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Abstract: Organic carbon (OC) and elemental carbon (EC) size-segregated characteristics were
analyzed at the junction of sea and land (JSL) and the marine aerosol during the navigation along the
northeastern South China Sea (NSCS), including the shallow ocean (NSCS-SO) and the remote ocean
(NSCS-RO), from 3 to 20 March 2016. More than 90% of the OC and EC were concentrated in fine
particles, and the OC and EC mean concentrations were 10.1 ± 0.63 and 3.44 ± 0.82, 2.67 ± 1.27 and
0.72 ± 0.36, and 1.41 ± 0.50 and 0.40 ± 0.28 µg m−3 in PM3.0 at the JSL, NSCS-SO, and NSCS-RO,
respectively. Approximately 75–83% of OC and 84–98% of EC were found in PM1.5. Three sampling
sites showed similar OC mass size distributions that had a dominant peak in the 0.49–0.95 µm
size range. The mass mean diameters (MMDs) of OC were 0.65 ± 0.15 and 0.59 ± 0.16 µm at
the NSCS-SO and NSCS-RO, respectively, followed by 0.53 ± 0.25 µm in fine particles at the JSL.
Similar characteristics were found for EC MMDs. Each particle-size bin had OC concentrations that
were higher than the EC values of all three sites, and the OC/EC mass ratios were generally more
than 2.0. The mean secondary organic carbon (SOC) concentrations in PM1.5 were as follows: JSL
(5.42 ± 1.35 µg m−3) > NSCS-SO (1.08 ± 1.02 µg m−3) > NSCS-RO (0.38 ± 0.25 µg m−3), indicating
that the contribution of secondary carbonaceous aerosols to organic carbon is relatively low in the
remote ocean region.

Keywords: OC; EC; size distribution; South China Sea; chemical composition

1. Introduction

Atmospheric aerosols have a significant impact on atmospheric visibility, atmospheric
chemical processes, climate change and human health [1]. Carbonaceous aerosols are
a key factor in triggering air pollution and climate change [2]. They are an important
component of atmospheric particles, and account for about 20–50% of the fine particles in
the atmosphere [3]. Carbonaceous aerosols are chemically divided into elemental carbon
(EC) and organic carbon (OC) [4]. OC is a mixture of organic compounds, including
aromatic, aliphatic, acids, and other organic compounds, some of which are carcinogenic
and cause great harm to human health increasing morbidity and mortality [5]. At the
same time, organic compounds have strong reactivity and oxidation, which are the basis
of atmospheric photochemical reactions. EC is a combination of particles that resemble
graphite and serves as a reaction interface for physical and chemical processes in the
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atmosphere [2]. Additionally, EC has a strong absorption of visible light and infrared
light, which is considered to be one of the main substances that cause global warming and
have an impact on atmospheric visibility [6]. While OC is not just emitted from primary
emissions but can also be formed by secondary organic aerosol (SOA) generation, such
as generated by gaseous precursors through atmospheric photochemical reactions [7], EC
is a major pollutant that is directly emitted from combustion processes such as biomass
burning and fossil fuel combustion [8]. Contini et al. [9] summarized the recent advances
in the characterization of carbonaceous aerosols in the atmosphere.

In recent decades, the research on carbonaceous aerosols has mainly focused on
concentration characteristics [5,8,10,11], particle mass size distribution [2,12–15], light
absorption properties [16], and source apportionment [17,18]. Among these, knowledge
of the particle mass size distribution is useful for comprehending the origin, growth,
and removal mechanisms of carbonaceous aerosols. For example, the OC and EC size
distributions showed obvious spatiotemporal distribution difference among urban and
rural sites in four seasons, and the Beijing-Tianjin-Hebei region has the largest peaks of
OC and EC in the fine particles during winter [2]. OC and EC in particles emitted from
ships were concentrated in fine particles with an aerodynamic diameter (Dp) of less than
1.1 µm [12]. The major contribution of the carbonaceous compounds is found in the sub-
micron mode in the Mediterranean coastal zone [19]. In the marine boundary layer of the
Eastern Mediterranean, OC and EC presented high concentrations for coarse particles in
spring, which was related to the occurrence of dust events [20].

