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Abstract: In order to reveal the correlation between aerosols and pollution indicators, the MODIS
aerosol optical depth (AOD) was used to investigate the distribution of AOD in 16 prefecture-level
cities in Shandong Province from 2015 to 2020. This study quantitatively analyzed the coupling degree
and the coupling coordination degree between AOD and pollution indicators based on the coupling
coordination model. The results showed that: (1) The annual average AOD in Shandong Province
showed a rapid downward trend with a mean value of 0.615. The seasonal AOD of Shandong
Province and prefecture-level cities was characterized by spring and summer > autumn and winter.
The distribution of AOD in Shandong Province showed a spatial pattern of high in the west and
low in the east, and high in the surrounding area and low in the middle. The decreasing rate of
AOD was high in the west and low in the east. (2) The annual average AOD and Air Quality Index
(AQI) were in a highly coupled and coordinated state. Their spatial distribution pattern decreased
from west to east. There were certain fluctuations with seasonal changes, with the largest fluctuation
in winter. (3) Except for O3, the overall coupling and coordination level between AOD and each
pollutant was relatively high. The coupling coordination effect was as follows: C (PM2.5, AOD) and C
(PM10, AOD) > C (NO2, AOD) > C (SO2, AOD), and C (CO, AOD) > C (O3, AOD). Except for the O3,
its distribution was characterized by highs in the west and lows in the east. The degree of coupling
between each pollution indicator and the seasonal average AOD was high. The study showed that
there was a high degree of coupling and coordination between pollutant concentration indicators and
AOD, and remote sensing AOD data can be used as an effective supplement to regional pollutant
monitoring indicators.

Keywords: Shandong Province; AOD; pollutants; coupling coordination degree; MODIS

1. Introduction

As an important part of the ecological environment, the atmosphere is closely linked
to humans. Aerosols are mixtures of tiny solid and liquid-suspended particles in the atmo-
sphere, with a standard radius of 0.001 to 100 µm [1]. Atmospheric aerosol particles can
originate from human activities, such as biomass burning and industrial emissions, or from
natural processes, such as wildfires, desert dust, and sea spray [2–4]. The absorption and
scattering of radiant energy by atmospheric aerosols can alter atmospheric stability, thereby
affecting cloud microphysics, lifetime, and other properties [5]. Aerosols have a strong
influence on the earth-atmosphere radiation budget and the global climate [6,7]. Aerosols
are blamed for deteriorating visibility and air quality [8]. Air pollution presents a human
health risk [9,10] and is associated with mortality [11]. Particulate matter with a diameter
less than 2.5 µm, or PM2.5, is able to penetrate deeply into the cardiovascular system and
lung, hence presenting a tremendous human health risk [12]. As the main indicator for ana-
lyzing the spatial and temporal characteristics of aerosols, the aerosol optical depth (AOD)
is an important physical parameter that accurately reflects the atmospheric turbidity [13]
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and air quality [14] in a certain range. A better understanding of the spatial and temporal
distribution of AOD and its change pattern is important for environmental improvement
and sustainable development.

The influence of pollutants cannot be ignored in the assessment of ambient air qual-
ity. SO2, NO2, CO, and O3 have an important influence on the formation of atmospheric
aerosols [15,16], while fine particulate matter (PM2.5) and respirable particulate matter
(PM10) are important constituents of near-surface aerosols [17]. Meanwhile, the study of the
relationship between AOD and the air quality index (AQI) has attracted many scholars [18].
Many studies have been conducted to investigate the link between AQI, pollutants, and
AOD. Tsai et al. [19] assessed the air quality conditions in the region with the help of
AOD and PM2.5 data in Taiwan from 2006 to 2008, showing a clear and strong seasonality
between the two. Similarly, Li et al. [20] analyzed the AOD-PM2.5 relationship by a Com-
bined Maximum Covariance Analysis (CMCA) to compare all-sky and clear-sky data. The
results showed that AOD and PM2.5 were consistent in terms of interannual variability.
Meanwhile, there was a good agreement between AOD and PM2.5 in regions of the eastern
United States. Sreekanth et al. [21] explored the correlation between AOD and PM2.5 mass
concentrations over five Indian megacities for four consecutive years using linear and mul-
tiple regressions and verified a positive correlation between AOD and PM2.5. In addition to
PM2.5, Shi et al. [22] found a good indication of AOD on AQI by exploring the correlation
between the Moderate Resolution Imaging Spectroradiometer (MODIS) AOD and AQI in
Xiamen based on geographic information system (GIS) technology and statistical regression
methods. More comprehensively, Ruan et al. [23] analyzed the correlation between AOD
and AQI, PM2.5, PM10, SO2, NO2, CO, and O3 in Kunming city in 2018 and found that the
correlations between AOD and AQI, PM2.5, PM10, and O3 concentrations were significantly
positive. Identifying the correlation between AOD and pollutants in different regions can
improve the estimation of ground-monitored pollutant concentrations [24,25]. It can also
provide a scientific basis for environmental quality improvement.

