province increased by 8.0%, 7.6%, and 5.5%,
respectively. Considering the overall change trend, PM2.5 concentration significantly
decreased from the beginning of the COVID-19 pandemic in 2020, but began to rise after
the relaxation of pandemic control measures in 2021.

Table 3. Annual variation in PM2.5 concentration in provinces and cities in southwest China
(Unit: µg/m3).

Province 2019 2020 2021

Chongqing 38.8 30.8 33.7
Sichuan 34.6 28.9 31.1
Guizhou 29.1 24.5 26.4
Yunnan 25.9 21.9 23.1

Southwest 32.1 26.5 28.6

The annual PM2.5 concentration changes in each city are shown in Figure 6. Consid-
ering the secondary concentration limit of 35 µg/m3 as the standard, the cities exceeding
this value in 2019 were concentrated in the Sichuan Basin, including Zigong City, Yibin
City, Luzhou City, Chengdu City, Deyang City, Guang’an City, Neijiang City, Leshan City,
Meishan City, Nanchong City, and Ziyang City, with an average value of 40.1 µg/m3 that
exceeded the secondary concentration limit standard by 14.4%.
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In 2020, the cities that exceeded this limit were Chengdu, Ziyang, Zigong, Deyang,
Suining, and Meishan, with an average value of 36.3 µg/m3, which exceeded the sec-
ondary concentration limit standard by 3.8%. Thus, from 2019 to 2020, the number of
cities reduced from 11 to 5, and PM2.5 concentration significantly decreased. In 2021,
as the impact of COVID-19 gradually decreased, PM2.5 concentrations in various cities
gradually increased and the cities that exceeded the secondary concentration limit stan-
dards included Zigong, Neijiang, Yibin, Suining, Deyang, Leshan, Ziyang, Chengdu. The
average value was 37.8 µg/m3, which exceeded 7.9% of the average annual level 2 limit
of 35 µg/m3.These cities are located in the Sichuan–Chongqing urban agglomeration
in the Sichuan Basin, which is a region with high population concentration and socio-
economic activity in southwest China, where transportation and production emissions
are large and urban high-density buildings are conducive to the accumulation of PM2.5
and inhibition of the spread of pollutants. Under the condition of a large reduction in
emissions during the control period, densely populated, highly urbanized areas had a
significant effect on the improvement of air pollution.

Most cities in Guizhou Province and Yunnan Province did not exceed the secondary
concentration limit for most regions for three years. Nujiang Prefecture, Diqing Prefecture,
and Lijiang City located in the Hengduan Mountains in the northwest of Yunnan Province,
and Aba Prefecture, Ganzi Prefecture, and Liangshan Prefecture located in the west of
Sichuan Province, had an average value of about 10 to 15 µg/m3 in three years; this is the
area with the lowest PM2.5 concentration. The West Sichuan Plateau is part of the southeast
edge of the Qinghai–Tibet Plateau and the Hengduan Mountain Range, which belongs
to the plateau climate with high local wind speed that is conducive to the diffusion of
atmospheric pollutants and has low population density and a low degree of influence by
human activities.
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3.5. Analysis of Quarterly Spatial Distribution of PM2.5

The changes in PM2.5 in the four seasons of spring, summer, autumn, and winter in
the entire southwest region are shown in Table 4 and Figure 7. A seasonal distribution
pattern of low summer and autumn and high winter and spring was observed. There was
an overall downward trend in the change in the transition from spring to summer, with a
minimum in summer, a slow rise from summer to autumn, and a rapid rise from autumn
to winter. Considering the entire southwest region, the PM2.5 concentration in the four
seasons of spring, summer, autumn, and winter decreased by 18.6%, 13.4%, 13.5%, and
21.7%, respectively, in 2020 as compared with that in 2019. The concentration in spring,
summer, autumn, and winter increased by 15.7%, 10.7%, 7.5%, and 14.6%, respectively,
in 2021 as compared with the same period in 2020. The winter and spring of 2020 saw
the largest decrease owing to the outbreak of COVID-19 at the end of January 2020 and
the most stringent control measures imposed; the reduction rate slowed in the summer
and autumn of 2020 as the intensity of control gradually weakened and society resumed
work and production. Each quarter of 2021 showed an upward trend compared to the
same period in 2020, indicating that PM2.5 concentration also increased as the impact of the
pandemic gradually decreased.