Marine aerosols are not only influenced by natural sources, such as sea salt, ma-
rine halogens, and dimethyl sulfide, but also anthropogenic emissions [21], such as ship
emissions, as well as aerosols from terrestrial sources by long-range transport [22,23]. Car-
bonaceous fractions in TSP over the western South China Sea (SCS) mainly originated from
biomass burning [24]. In the offshore islands close to the northwest coast of the Taiwan
Strait, OC in marine fine particles was always higher than EC, and the OC/EC mass ratios
were larger than 2, suggesting that PM2.5 may be aged particles [25].

Despite these findings, there are few measurements of size-segregated carbonaceous
aerosols over the northern South China Sea. To study this issue, we designed a marine cruise
over the northern South China Sea. This study measured the size-segregated particulate OC
and EC in the northern South China Sea, aiming to determine the OC and EC concentration
and elucidate the OC and EC mass size distribution.

2. Materials and Methods
2.1. Sample Collection

The field study was carried out on a cruise campaign during 3–20 March 2016, in the
northeastern South China Sea. On the upper deck of the research vessel (R/V) Shiyan III
(~10 m above the sea surface), a size-selective inlet high volume cascade impactor-equipped
Andersen PM10 sampler (Model SA235, Andersen Instruments Inc., New York, NY, USA)
was placed for collecting atmospheric particles. The sampler was operated at a flow rate
of 1.13 m3 min−1. To avoid pollution from the research vessel exhaust, sampling was
conducted during navigation, and the sampling duration was about 15~20 h for each
sample. A total of 12 sets of size-segregated particulate samples (<0.49, 0.49–0.95, 0.95–1.5,
1.5–3.0, 3.0–7.2, and 7.2–10.0 µm) were collected. Among them, three sets of samples were
collected at the entrance to the sea, that is, the junction of sea and land (JSL), and the other
nine sets of samples were collected during the navigation along the northeastern South
China Sea (NSCS). Among them, five sets of samples were collected during navigation in
the shallow ocean (NSCS-SO) and four sets of samples were collected during navigation in
the remote ocean (NSCS-RO). JSL is close to the Pearl River Delta (PRD) region, and there
are many ships around, so it could be affected by urban and ship emissions. NSCS-RO is
located in the deep-sea area, mainly marine aerosols. Although there are few biological
activities, it might also be affected by long-distance transmission. Compared with deep-sea
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area, NSCS-SO area is rich in marine biological activities. In addition, NSCS-SO could be
affected by urban areas(Figure 1).
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Figure 1. The map of navigational route.

The sampling filters were quartz fiber filters, and the filters with an area of
20.54 cm × 25.4 cm were used to collect particles with Dp < 0.49 µm, and the other five
filters with an area of 13.2 cm × 14.8 cm were used to collect particles with other particle
size segments. The filters were preheated at 500 ◦C for 4h before sampling. Foam plugs
and diffusion denuders were not used because of the difficulties involved in applying
them. The sampled filters were wrapped in aluminum foil sand stored at −10 ◦C prior to
laboratory analysis. Prior to being weighed, the filters were balanced for 24 h in a chamber
with a fixed temperature and relative humidity (T = 25 ◦C, RH = 50%).

2.2. Sample Analysis

A DRI Model 2015 multi-wavelength thermal/optical carbon analyzer with the IM-
PROVE_A protocol (Desert Research Institute, Reno, NV, USA) was used to measure the
OC and EC. An area of 0.8 cm in diameter in each filter sample is used for measurement [16].
Three EC fragments (EC1, EC2, and EC3 at 580, 740, and 840 ◦C, respectively, in a 2% O2
and 98% He atmosphere) and four OC fragments (OC1, OC2, OC3, and OC4 at 140, 280,
480, and 580 ◦C, respectively, in a He atmosphere) were produced. The detailed OC/EC
analysis procedures have been described elsewhere [26].

2.3. Method of Calculation

Estimated secondary organic carbon (SOC) was calculated using the EC tracer method
built by Turpin [27] and developed by Castro [28]. This was applied to estimate SOC
concentration in this paper, and the formula is as follows.

SOC = OC − EC × (OC/EC) min

In the formula, the (OC/EC) min means the minimum OC/EC ratio.