Most of the existing studies have studied the relationship between AOD and air pollu-
tants by constructing linear or curvilinear regression models [26–28]. Yet, there are problems
of temporal incongruence and incomplete spatial matching between AOD obtained from
remote sensing data and atmospheric pollutants [29]. Therefore, the regression models
may lead to the occurrence of temporal and spatial misalignments of AOD and pollutants.
These coupling models can effectively address this issue. Coupling is the phenomenon of
two or more systems interacting with each other through various interactions; it originated
in physics but is now widely used in climate change and environmental studies [30]. The
degree of coupling and its coordination determine the order and structure of the system
when it reaches the critical region. That is to say, it determines the characteristics and
laws of the phase transition of the system in the process from disorder to order [31]. The
coupling coordination models can be used to obtain the coupling coordination degree of
AOD and AQI and different pollution indicators and to analyze the coupling law in spatial
and temporal distribution. This can provide a theoretical reference for air pollution and
environmental management.

At present, studies on the relationship between AOD and pollutant indicators using
coupled models mostly focus on the period of strong pollution, which fails to reflect its over-
all nature and change process [32]. Moreover, the research areas of the relevant studies are
mostly concentrated in economically developed cities or regions, such as the Beijing-Tianjin-
Hebei urban agglomeration [33,34]. Rapid urbanization and industrialization during the
past decades have led to a deterioration in the air quality across China [35,36], such as in the
North China Plain [37,38]. Heavy anthropogenic pollution caused by industrial and agricul-
tural activities and urbanization has resulted in aerosols with rather complex physical and
optical properties [39,40]. In the eastern part of the North China Plain (Figure 1), Shandong
province is one of the most polluted and populous regions in China [41]. In 2019, five cities
in Shandong were in the bottom 20 in terms of air quality, according to a study of 168 major
cities in China [42]. These cities included Zaozhuang, Linyi, Liaocheng, Jinan, and Zibo.
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Despite the severe air quality issue in the province, there has been little study to explore
the AOD and its associations with different pollutants. Timely monitoring of the changes
in AOD and understanding the link between AOD and AQI, pollutant indicators, can play
a key role in environmental improvement in Shandong Province. To achieve this aim, this
study examined the spatial and temporal distribution characteristics and change patterns
of AOD from 2015 to 2020 based on MOD04_3K AOD products in Shandong Province. We
selected PM2.5, PM10, SO2, NO2, CO, and O3 as pollution indicators and combined them
with a coupled coordination model to obtain the coupling coordination degree of AOD
with different pollution indicators and AQI to reveal its coupling mechanism in the spatial
and temporal distribution of Shandong Province.
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Figure 1. Study area.

2. Data and Methods
2.1. Data

As one of the main sensors carried on Terra and Aqua satellites, the moderate resolu-
tion imaging spectroradiometer (MODIS) is a widely used aerosol detection sensor with
a high update frequency and wide spectral range [43]. This study selected the Level 2
MOD04_3K AOD product released by NASA from 2015 to 2020. This product is a new 3
km daily aerosol product based on the Dark Target (DT) aerosol algorithm for obtaining
the optical properties (e.g., optical depth and size distribution) and mass concentrations
of atmospheric aerosols in the global marine and terrestrial environments [44,45]. Many
studies have been conducted to validate the product within China and have found that the
MODIS 3 km aerosol product quality is stable, the overall inversion accuracy is high, and
the data results are reliable [46–48].

Daily averages of AQI and air pollutant concentration data (including PM2.5, PM10,
SO2, NO2, CO, and O3) for 16 prefecture-level cities in Shandong Province from 2015 to
2020 were obtained from Sky Cloud (https://www.ebd120.com, accessed on 2 July 2021), a
site whose data originated from the China General Environmental Monitoring Station and
the real-time ambient air quality release platforms of provinces and cities.