Table 4. Quarterly variation of PM2.5 concentration in provinces and cities in southwest China
(Unit: µg/m3).

Season Year Chongqing Sichuan Guizhou Yunnan Southwest

Spring
2019 36.3 34.1 27.5 32.1 32.5
2020 24.6 24.8 25.9 30.3 26.4
2021 31.3 32.6 26.6 31.8 30.6

Summer
2019 22.0 20.9 17.1 15.3 18.9
2020 19.4 17.9 14.3 13.8 16.3
2021 21.2 19.8 16.9 14.4 18.1

Autumn
2019 30.5 28.4 23.0 18.4 25.1
2020 26.2 24.2 19.7 16.8 21.7
2021 28.2 26.3 21.8 17.1 23.3

Winter
2019 48.1 45.5 34.0 24.5 38.0
2020 31.3 32.1 32.0 23.7 29.8
2021 39.5 38.5 34.6 24.2 34.2

The changes in PM2.5 concentrations in spring are shown in Figure 8. The PM2.5 con-
centration in Chongqing Municipality, Sichuan Province, Guizhou Province, and Yunnan
Province decreased by 32.2%, 27.1%, 5.6%, and 5.4%, respectively, in 2020 as compared
with 2019. From the perspective of spatial distribution, the high-value areas in the Sichuan–
Chongqing area in spring were those mainly located in the eastern region centered on the
Sichuan Basin, which showed a gradually decreasing distribution pattern from west to
east. In the spring of 2019, the cities in the Sichuan–Chongqing area that exceeded the
annual average secondary concentration limit were Yibin City, Zigong City, Neijiang City,
Dazhou City, Ziyang City, and Deyang City. In the spring of 2020, all cities were below the
secondary concentration limit.
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The changes in summer PM2.5 concentrations are shown in Figure 9. The concentrations
in Chongqing, Sichuan, Guizhou, and Yunnan decreased by 11.8%, 14.8%, 16.6%, and 10.1%,
respectively, in the summer of 2020 as compared with that in the same period in 2019 (with
an average decrease of 13.4%) and increased by 8.9%, 11.2%, 18.3%, and 4.6%, respectively,
in 2021 as compared with that in 2020. From the perspective of spatial distribution, the
southwest region in summer 2019 showed a distribution of low west and high east, roughly
bounded by the western Sichuan Plateau and western Yunnan, with a concentration range
of 10–15 µg/m3, the Sichuan Basin between 21 and 30 µg/m3, and the rest of the area
between 16 and 20 µg/m3. In the summer of 2020, the PM2.5 concentration range in the
Sichuan Basin was between 16 and 20 µg/m3, and that in most of the rest of the area was
between 10 and 15 µg/m3. In 2021, the range of 16–20 µg/m3 gradually expanded in the
Sichuan Basin.