3. Results and Discussion
3.1. The Concentrations of OC and EC in PM10

For the purpose of separating PM10 into fine and coarse particles, a cutoff size of
3.0 µm was used. The concentrations of PM3.0, PM3.0–10, and PM10 were obtained by
adding the concentrations of particles with sizes less than 3.0 µm, between 3.0 and 10 µm,
and less than 10.0 µm, respectively. Significant variations in OC and EC concentrations
were observed during the sampling period. The OC and EC mass concentrations in PM10
varied from 0.85 to 11.8 µg m−3 and from 0.05 to 4.71 µg m−3, respectively.

Overall, at the three sampling sites, both the OC and EC concentrations in PM10
were as follows: JSL (11.1 ± 0.79 and 3.69 ± 0.89 µg m−3) > NSCS-SO (2.99 ± 1.34 and
0.77 ± 0.40 µg m−3) > NSCS-RO (1.68 ± 0.56 and 0.40 ± 0.29 µg m−3) (Table 1). In comparison
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to other sites, the mean concentrations of OC and EC at the JSL were 4–9 times higher.
The reason might be that the JSL is greatly affected by the PRD region and surrounding
ships and fishing boats. In the PRD region, carbonaceous aerosols are the main chemical
substances of fine particles, accounting for about 23~47% [3,29]. Moreover, the NSCS-RO is
located in the remote ocean which is less affected by the urban area and biological activities
because the living environment in the deep sea is relatively harsh. This might be the reason
for the low concentration of carbonaceous aerosols.

Table 1. OC and EC concentration (µg m−3) and the ratio of OC/EC in fine and coarse particles.

Particle Size
(µm)

JSL NSCS-SO NSCS-RO

Mean ± SD Mean ± SD Mean ± SD

OC
PM3.0 10.1 ± 0.63 2.67 ± 1.27 1.41 ± 0.50

PM3.0–10 0.94 ± 0.57 0.31 ± 0.09 0.27 ± 0.11
PM10 11.1 ± 0.79 2.99 ± 1.34 1.68 ± 0.56

EC
PM3.0 3.44 ± 0.82 0.72 ± 0.36 0.40 ± 0.28

PM3.0–10 0.25 ± 0.15 0.04 ± 0.08 0.005 ± 0.010
PM10 3.69 ± 0.89 0.77 ± 0.40 0.40 ± 0.29

OC/EC
<0.49 2.51 ± 1.46 2.72 ± 1.16 2.40 ± 0.10

0.49–0.95 6.14 ± 5.19 4.91 ± 2.72 3.17 ± 1.44
0.95–1.5 3.53 ± 1.23 4.99 ± 3.46 2.83 ± 1.32

Figure 2 shows comparisons of OC and EC concentrations measured in other locations.
The concentrations of OC and EC over the NSCS-SO were comparable to those over the
Bay of Bengal wherein samples were impacted by the continental air parcel and marine
air parcel (OC: 3.3 ± 2.2 µg m−3; EC: 1.3 ± 0.5 µg m−3) [30], the equatorial North Indian
Ocean (OC: 2.46 ± 0.54 µg m−3; EC: 1.23 ± 0.31 µg m−3), and the south-west Indian
coast (OC: 2.8 ± 0.89 µg m−3; EC: 1.2 ± 0.33 µg m−3) [31]. The OC and EC concentra-
tions over the NSCS-RO were comparable to those over the south of the East China Sea
(OC: 2.00 µg m−3; EC: 0.65 µg m−3) [32], and the South Indian Ocean (OC: 1.6 ± 0.33 µg m−3;
EC: 0.24 ± 0.07 µg m−3) [31]. Noticeably, the OC and EC concentrations at the JSL were
significantly higher than those observed over other ocean areas. Interestingly, these concen-
trations were consistent with the previous study reported by Yu et al. [33] that the OC and
EC concentrations in fine particles ranged from 5.89 to 18.66 (mean of 13.19) and from 1.08
to 3.17 (mean of 2.28) µg m−3, respectively, in Guangzhou, the central city of the Pearl River
Delta. That is further confirmed that this sampling site is greatly affected by the PRD urban
agglomeration. It is reported that carbonaceous aerosols are one of the dominant chemical
components in fine particles in the PRD region, and their proportions in fine particles have
actually been rising recently [3,34].