2.2. Methods
2.2.1. Linear Regression Trend Analysis

In this study, a unary linear regression model (y = kx + b) is used to analyze the
trend of AOD in prefecture-level cities from 2015 to 2020. The X-axis is the year (time
series), the Y-axis is the AOD, and the slope k represents the tendency rate. When k > 0, the

https://www.ebd120.com
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result indicates that the AOD exhibits a trend of growth, and vice versa. The formula for
calculating the k is as follows:

k = (n
n

∑
i=1

iXi −
n

∑
i=1

i
n

∑
n

Xi)/

[
n

n

∑
i=1

i2 − (
n

∑
i=1

i)
2]

(1)

where n is the number of years (i.e., 6 in this study); i is the ith year (i.e., 2015 is the first
year); and Xi is the annual average value of the AOD in the ith year.

2.2.2. Standardization of Pollution Indicators

Since the units of measurement are different among pollution indicators, it is necessary
to standardize the indicators, that is, to convert the absolute values of the indicators
into relative values. This study used extreme value standardization, which is shown in
Equation (2). Since indicator data may be 0 after the extreme value normalization, a positive
number slightly greater than 0 should be added to the result of such data. In this study,
0.001 is added to avoid the meaninglessness of the assigned number [49], as shown in
Equation (3).

Xj =
Xi − Xmin

Xmax − Xmin
(2)

Xj =
Xi − Xmin

Xmax − Xmin
+ 0.001 (3)

In Equations (2) and (3), Xj denotes the jth data of the standardized index, Xi denotes
the ith data of the original pollutant index, Xmin denotes the minimum value in the original
pollutant index data, and Xmax denotes the maximum value in the original pollutant
index data.

2.2.3. Coupling Degree Model

The degree of coupling is used to describe the degree of interaction between two or
more systems or system elements [50]. Borrowing from the concept of capacity coupling in
physics, the following model is obtained:

U = 2

√
U1U2

(U1 + U2)
2 (4)

where U denotes the coupling degree of the two system elements, which ranges from 0 to 1;
U1 and U2 denote the combined indices of the two system elements, i.e., the AOD data as
well as the air pollution index data in this study, respectively. The closer U is to 1, the more
significant the coupling level is.

2.2.4. Coupling Coordination Degree Model

Both system elements are at low values and may reach a high level of coupling, so we
established a coupling coordination degree model [51]:

Y = α U1 + β U2 (5)

C = (U × Y)
1
2 (6)

In Equations (5) and (6), C denotes the coupling coordination degree; U denotes the
coupling degree; Y denotes the integrated coordination coefficient between aerosols and
each air pollution index; α and β denote the contribution coefficients between aerosols
and each air pollution index, respectively. In this study, AOD is considered to be equally
important as each air pollution index, so α and β are taken as 0.5 [52,53]. The coupling level
and coupling coordination level are determined based on coupling degree and coupling
coordination degree, respectively, as shown in Table 1.
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Table 1. Levels of coupling degree and coupling coordination degree.

U Coupling Level C Coupling Coordination Level

(0.8, 1] Excellent (0.8, 1] Excellent
(0.6, 0.8] Good (0.6, 0.8] Good
(0.5, 0.6] Normal (0.5, 0.6] Normal
(0.4, 0.5] Less poor (0.4, 0.5] Less poor
(0.3, 0.4] Bad (0.3, 0.4] Bad
(0, 0.3] Worse (0, 0.3] Worse

3. Results

This study centers on the AOD, air pollution indicators, and the coupling coordina-
tion degree between them for different years and seasons in each prefecture-level city of
Shandong Province. To facilitate the study of the characteristics of temporal variation in
different quarters, the seasonal variation in the paper is divided into spring from March
to May, summer from June to August, autumn from September to November, and winter
from December to February [54].

3.1. Spatial and Temporal Variations of AOD
3.1.1. Interannual Variations of AOD

As shown in Figure 2a, the average value of AOD is as high as 0.615 in Shandong
Province in the past six years. The annual average AOD value decreases by 0.181 (from
0.724 to 0.543), with an overall decrease of 25%, showing a rapid decreasing trend from
2015 to 2020. The AOD values are different among prefecture-level cities in Shandong
Province (Figure 2b and Table 2). The highest average AOD is in Dongying city, with a
value of 0.791, while the lowest average AOD is in Yantai city, with a value of 0.460. In the
past six years, the AOD values of all prefecture-level cities have decreased, indicating a
significant improvement in the atmospheric environment. Among them, the most obvious
improvement in AOD is in Tai’an City, with a decline of 32.13%, while Weihai City has the
least improvement in AOD, with a decline of 14.98%. In terms of the rate of decrease, the
city with the fastest decrease is Dongying, with a value of 0.054, and the slowest is Weihai,
with a value of 0.017.
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Table 2. Interannual variations of AOD by prefecture-level cities in Shandong Province from 2015
to 2020.