The changes in PM2.5 concentrations in autumn are shown in Figure 10. Chongqing
Municipality, Sichuan Province, Guizhou Province, and Yunnan Province showed a de-
crease of 14.3%, 14.9%, 14.5%, and 8.5%, respectively, in 2020 as compared with 2019. In
2021, the values increased by 7.9%, 8.6%, 10.8%, and 1.4% in these cities as compared to 2020.
Considering the spatial distribution, the areas with a PM2.5 concentration range between 10
and 15 µg/m3 in 2019 were mainly concentrated in Ganzi Prefecture in southwest Sichuan
and Diqing Prefecture and Nujiang Prefecture in northwestern Yunnan Province. Most
of the rest of Yunnan Province showed values ranging between 15 and 25 µg/m3, while
Sichuan Basin and western Guizhou Province showed values between 26 and 35 and 21
and 30 µg/m3, respectively. In 2020, the PM2.5 ranges of Aba Prefecture, Ganzi Prefecture,
and Liangshan Prefecture in Sichuan Province, Diqing Prefecture, Nujiang Prefecture, Dali
Prefecture, Lijiang City, Baoshan City, Dehong Prefecture, Lincang City, Pu’er City, and
Chuxiong Prefecture in Yunnan Province were all between 10 and 15 µg/m3 and the range
in Guizhou Province was between 16 and 25 µg/m3. In 2021, the PM2.5 concentration
range was 10–15 µg/m3 and significantly decreased as compared with that in 2020. The
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PM2.5 concentration rose to 21–25 µg/m3 in most areas of Yunnan Province, 16–25 µg/m3

in Guizhou Province, and 26–35 µg/m3 in the Sichuan Basin.
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The changes in PM2.5 concentrations in winter are shown in Figure 11. In comparison
with 2019, Chongqing Municipality, Sichuan Province, Guizhou Province, and Yunnan
Province showed a decrease in PM2.5 concentration of 34.9%, 29.4%, 5.9%, and 3.5%,
respectively, and the spatial distribution in winter was opposite to that in spring. The high-
value areas were mainly located in the Sichuan Basin. In 2019, except for Aba Prefecture,
Ganzi Prefecture, Liangshan Prefecture, and Panzhihua City in southern Sichuan, the rest
of Sichuan–Chongqing exceeded 50 µg/m3. Tongren City and Zunyi City in Guizhou
Province exceeded 40 µg/m3.
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The PM2.5 concentrations in Chongqing, Sichuan, and Guizhou were higher in
winter than in spring. Given the use of a large number of fossil fuels, the closed terrain,
the high density of ground rivers, and the meteorological tendency to form stable
weather, the unfavorable atmosphere caused by this special geographical environment
makes it difficult for pollution to diffuse. This has been the cause of serious pollution
in the region. The seasonal variation in the PM2.5 concentration in southern cities of
Yunnan Province showed that the change was higher in spring than in winter, and the
main reason for the continuous increase from winter to spring was exogenous transport
pollution. The spring planting activities in South and Southeast Asian countries lead
to the entry of the pollutants produced by biomass combustion in the southern region
of Yunnan Province through wind action, which results in a significant increase in
PM2.5 concentration in southern cities such as Lincang City, Pu’er City, Xishuangbanna
Prefecture, Honghe Prefecture, and Wenshan Prefecture.

According to the “Fighting COVID-19 China in Action,” Wuhan, China, announced
the closure of the city on 23 January 2020. Thus, China entered the most stringent
stage of epidemic control. Chongqing and Sichuan Province are the most economically
developed regions in southwest China where PM2.5 emissions reduced by 34.9% and
29.4%, respectively, making them the most obvious provinces and cities in southwest
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China. Therefore, the control measures taken to interrupt the spread of COVID-19 have
achieved obvious emission reduction effects. Since 29 April 2020, the “China Action
to Fight the Novel Coronavirus Pneumonia Epidemic” indicates that China’s epidemic
prevention and control has entered a stage of normalized control in spring. At this
stage, the epidemic situation in the southwest region was generally sporadic, and the
positive trend of the epidemic continued to change. There has been a gradual increase in
resumption of work and production. PM2.5 decreased by 18.6% in southwest China in
spring 2020 as compared with 2019, which is a slight decrease in the rate of reduction
compared with winter. After 2021, PM2.5 concentrations in all seasons in southwest
China showed an upward trend as compared with the same period in 2020, indicating
that the impact of COVID-19 is gradually decreasing.