3.2. Characteristics of OC and EC in Size-Segregated Particles
3.2.1. OC and EC Concentrations at Different Particle-Size Bins

The OC and EC concentrations in fine and coarse particles at the three sampling sites
are presented in Table 1. The OC mean concentrations were 10.1 ± 0.63 and 0.94 ± 0.57,
2.67 ± 1.27 and 0.31 ± 0.09, and 1.41 ± 0.50 and 0.27 ± 0.11 µg m−3 in PM3.0 and in
PM3.0–10 at the JSL, NSCS-SO, and NSCS-RO, respectively, while the EC mean concentra-
tions were 3.44 ± 0.82 and 0.25 ± 0.15, 0.72 ± 0.36 and 0.04 ± 0.08, and 0.40 ± 0.28 and
0.0049 ± 0.0097 µg m−3 in PM3.0 and in PM3.0–10 at the JSL, NSCS-SO, and NSCS-RO, re-
spectively. The OC and EC were mainly concentrated in fine particles at all three sampling
sites, and more than 90% of the OC and EC were concentrated in fine particles.
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The concentrations and proportions of OC and EC at various particle-size bins are
displayed in Figures 3 and 4, respectively. Notably, the OC and EC concentrations at the JSL
were larger than the other two sites in each particle size segment, which was consistent with
the above result. Overall, at the three sampling sites, both OC and EC presented similar
trends in that the concentrations decreased with the increase in particle sizes. In particular,
approximately 75–83% of OC and 84–98% of EC were concentrated in the particles with
Dp < 1.5 µm. These results were consistent with the previous study in marine aerosol [38].
The percentages of OC and EC in the coarse particles were low. Therefore, compared
with coarse particles, carbonaceous aerosols possibly play a more significant role in the
formation of fine particles. Compared to the other sampling locations, the JSL demonstrated
considerably higher OC and EC proportions (48% and 62%, respectively) in particles with
Dp less than 0.49 µm, while the other particle-size bins at the JSL had lower OC and EC
fractions than those at the other sampling sites. For instance, only 29% OC and 33% EC
existed in the particles with Dp less than 0.49 µm at the NSCS-SO, but 37% OC and 33%
EC in particles with Dp in the range of 0.49–0.95 µm, compared to the JSL which had 48%
OC and 62% EC in particles with Dp < 0.49 µm and only 22% OC and 10% EC in particles
with Dp in the range of 0.49–0.95 µm. This result showed that in the area greatly affected by
anthropogenic sources, OC and EC were richer in smaller size particles (Dp < 0.49 µm). The
carbonaceous aerosols in the Guangzhou urban area had higher concentrations on smaller
particles with Dp < 0.49 µm [39], while diesel fuel vessels had relatively smaller proportions
in particles with Dp less than 0.43 µm [12]; therefore, compared with the impact of ships,
the JSL was more affected by the PRD urban agglomeration.
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3.2.2. OC and EC Mass Size Distribution

OC and EC mass size distributions as a function of Dp are shown in Figure 5. The OC
mass size distributions were similar at three sampling sites that exhibited a major peak in
the 0.49–0.95 µm size range. The EC mass size distributions at the NSCS-SO and NSCS-RO
were characterized by a major peak at the 0.49–0.95 µm size range, which was slightly
shifted to 0.95–1.5 µm at the JSL. Interestingly, both the OC and EC exhibited a minor peak
in the 3–7.2 µm size range (coarse mode) at the NSCS-RO. This result may be due to the
adsorption of water molecules on the surface of particles or the increase in the coating
thickness of particles during long-range transport [40,41].
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Mass mean diameter (MMD) is used to divide the diameters into two equal halves
from the minimum to the maximum [42]. In this study, we calculated the MMDs of OC
and EC using an equation described in the previous study [43]. Table 2 shows the MMDs
of the whole range of impactor particle sizes (total), and fine and coarse particles. Due to
the low concentrations of OC and EC, the MMD deviations in coarse particles were large.
Therefore, only the MMDs of the OC and EC in fine and total particles were discussed. The
MMDs of OC were 0.53 ± 0.25 µm in fine particles and 0.59 ± 0.30 µm in total particles
at the JSL, which were smaller than those at the NSCS-SO (fine particles: 0.65 ± 0.15 µm;
total particles: 0.72 ± 0.15 µm) and NSCS-RO (fine particles: 0.59 ± 0.16 µm; total par-
ticles: 0.73 ± 0.12 µm). Similar characteristics were found for EC MMDs in that the
MMDs were 0.37 ± 0.03 µm in fine particles and 0.40 ± 0.05 µm in total particles at
JSL, which were smaller than those at the NSCS-SO (fine particles: 0.72 ± 0.17 µm; to-
tal particles: 0.70 ± 0.18 µm) and NSCS-RO (fine particles: 0.65 ± 0.22 µm; total parti-
cles: 0.65 ± 0.21 µm). These results suggested that the carbonaceous aerosol sources at the
JSL were different from these of the NSCS-SO and NSCS-RO. The increased repartitioning
and hygroscopic development of OC and EC during long-range transport might be factors
in the higher MMDs of OC and EC [2].