City 2015 2016 2017 2018 2019 2020 Average Magnitude of
Decrease k

BinZhou 0.774 0.818 0.698 0.654 0.597 0.590 0.689 23.77% −0.047
DeZhou 0.720 0.764 0.680 0.610 0.562 0.566 0.650 21.39% −0.041

DongYing 0.920 0.904 0.795 0.754 0.698 0.674 0.791 26.74% −0.054
HeZe 0.842 0.719 0.724 0.651 0.632 0.609 0.696 27.67% −0.043
JiNan 0.677 0.698 0.615 0.528 0.524 0.512 0.592 24.37% −0.041
JiNing 0.871 0.769 0.748 0.638 0.636 0.618 0.713 29.05% −0.051

LiaoCheng 0.836 0.816 0.776 0.683 0.625 0.637 0.729 23.80% −0.048
LinYi 0.714 0.642 0.589 0.503 0.515 0.514 0.580 28.01% −0.042

QingDao 0.638 0.619 0.559 0.526 0.522 0.526 0.565 17.56% −0.025
RiZhao 0.633 0.578 0.541 0.467 0.485 0.476 0.530 24.80% −0.033
TaiAn 0.750 0.693 0.629 0.513 0.528 0.509 0.604 32.13% −0.052

WeiFang 0.731 0.689 0.614 0.582 0.571 0.550 0.623 24.76% −0.037
WeiHai 0.534 0.482 0.438 0.455 0.407 0.454 0.462 14.98% −0.017
YanTai 0.527 0.501 0.429 0.445 0.417 0.438 0.460 16.89% −0.020

ZaoZhuang 0.794 0.700 0.661 0.588 0.569 0.539 0.642 32.12% −0.050
ZiBo 0.614 0.621 0.531 0.478 0.476 0.459 0.530 25.24% −0.036

The spatial distribution of atmospheric aerosols is significantly influenced by topo-
graphic features. As shown in Figures 1 and 3a, the distribution characteristics of AOD
and elevation in Shandong Province are similar. The distribution of AOD in Shandong
Province shows a pattern of being higher in the west, where elevation is relatively low. In
the high-elevation regions, the AOD shows low values. Similarly, the decreasing rate of
AOD shows a pattern of distribution with high levels in the west and low levels in the
east (Figure 3b). The spatial distribution characteristics of AOD found by Lin et al. [55]
are similar to this. The fastest-decreasing AOD values are mainly in the western inland
cities. Among them, the deceleration of AOD in Dongying city, Tai’an city, and Jining city
is above 0.05.
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Figure 3. (a) Spatial distribution and (b) decreasing rate of AOD by prefecture level cities in Shandong
Province from 2015 to 2020.

3.1.2. Quarterly Variations of AOD

The quarterly average AOD values of Shandong Province for each prefecture-level
city from 2015 to 2020 show the characteristics of spring and summer > autumn and
winter (Figure 4). Specifically, the quarterly AOD values for most cities are characterized
as summer > spring > autumn > winter. The study by Xue et al. [56] on the seasonal
distribution of AOD in Shandong Province also showed consistent results. Exceptionally,
AOD values in spring are slightly higher in Heze and Zaozhuang than those in summer.
There are also differences between AOD values in the prefecture-level cities during the
same quarter. The summer AOD values are significantly highest in Dongying city, while
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Yantai city and Weihai city have relatively lowest AOD values, which is consistent with
the performance of the annual average AOD values in each city (Table 2). The range of
fluctuation in AOD values is the largest in the summer.
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Figure 4. Variations of quarterly AOD by prefecture level cities in Shandong Province: AOD values
of Shandong Province in (a) spring, (b) summer, (c) autumn and (d) winter.

3.2. Coupling Degree and Coupling Coordination Degree between AOD and AQI
3.2.1. Interannual Coupling Degree and Coupling Coordination Degree between AOD
and AQI

In order to explore the interrelationship between AOD and AQI in each prefecture-
level city of Shandong Province, the coupling degree and coupling coordination degree
between AOD and AQI were calculated (Table 3). The coupling degree of 13 prefecture-level
cities exceeds 0.9. Three-fourths of the prefecture-level cities have coupling coordination
above 0.6. However, the coupling degree and coupling coordination between AOD and
AQI are lowest in Yantai city.

Table 3. Statistics of coupling degree and coupling coordination degree between AOD and AQI.