4. Conclusions

Considering the southwest region of China as the research area, we used the PM2.5
site monitoring data from 2019 to 2021 and AOD, meteorological factors, NDVI, and
DEM as independent variable factors to establish a spatial quantitative inversion model
of PM2.5 on quarterly and annual time scales under the background of COVID-19, a
social public event. The spatial variation in PM2.5 concentration in southwest China was
studied over three years to better understand the characteristics of regional air pollution
and effectively formulate prevention and control measures. The main conclusions of this
study are as follows:

(1) From the perspective of the selection of model variables, there was a clear dif-
ference observed in the climate between seasons in southwest China. The influence of
meteorological variables on PM2.5 during each season thus needs to be considered, and
the main meteorological variables for each season were selected by combining the MLR
model. Due to the large variations in altitude within the study area, for example, in the
closed geographical environment and relatively low altitude of the Sichuan Basin region,
meteorological inversion is prone to occur. When this occurs, both the atmospheric air
convection and precipitation decrease, which can result in significant atmospheric pollution
and is not conducive to the diffusion of atmospheric particles. Therefore, altitude was
selected as a variable. Vegetation has a regulatory effect on atmospheric particulate matter,
and different types of vegetation and tree species have different effects on PM2.5. The
vegetation cover in different seasons in southwest China shows obvious temporal and
spatial differences, so NDVI was selected as a variable.

(2) From the perspective of the regional distribution of PM2.5, different cities showed
different degrees of response to PM2.5 changes during control of the pandemic. The
pandemic had a significant impact in the economically developed urban agglomeration of
Chengdu and Chongqing, with significant changes in PM2.5. However, areas such as Aba
Prefecture and Ganzi Prefecture on the western Sichuan Plateau, and Diqing Prefecture
and Nujiang Prefecture in northwest Yunnan Province, have sparse populations and are
not as economically developed, resulting in relatively low PM2.5 concentrations and the
response to change was not significant.

(3) From the perspective of temporal variations in PM2.5, the average concentrations
over the three years were 32.1 µg/m3, 26.5 µg/m3, and 28.6 µg/m3, respectively. These
variations in the PM2.5 concentrations over the three years showed a U-shaped change. In
2021, as the impact of the pandemic gradually diminished, the overall PM2.5 concentration
rebounded. From a quarterly perspective, the change in the PM2.5 concentration during the
four seasons of spring, summer, autumn, and winter represents a temporal distribution
pattern of low PM2.5 concentrations in summer and autumn, and high PM2.5 concentrations
during winter and spring. Compared to the same period in 2019, the concentration of
PM2.5 in the four seasons of spring, summer, autumn, and winter in 2020 decreased by
20.3%, 13.3%, 11.9%, and 21.4%, respectively. Compared to the same period in 2020, the
concentration of PM2.5 in the four seasons of spring, summer, autumn, and winter in 2021
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increased by 19.8%, 9.1%, 5.8%, and 16.7%, respectively. Spring and winter in 2020 were
the times of greatest control of COVID-19, with the largest changes.

In this study, AOD, meteorological factors, vegetation factors, and topographic
factors were selected for model construction by analyzing the spatial distribution changes
in PM2.5 before and after pandemic control from natural influencing factors. However,
there are still shortcomings that require further improvement. The main shortcomings
include the following:

(1) There are many factors that influence the PM2.5. In the present study, the model was
mainly based on changes in the response of PM2.5 emission under natural conditions and
was thus not considered in terms of the mechanism of PM2.5 generation. Thus, follow-up
studies should consider the spatial distribution and changes in the PM2.5 concentrations of
the emission sources which should be combined with atmospheric emission inventories.

(2) There are spatiotemporal differences in the relationship between PM2.5 and AOD,
and the intrinsic governing principles and underlying mechanisms of PM2.5 and AOD
should be considered in subsequent research. Factors that have a spatiotemporal influence
on PM2.5 and AOD should also be considered more comprehensively.

(3) The terrain of southwest China is complex, with large variations in altitude
and the social and economic development of the various provinces and cities. It is thus
necessary to consider regional differences to construct a PM2.5 spatial inversion model
in subsequent research.
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