Table 2. MMDs (µm) of the whole range of impactor particle sizes (total), fine and coarse particles.

Site
Fine (PM3.0) Coarse (PM3.0–10) Total (PM10)

Mean SD Mean SD Mean SD

OC
JSL 0.53 0.25 5.62 0.08 0.59 0.30

NSCS-SO 0.65 0.15 5.58 0.35 0.72 0.15
NSCS-RO 0.59 0.16 5.93 0.20 0.73 0.12

EC
JSL 0.37 0.03 5.57 0.03 0.40 0.05

NSCS-SO 0.72 0.17 4.40 1.21 0.70 0.18
NSCS-RO 0.65 0.22 3.53 1.05 0.65 0.21



Atmosphere 2023, 14, 661 8 of 12

3.2.3. OC and EC Fragments in Size-Segregated Particles

OC fragments (OC1, OC2, OC3, and OC4) and EC fragments (EC1, EC2, and EC3) are
helpful to understand the formation processes of carbonaceous aerosols [12]. Generally,
EC1 was classified as char EC, EC2 + EC3 was identified as soot EC, OC1 + OC2 was
recognized as volatile organic compounds, and OC3 + OC4 was classified as refractory
organic compounds [44]. Figure 6 shows the OC and EC fragments’ proportions in each
particle-size bin. Overall, OC2, OC3, and OC4 were the main OC fragments, while EC1
and EC2 were the dominant EC fragments at the three sampling sites. Moreover, the
proportions of OC1 in each particle size segment were negligible. The reason might be that
volatile organic compounds are easily reacted and evolved in the atmosphere [45].
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Due to the low concentrations of EC in the 1.5–7.2 µm size range particles, we only
discuss the OC and EC fragments in the fine particles (<1.5 µm) below. Overall, the EC
fragments in different size of particles had varying proportions at the three sampling
sites, while the OC fragments’ (OC2, OC3, and OC4) proportions did not significantly
differ among the particle-size bins at the JSL, and the proportions had obvious particle
size distribution characteristics at NSCS-SO and the NSCS-RO. Specifically, the highest
proportions of OC2 (mean of 22%) and OC3 (mean of 48%) were observed in particles with
Dp of less than 0.49 µm and the lowest proportions (mean of 15% for OC2 and 23% for
OC3) observed in the 0.49–0.95 µm particle size segment at the NSCS-SO and NSCS-RO,
while the proportion of OC4 presented the opposite particle size distribution characteristic,
that is, the lowest proportion (mean of 5.0%) was found in the <0.49 µm segment and the
highest proportion (mean of 20%) in the 0.49–0.95 µm particle size segment. These results
indirectly proved that the sources of carbonaceous aerosols at the NSCS-SO and NSCS-RO
were different from that at the JSL.

3.3. The Relationship between OC and EC

The correlation analysis between OC and EC is helpful to understand and evaluate
the source emissions of carbonaceous aerosols and the formation of SOC [38]. In this study,
a strong regression relationship existed between OC and EC in PM0.49 (R2 = 0.86) and
PM1.5–3.0 (R2 = 0.82) reflecting that OC and EC may have similar origins. A medium correla-
tion was found between OC and EC in PM0.49–0.95 (R2 = 0.55), PM0.95–1.5 (R2 = 0.74), PM3.0–7.2
(R2 = 0.61), and PM7.2–10 (R2 = 0.51), indicating varying contributions from complex sources
of OC and EC in these particle-size bins.