City U Coupling Level C Coupling
Coordination Level

BinZhou 0.9992 Excellent 0.8492 Excellent
DeZhou 0.9657 Excellent 0.8660 Excellent

DongYing 0.9847 Excellent 0.9163 Excellent
HeZe 0.9870 Excellent 0.9163 Excellent
JiNan 0.9245 Excellent 0.7728 Good
JiNing 0.9999 Excellent 0.8693 Excellent

LiaoCheng 0.9947 Excellent 0.9500 Excellent
LinYi 0.9310 Excellent 0.7300 Good

QingDao 0.9924 Excellent 0.5303 Normal
RiZhao 0.9403 Excellent 0.5504 Normal
TaiAn 0.9691 Excellent 0.7490 Good

WeiFang 0.9805 Excellent 0.7761 Good
WeiHai 0.6599 Good 0.0515 Worse
YanTai 0.1573 Worse 0.1124 Worse

ZaoZhuang 0.9720 Excellent 0.8366 Excellent
ZiBo 0.7957 Good 0.6548 Good
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Figure 5a provides the spatial distribution of the coupling coordination degree be-
tween the average AOD and AQI from 2015 to 2020. The coupling coordination degree is
higher in six cities in the western part of Shandong Province, while the lowest coupling
coordination degree is found in Weihai and Yantai. The coupling coordination degree in
Shandong Province clearly shows a decreasing trend from west to east. In addition, there
is also some similarity with the distribution of elevation and AOD. Considering that the
emissions of 2020 pollutants will be largely affected by the outbreak of the Corona Virus
Disease 2019 (COVID-19) in early 2020 [57,58]. We compared the coupling coordination
degree between AOD and AQI in 2015, 2019, and 2020 (Figure 5b–d). From 2015 to 2019,
the coupling coordination degree between AOD and AQI generally increased, mainly in
Binzhou City and Yantai City. However, compared with 2019, the coupling coordination de-
gree between AOD and AQI decreases in 2020, mainly in the cities of Weifang, Zaozhuang,
Zibo, and Yantai.
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3.2.2. Quarterly Coupling Degree and Coupling Coordination Degree between AOD
and AQI

The coupling coordination degree of both Weihai city and Yantai city is low in each
season, while the coupling coordination degree of Liaocheng city is high (Figure 6). Com-
pared to winter, the coupling coordination degree of the other three seasons for each city
fluctuates less and is basically in the same range. Among them, Qingdao city has the
smallest fluctuation change in the quarterly coupling coordination level, while Zibo city
has the largest fluctuation change.
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3.3. Coupling Degree and Coupling Coordination Degree between AOD and Pollutants
3.3.1. Interannual Coupling Degree and Coupling Coordination Degree between AOD
and Pollutants

The overall trend of the coupling degree between each pollutant indicator and AOD is
consistent with the coupling coordination degree (Figure 7). Except for the O3, the coupling
degree and coupling coordination degree between each pollutant indicator and the AOD
are relatively similar, showing a high coupling coordination level in most cities. From the
perspective of each pollutant indicator, the coupling coordination effect between PM2.5,
PM10, and AOD is the most significant. However, there are some differences; for example,
the coupling degree of PM2.5, PM10, and AOD in Qingdao city is high, but the coupling
coordination degree is relatively low. Comparing the four types of gaseous pollutants, the
coupling coordination level of AOD with NO2 is better coordinated. AOD and O3 also
show some coupling coordination phenomena, but they are less obvious compared with
other gaseous pollutants. In summary, the coupling coordination level of each pollutant
indicator with the annual average AOD from 2015 to 2020 is shown as C (PM2.5, AOD), C
(PM10, AOD), > C (NO2, AOD), > C (SO2, AOD), and C (CO, AOD), > C (O3, AOD).

Figure 8 shows that, except for O3, the coupling coordination degree between each
pollutant indicator and AOD has the characteristics of being high in the west and low in
the east. In terms of the level of coupling and coordination between pollutant indicators
and AOD, PM2.5 and PM10 are the highest. In terms of the gaseous pollutant indicators, the
coupling coordination degree between NO2 and AOD is higher. To reflect the changes in
the distribution of coupling coordination degree, the distributions of 2015, 2019, and 2020
were also selected for comparison. It is found that except for O3, the coupling coordination
degrees all show an increase and then a decrease from 2015 to 2020. The areas of change
are mainly concentrated in the central region, which is mainly reflected in two types of
solid particulate matter, PM2.5 and PM10. The coupling coordination degrees between
the other three gaseous pollutants and AOD are similar in terms of spatial and temporal
variations, except for the large fluctuations of the coupling coordination degrees between
O3 and AOD.
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3.3.2. Quarterly Coupling Degree and Coupling Coordination Degree between AOD
and Pollutants