The concentrations of OC were higher than EC in each particle-size bin at three sites
(Figure 3), and the OC/EC mass ratios were generally larger than 2.0, with the mean value
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ranging from 2.4 to 6.1 in each individual particle-size bin, indicating that the SOC could
be formed in the atmosphere. For better comparison, this study only analyzed the OC/EC
ratios in the particles with Dp < 1.5 µm (Table 1) because the low EC concentration in
this range results in exceptionally large OC/EC ratios. Overall, the OC/EC ratios in the
particle-size bin of <0.49 µm were the lowest, while in the particle-size bin of 0.49–0.95 µm,
they were the highest. The OC/EC ratio at the NSCS-RO in each particle-size bin was the
lowest, followed by the JSL and NSCS-SO.

According to the method of SOC calculation shown in Section 2.3, the mean SOC
estimated concentrations and the SOC/OC ratios are shown in Table 3. Overall, the
concentration of SOC in PM1.5 ranged from 0.18 to 6.56 µg m−3 with the mean concentration
of 2.31 ± 2.33 µg m−3, which was lower than those in Taiyuan in PM2.5 (17.2 ± 18.9) [46]
and at Tuoji island in the Bohai Sea in PM1.0 (4.79 ± 3.62 µg m−3) [38]. At the three
sampling sites, both the mean SOC concentrations and the ratios of SOC/OC in PM1.5 were
as follows: JSL (5.42 ± 1.35 µg m−3 and 58.4 ± 9.72%) > NSCS-SO (1.08 ± 1.02 µg m−3

and 35.7 ± 25.4%) > NSCS-RO (0.38 ± 0.25 µg m−3 and 25.9 ± 16.5%), which indicate that
the contribution of secondary carbonaceous aerosols to organic carbon is relatively low in
the remote ocean region. Interestingly, at the three sampling points, the ratio of SOC/OC
showed a maximum in particles with Dp in the range of 0.95–1.5 µm, suggesting that SOC
has the largest contribution in the 0.49–0.95 µm particle size range. Moreover, the SOC
concentrations decreased with the increase in particle sizes at JSL, while they were highest
in the particles with Dp in the range of 0.49–0.95 µm and lowest in the particles with Dp in
the range of 0.95–1.5 µm both at the NSCS-SO and NSCS-RO.

Table 3. Levels of second organic carbon (SOC) estimated from minimum OC/EC ratios.

Sampling Sites Particle Size (µm) (OC/EC) min
SOC

SOC/OC (%)
(µg m−3)

JSL

<0.49 2.2 3.26± 3.28 47.6 ± 41.4
0.49–0.95 1.7 1.73 ± 1.59 50.2 ± 44.7
0.95–1.5 0.9 0.43 ± 0.40 30.7 ± 27.3
PM1.5 - 5.42 ± 1.35 58.4 ± 9.72

NSCS-SO

<0.49 1.9 0.36 ± 0.45 25.8 ± 27.7
0.49–0.95 1.8 0.65 ± 0.62 49.9 ± 33.1
0.95–1.5 1.8 0.21 ± 0.21 45.1 ± 35.8
PM1.5 - 1.08 ± 1.02 35.7 ± 25.4

NSCS-RO

<0.49 1.4 0.18 ± 0.02 24.8± 3.26
0.49–0.95 1.7 0.19 ± 0.24 59.8 ± 34.5
0.95–1.5 1.8 0.12 ± 0.14 59.1 ± 34.6
PM1.5 - 0.50 ± 0.07 33.7 ± 6.57

4. Conclusions

Size-segregated characteristics of OC and EC in the northeastern South China Sea
are investigated in this study. Up to 90% of the OC and EC were concentrated in fine
particles. Both OC and EC presented similar trends in that the concentrations decreased
with the increase in particle sizes. The OC mass size distributions at the three sampling
sites were comparable and presented a dominant peak in the 0.49–0.95 µm size range. Both
OC MMDs and EC MMDs in fine particles at the NSCS-SO and NSCS-RO were higher than
that at the JSL. The mean SOC concentrations and SOC/OC ratios in PM1.5 varied at the
three sampling sites in the following order: JSL > NSCS-SO > NSCS-RO. The SOC/OC
ratios showed a maximum in particles with the 0.95–1.5 µm size range. These results will
be helpful for understanding the characteristics of the size distribution of carbonaceous
aerosols in the northeastern South China.
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