The coupling degree between O3 and AOD fluctuates widely (Figure 9). Yet, the
coupling degree between other pollution indicators and AOD is similar in all seasons,
showing a high level, although some cities show temporal fluctuations. For instance, the
coupling degree in Weihai city and Yantai city is higher in the autumn and lower in the
other three seasons. The coupling degree between each pollutant indicator and AOD in
Zibo City is greatly lower in winter. In addition, the coupling degree between PM2.5 and
AOD in Qingdao city is tremendously lower in the summer.
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The degree of coupling and coordination between the six pollutants and AOD varies
among the four seasons and cities. The coupling coordination degree is greater in spring,
summer, and autumn than it is in winter. During the four seasons in each prefecture-level
city, the coupling coordination degree has the strongest fluctuation amplitude in the winter,
while the other seasons have lighter fluctuations. In terms of different pollution indicators,
the level of coupling and coordination between O3 and AOD is remarkably poorer. Except
for O3, the coupling coordination between solid particulate matter and AOD is higher than
that of gaseous pollutants.

4. Discussion
4.1. Spatial and Temporal Variations of AOD

According to Figures 2 and 3, it is found that the distribution of AOD in Shandong
Province shows a pattern of high in the west and low in the east, high in the surrounding
area and low in the middle, influenced by factors such as topography, industrial structure,
anthropogenic activities, and the location of sea and land [59]. Similarly, the reduction
rate of AOD in Shandong Province shows a characteristic distribution of fast in the west
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and slow in the east. In particular, since the 13th Five-Year Plan, the problem of volatile
organic compounds (VOCs) in Dongying city has become increasingly prominent [60], and
the average AOD value is notably higher. In recent years, the air quality in Dongying city
has improved significantly after the application of the government’s energy saving and
emission reduction policies [61]. Therefore, Dongying city has experienced a significant
decrease in AOD values, making it the prefecture-level city with the fastest rate of decrease
in Shandong Province over the past six-year period. At the same time, the AOD values for
both Tai’an and Jining decline at a rate above 0.05, mainly because of the larger AOD base
values. In addition, Yantai and Weihai are typical light industrial cities with little industrial
pollution [62]. The air quality is stable and good due to the blocking effect of mountainous
terrain [63] and the clean air from the ocean [64]. This makes Yantai and Weihai cities have
the lowest AOD values, reduction magnitudes, and decrease rates.

The quarterly average AOD values of Shandong Province from 2015 to 2020 show the
characteristics of spring and summer > autumn and winter. In addition to anthropogenic
factors, the aerosol hygroscopic effect is pronounced due to high temperatures and high
relative humidity in summer [65]. This promotes the increase of AOD values. Whereas,
the growth of aerosol particle hygroscopic growth is inhibited in winter due to lower
relative humidity. Coupled with short sunshine hours, there are fewer secondary aerosols,
resulting in low AOD values in winter [66]. Therefore, the quarterly AOD values of most
prefecture-level cities show the characteristics of summer > spring > autumn > winter. This
is consistent with the findings of Xue et al. [56] and Nam et al. [67]. However, the spring
AOD values in Heze city and Zaozhuang city are slightly higher than those in summer,
which may be related to the strong polluted weather and unfavorable diffusion conditions
that occurred in spring in recent years [68]. AOD values are higher in the summer and
are strongly influenced by inter-regional climate and anthropogenic activities. Therefore,
the differences in summer AOD values among prefecture-level cities are large. Among
the four seasons, the summer AOD value of Dongying city shows the highest among the
prefecture-level cities. Dongying city is located in the Bohai Sea region. Due to the influence
of the monsoon, the coastal humidity is high in summer, resulting in the growth of aerosol
hygroscopicity [56]. Yantai city and Weihai city have low year-round AOD values, and
similarly low AOD values in summer. Furthermore, the differences in AOD values among
prefecture-level cities in winter are small. Heze city has the highest AOD value in winter,
mainly due to the coal smoke pollution in the main urban area for heating [69].

4.2. Coupling Degree and Coupling Coordination Degree between AOD and AQI

The coupling levels between AOD and AQI from 2015 to 2020 are considered strong.
The overall coupling between AOD and AQI is at an excellent level. This indicates that
there is a strong interaction between AOD and AQI in Shandong province. Most cities are
at excellent and good coupling coordination levels between AOD and AQI. This indicates
that the benign coupling levels between AOD and AQI are high. Among them, Yantai City
is an anomaly. AQI is strongly influenced by altitude and humidity due to its geographical
location [70]. At the same time, the two are affected by natural factors such as meteorology,
and the degree and manner of influence are different [18,71,72], resulting in AOD and AQI
being in an uncoupled disorder state.

Due to the effects of geographical location, human activities, and other factors, the
spatiotemporal heterogeneity of the coupling coordination degree index is relatively obvi-
ous (Figure 5a). As shown by the distribution of the coupling coordination between the
average AOD and AQI from 2015 to 2020, the six prefecture-level cities in the northwest
and southwest regions are clearly at an excellent level of coordination. Since the industrial
structure is mostly industrial, the area is strongly influenced by industrial pollution and
other human activities. In contrast, Weihai City and Yantai City have worse levels of
coupling coordination.

The coupling coordination level between AOD and AQI in 2015, 2019, and 2020 is
compared in Figure 5b–d. From 2015 to 2019, the level of coupling coordination between
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AOD and AQI in Binzhou and Yantai cities has increased. The benign coupling between
AOD and AQI increases, and the relationship gradually tends to be balanced. The coupling
coordination level between AOD and AQI decreases in several cities from 2019 to 2020,
indicating that their benign coupling decreases. In addition to anthropogenic activities,
aerosols and air quality in Shandong Province are influenced by sea breeze, climate, and
so on [73,74]. The prevention and control measures of COVID-19 had great restrictions on
the movement of people, transportation, engineering construction, industrial production,
and commercial trade activities. Industrial emissions and automobile exhaust were greatly
reduced, and air quality was significantly improved [75,76]. At the same time, AOD has
decreased but still has aerosols from numerous other sources [77]. This makes the benign
interaction between AOD and AQI enhance followed by a weakening. In particular, Yantai
and Weifang cities show obvious opposite changes before and after the epidemic. The
coupling coordination of AOD and AQI both show a change characteristic of rising and
then falling. This indicates that anthropogenic activities in Yantai and Weifang have a
significant impact on air quality.

Among the same prefecture-level cities, the coupling coordination degree of AOD
and AQI shows some fluctuations across the four seasons. The coupling coordination level
between AOD and AQI is the lowest in winter, due to the poorer atmospheric quality in
Shandong Province in winter [78]. Zibo City is at a worse coordination level in the winter,
with a large gap compared to the good levels in the other three seasons. Influenced by the
meteorological conditions, it is clearly evident that AOD in winter is the lowest among the
four seasons. However, extreme weather in winter often causes poorer air quality [79,80].
Therefore, the coordination between AOD and AQI is poor in the winter.

4.3. Coupling Degree and Coupling Coordination Degree between AOD and Pollutants

By analyzing the coupling level between each pollutant indicator and AOD, we find
that AOD has a close coupling relationship with all the pollutants except O3. This may
be due to a significant negative correlation between aerosols and O3 [81]. Due to the
influence of altitude [82] and location near the ocean [83], Weihai and Yantai cities have
low pollution [84] and low aerosol content, resulting in the worst coupling level in relative
terms. The overall trend of the coupling coordination between each pollutant indicator
and AOD is similar to the coupling level. However, there are exceptions. For example, the
degree of interaction between PM2.5, PM10, and AOD in Qingdao city is strong, while their
coupling coordination levels do not reflect a positive mutual promotion effect. Figure 7
shows that the benign coupling and coordination effect between AOD and solid particulate
matter is significantly higher than that between AOD and gaseous pollutants. A similar
pattern of results was obtained in the study of the coupling coordination between AOD and
pollutants in the Beijing-Tianjin-Hebei region by Hao et al. [52]. Specifically, the coupling
and coordination level of each pollutant indicator with AOD from 2015 to 2020 shows C
(PM2.5, AOD), C (PM10, AOD) > C (NO2, AOD) > C (SO2, AOD), and C (CO, AOD) > C
(O3, AOD).

Except for O3, the coupling coordination between each pollutant indicator and AOD
has a distribution characteristic of high in the west and low in the east, similar to the
spatial distribution of AOD (Figure 8). This may be influenced by anthropogenic activities
and geographical location [85]. Weihai and Yantai cities are obviously influenced by the
small concentrations of pollutants and AOD. Their coordination effects are always poorly
constrained. By comparing the distribution changes of the coupling coordination degree in
2015, 2019, and 2020, it is found that the change in the coordination relationship between
gaseous pollutants and AOD is great for solid particulate matter. In addition, the cities
with changes are mostly located in the central part of Shandong Province. However, in
general, the changes in coordination levels show a trend of increasing and then decreasing
from 2015 to 2020, except for O3. This indicates that the benign interaction between the
pollutants and AOD is first enhanced and then weakened. It is more obvious that the
changes in coordination levels of AOD and PM10, SO2, NO2, and CO in Zibo City are all
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from normal to good and then to normal. Pollutant concentrations were significantly lower
due to the strong influence of the COVID-19 pandemic [86,87]. This caused a consistent
downward trend in their coupled coordination.

There is a close coupling between each pollutant and AOD in all seasons, except for
O3. Exceptionally, the interaction between PM2.5 and AOD is remarkably weak in Qingdao
city in summer. This is mainly due to the high rainfall in summer, which reduces the
particulate matter content in the atmosphere [88]. The degree of coupling and coordination
between different pollutants and AOD is different in the four seasons. Pollutant levels
are significantly higher in the winter [89], while AOD is lower relative to other seasons,
influenced by climatic factors. There is a clear difference in tendency between the two
elements, resulting in poor coordination in winter. Except for O3, the coupling coordination
degree between solid particulate matter and AOD is significantly higher than that of
gaseous pollutants. This is consistent with the pattern of coupling coordination between
AQI and AOD.

5. Conclusions

During the period of 2015 to 2020, the average value of AOD in Shandong Province
was as high as 0.615. The annual average AOD decreased by 25% with a rapid downward
trend, indicating a significant improvement in the atmospheric environment. Similar
to the characteristics of the altitude in Shandong Province, the distribution of AOD in
Shandong Province showed a pattern of high in the west and low in the east, high in the
surrounding area, and low in the middle. Similarly, the decreasing rate of AOD also showed
a pattern of high concentration in the west and low concentration in the east. Influenced
by anthropogenic activities and climatic factors, the quarterly average AOD values of
Shandong Province and prefecture-level cities from 2015 to 2020 showed that spring and
summer > autumn and winter. Specifically, the quarterly AOD values of most cities showed
the characteristics of summer > spring > autumn > winter. The mean AOD values varied
widely between cities in the same quarter, with the largest differences in summer.

From 2015 to 2020, the coupling level between AOD and AQI in Shandong province
was considered strong. The coupling coordination between AOD and AQI clearly showed
a spatial distribution trend of decreasing from west to east and a temporal change trend of
increasing and then decreasing. On a quarterly scale, the coupling coordination between
AOD and AQI fluctuated somewhat with the seasons, with the greatest fluctuation in winter.
The high coupling coordination between AOD and AQI provided a theoretical basis for
using remote sensing AOD data as an effective supplementary means for AQI monitoring
at the regional scale. This can compensate to a certain extent for the shortcoming of the
insufficient spatial density of AQI ground observation sites.

The overall trend of the coupling coordination degree between each pollutant indicator
and AOD was similar to the coupling degree. There was a close coupling relationship
between AOD and all pollutants except O3. Specifically, the degree of coupling coordination
between each pollutant indicator and AOD in 2015–2020 was shown as C (PM2.5, AOD),
C (PM10, AOD), > C (NO2, AOD), > C (SO2, AOD), and C (CO, AOD) > C (O3, AOD).
Except for O3, the coupling coordination of each pollutant index with AOD had the
characteristic of being high in the west and low in the east. The coupling coordination
phenomenon was significant in areas with low altitude and high population density or
industrial activities. The changes in the coupling coordination degree of each pollutant
index and AOD all showed a trend of increasing first and then decreasing. The changes
were mainly concentrated in the central part of Shandong Province and were mainly
reflected in two types of solid particles, PM2.5 and PM10. In addition, the degree of coupling
coordination among prefectures fluctuated the most in the winter. However, the coupling
coordination degree in winter was significantly lower than that in the other three seasons.

Furthermore, O3 and AOD showed different degrees of coupling coordination and
changes in different areas. Therefore, comprehensive pollution control measures should be
implemented in a targeted manner based on further pollution traceability analysis. Due to
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the limitations of available data, the pollutant data selected for this study are ground-based
observations. AOD is the integration of the extinction coefficient of a medium in the vertical
direction, which is often related to the vertical distribution of pollutants. However, there is
also unevenness in the vertical distribution of pollutants. Therefore, how the unevenness
in the vertical direction affects the correlation between AOD and pollutants will be the next
research direction.
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